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Abstract

This paper explores universal relations, i.e., meta-mathematical concepts that mathematicians
seem to employ in all domains of mathematical reasoning. This paper presents precise mathematical
definitions for three universal relations: isomorphism (type identity), essential property , and iso-
onticity . Although no formal explanation is given as to how universal relations expedite mathematical
reasoning, some intuitive arguments are presented as to why these relations, and iso-onticity in
particular, seem so useful in mathematics.

1 Introduction

Consider a hypothetical automated encyclopedia of mathematics. A user of this encyclopedia wants
to get information about a certain kind of mathematical object that he or she has been calling foo
spaces. Since foo spaces are fairly simple it seems likely that they have already been well studied and are
described somewhere in the mathematical encyclopedia. Although the user does not know the standard
mathematical name for a foo space, the user can define foo spaces in terms of more basic concepts. The
user states the definition of a foo space in a machine-readable language as a pair of a domain (a set)
and a family of subsets of that domain such that the union of all sets in the family is the entire domain
and the family of subsets is closed under arbitrary union and finite intersection. It should be clear to
any human mathematician that foo spaces are the same as topological spaces and have a long history in
mathematics. Unfortunately, in the automated encyclopedia a topological space is defined to be a family
of sets that is closed under arbitrary union and finite intersection. From a purely formal perspective,
based on these two formal definitions, a foo space is not a topological space and a topological space is
not a foo space. More specifically, let F be the foo space 〈D,X〉 where D is the domain of F and X is
the family of subsets of D. Under the encyclopedia’s definitions, the family X is a topological space but
the pair 〈D,X〉 is definitely not a topological space since it is not a family of sets. It does not matter
that D can be expressed as the simple union of all sets in X; it is still the case that a pair is different
from a family of sets and thus foo spaces are not topological spaces. The encyclopedia tells the user that
it has no information about foo spaces.

There is clearly some inadequacy in the automated encyclopedia described above; it should have
recognized a foo space as simply an alternative way of defining a topological space. The same problem
arises in virtually all mathematical concepts — definitions that are really “the same” are technically
quite different. As another example consider the definition of a group. A group can be defined as an
algebra with one binary operation satisfying certain non-equational conditions, or it can be defined as
an algebra with a binary operation, a unary operation (inverse) and a constant (the identity) satisfying
certain equations. These two definitions result in technically disjoint classes of objects.

Can an automated reasoning system search for, and hopefully find, equivalences between technically
distinct definitions, such as the equivalence between foo spaces and topological spaces, or the equivalence
between a group as an algebra with one operation and a group as an algebra with two operations and
a constant? The first step in answering this question is to find some formal characterization of when
two definitions are “the same”. It is tempting to try to characterize these equivalences in terms of the
well known notion of isomorphism. Unfortunately, it is easy to see that there is no standard notion
of isomorphism under which a foo space is isomorphic to a topological space. Two distinct topological
spaces can be homeomorphic, the standard notion of isomorphism for topological spaces, but there is no
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way a topological space can be homeomorphic to an object that is not a topological space. Similarly an
algebra with one operation can not be isomorphic, in the standard sense for algebras, with an algebra
that has two operations and a constant.

If an automated mathematical encyclopedia can not use some standard notion of isomorphism to
identify equivalences between definitions, perhaps it can use a more general category-theoretic notion of
isomorphism. The basic challenge in formulating a category theoretic approach to equivalence between
definitions is to define a single notion of equivalence that can be used for arbitrary mathematical defi-
nitions. The mathematical definitions that appear in textbooks and journals are not usually explicitly
associated with categories. Even if a user of an automated encyclopedia explicitly associates a category
with every defined concept, it is not clear that an association of a single category with each concept
is sufficient for all purposes. For example, consider the two standard definitions of a lattice. A lattice
can be defined as either a partially ordered set with least upper bounds and greatest lower bounds, or
as an algebra satisfying certain equations. It is not clear what category should be associated with the
concept of a partial order, or whether the categories associated with partial orders and with algebras
are useful in recognizing the equivalence between the order-theoretic and the algebraic definitions of a
lattice. As another example, consider an equivalence relation defined as a relation, i.e., a set of pairs, and
defined as a partition into equivalence classes, i.e., a family of sets. Again, it is not clear what category
should be associated with the set of pairs definition and what category should be associated with the
equivalence class partition definition. Even if these concepts are associated with categories, it is not
clear if a single association of categories with these concepts is appropriate for all possible equivalences.
For many particular examples of equivalences between definitions, and perhaps even for the examples
discussed so far, it is possible to associate each concept with some particular category such that some
form of category theoretic equivalence is apparent. However, defining particular categories for exhibiting
particular equivalences is quite different from providing a general definition of equivalence that can be
applied to arbitrary pairs of mathematical concepts. One would like a general theory of equivalence that
can be applied unambiguously to the examples given so far, and an unbounded number of other exam-
ples. In each case the general theory should determine unambiguously, at least in principle, whether or
not any two given mathematical definitions are equivalent. The lack of any objective way of associating
a category with arbitrary definitions, such as the definition of a partial order, partition, or equivalence
relation, seems to be a major obstacle to any category-theoretic approach.

This paper takes a set-theoretic approach to the problem of recognizing equivalences between mathe-
matical definitions. All of the mathematical definitions discussed have simple unambiguous set-theoretic
formulations. For each mathematical definition, the objects which are instances of that definition, e.g.
the topological spaces, are particular elements of the set-theoretic universe. Thus each definition corre-
sponds to an unambiguous class of sets. Thus, any unambiguous notion of equivalence between classes
of sets yields an unambiguous notion of equivalence between mathematical definitions.

The equivalence between the definition of a foo space and the definition of a topological space is
an example of a general form of equivalence that I will call iso-onticity. The formal definition of iso-
onticity given below states iso-onticity as a relationship between particular mathematical objects rather
than between mathematical definitions — we say that a particular foo space is iso-ontic to a particular
topological space. The concept of iso-onticity can be applied to arbitrary mathematical objects — any
two mathematical objects either are or are not iso-ontic to each other. Because the concept of iso-onticity
applies to arbitrary mathematical objects, iso-onticity will be called a universal relation, i.e., a relation
that is defined on all objects. In addition to iso-onticity, we give formal definitions for two other universal
relations, isomorphism and essential properties.

Intuitively, isomorphism corresponds to the notion of type identity. Consider two pennies which have
just been minted by the same machine. These two pennies are physically identical for all macroscopic
purposes (we might say that they are type identical as physical objects). Similarly we could consider two
cans of diet Pepsi, or two copies of the “same” book. In each case the two objects are (for all practical
purposes) physically identical. A more exact case of type identicality is given by two gaseous carbon
dioxide molecules; it seems that any two such molecules in their ground energy state are truly type
identical (isomorphic). In fact the notion of isomorphism seems to be universal; any object whatsoever
could have a doppelganger in some parallel universe. An object is always isomorphic to its doppelganger.

It is important to distinguish isomorphism from iso-onticity. Isomorphic objects (type identical
objects) are doppelgangers (like identical pennies) which are usually “materially” disjoint. On the other
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hand iso-ontic objects are just different “views” of “the same thing”, like an equivalence relation and a
partition, or the various equivalent representations of the state of a LISP processor.

The final universal relation discussed here is the notion of an essential property . The term essential
property is not being used here in its standard philosophical sense. However, I have not been able to find
a better term for the notion I wish to discuss. To understand this notion of essential property consider
an array as a computer data structure. An array can be treated as a function. For an array A and an
index value i we can let A[i] denote the value of the array at the ith index location. Intuitively, the value
of A[i] is not a property of the index i itself but rather it is a property of the array A. This situation
can be contrasted with the projection function first defined on mathematical pairs. For any pair 〈x, y〉,
first(〈x, y〉) equals x. It seems clear that x is a property of the pair 〈x, y〉. For any pair z we say that
first(z) is an essential property of z, while for an index value i, A[i] need not be an essential property of
the index i. A third example concerns electronic circuits. A circuit has a physical layout and a circuit
topology (the topology is the way in which the components are electrically connected). The distance
(in inches) between the input coupling capacitor and the output coupling capacitor is a property of the
physical layout but is not a property of the circuit topology.

While the three basic universal relations discussed above seem to be based on certain natural intu-
itions, it is far from clear how one should go about making these notions mathematically precise. For
example, it is tempting to say that y is a property of x just in case there is some function f such that
f(x) equals y. But this is clearly wrong because there is always a mathematical function (a set of pairs)
mapping x to y.

It turns out that the notions of isomorphism, essential property, and iso-onticity can be cleanly and
precisely defined in terms of a set-theoretic mathematical ontology. It seems to be empirically true that
most (if not all) mathematical objects can be though of as objects in a universe of sets. Thus any relation
defined over an appropriate universe of sets is in some sense universal.

2 Symmetric Set Theory

The three universal relations discussed above can be given precise definitions in terms of a set-theoretic
universe with class-many ur-elements, i.e., class-many objects that are considered as distinct points
without internal structure. I am not concerned with the particular first order axioms of Zermelo-Fraenkel
set theory — I prefer to consider a particular “intended model” of these axioms. An intended model can
be defined up to isomorphism with a few simple axioms.

A set-theoretic universe is a pair 〈U,∈〉 where U is some domain and ∈ is a binary membership relation
on U (I assume that the domain U is a set; no meta-theoretic distinction is made here between sets and
classes). The relation ∈ associates each element x of U with some particular subset of U , denoted as
mems(x).

Definition: If x is an element of U , mems(x) is defined to be the subset of U given by: {y in U : y ∈ x}.
If mems(x) is empty then x will be called a point. For non-points x we say that x represents the subset
mems(x).

To understand the significance of the axioms of symmetric set theory it is important to distinguish
elements of U from the sets that those elements represent. In particular if x is a non-point element of
U , then mems(x) is a subset of U . A particular element of U can often be thought of as representing
a set of sets. For example if mems(x) is {p, z} and mems(z) is {r, s}, then one can think of x as
representing {p, {r, s}}. Thus the universe 〈U,∈〉 can contain representations for tuples, sets of tuples
(e.g. relations and functions), vector spaces, and topological manifolds. The following axioms specify a
particular universe of sets up to isomorphism.

Axiom One, Extensionality: There are no two distinct non-point elements x and y of U such that
mems(x) equals mems(y).

Axiom Two, Strong Replacement: A subset C of U is represented by an element of U if and only if it
has fewer members than U , that is, just in case |C| < |U |.

Axiom Three, Strong Foundation: There is no infinitely decreasing sequence of elements of U , that is,
there is no infinite sequence x1, x2, x3, . . . where xi+1 ∈ xi for all i.
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Axiom Four, Infinity: There exists a represented infinite subset of U . Or equivalently, U must be
uncountably infinite.

Axiom Five, Union: The union over any represented family of sets is represented. Equivalently, for
any family F of subsets of U , if each member of F is smaller than U and the family F itself has fewer
members than U , then the union of all members of F is also smaller than U .

Axiom Six, Power Set: The power set of any represented set is represented. Equivalently, for any subset
C of U , if C is smaller than U then there must be more elements of U than there are subsets of C.

Axiom Seven, The Large Base Axiom: The set of all points is not represented. Equivalently, there are
as many points in 〈U,∈〉 as there are elements of U .

Axiom Eight, The No Large Cardinal Axiom There does not exist any model of axioms one through
seven whose domain has cardinality smaller than the cardinality of U .

Axiom eight is not necessary for the theory of universal relations but has the advantage of
completely specifying the intended set theoretic universe up to isomorphism. Intuitively, the
above axioms specify that the intended universe is isomorphic to the universe of all sets that can
be built from a strongly inaccessible number of points (ur-elements) and that have rank less than
any strongly inaccessible cardinal.

3 Three Universal Relations

Isomorphism is the universal relation most directly definable in symmetric set theory. Intuitively
two objects are isomorphic just in case they have the same shape, or in other words, just in
case they are the same “modulo the identity of their points.” For example the set {p, {p, q}} is
isomorphic to the set {r, {r, s}}. This notion can be made precise by the following definitions.

Definition: For any element x of U , the expression hmems(x) will denote the set which includes
x, all elements of x, all elements of elements of x, etc. (hmems(x) is the set of all things “under”
x). The expression 〈hmems(x),∈〉 will denote the first order structure derived by restricting the
relation ∈ to hmems(x).

Definition: Two objects x and y in 〈U,∈〉 are isomorphic just in case the sub-universes 〈hmems(x),∈
〉 and 〈hmems(y),∈〉 are isomorphic as first order structures.

It turns out that when point-based algebraic structures and topologies are represented as sets the
above universal notion of isomorphism provides the standard notions of isomorphism for these
objects. For example, consider two “algebras” 〈D, f〉 and 〈D′, f ′〉 where D and D′ are sets and
f and f ′ are functions from D to D and D′ to D′ respectively. Under the standard notion of
isomorphism for algebras, these two algebras are isomorphic if there exists a bijection ρ from D
to D′ such that for any element d of D we have that f ′(ρ(d)) equals ρ(f(d)). These two algebras
have standard representations as sets. For example, 〉D, f〈 is the set {D, {D, f}} where D is a
set and f is a set of pairs of elements of D. Provided that D and D′ are sets of points, the reader
can check that the algebras 〉D, f〈 and 〉D′, f ′〈 are isomorphic in the standard way for algebras if
and only if they are isomorphic in the sense of the above definition. A similar analysis holds for
the notion of homeomorphic topological spaces whose domains are sets of points.

The notion of isomorphism can be better understood in terms of the symmetries, or auto-
morphisms, of the universe as a whole. A symmetry (automorphism) of the universe 〈U,∈〉 is a
bijection ρ from U to itself such that for any two elements x and y of U , ρ(x) ∈ ρ(y) just in case
x ∈ y (a symmetry of 〈U,∈〉 is an isomorphism of 〈U,∈〉 with itself. The next lemma completely
characterizes all symmetries of any universe 〈U,∈〉 satisfying axioms one through three. The set
of points in a universe 〈U,∈〉 can be thought of as a base for that universe upon which all other
elements of U are built. It turns out that the symmetries 〈U,∈〉 exactly correspond to the permu-
tations of the base of 〈U,∈〉 (a permutation of the base of 〈U,∈〉 is a one-to-one and onto mapping
of the points in 〈U,∈〉 to themselves).

Global Symmetry Lemma: Any permutation of the points in 〈U,∈〉 has a unique extension to
a full symmetry (automorphism) of 〈U,∈〉. Thus there is a natural one-to-one correspondence
between the symmetries of 〈U,∈〉 and the permutations of the “base” of 〈U,∈〉.
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The following lemma is fundamental for the notion of isomorphism. This lemma justifies the
intuition that isomorphic objects are truly indistinguishable. (It is interesting to note that the
following lemma depends on axiom seven, the large base axiom).

The Fundamental Isomorphism Lemma: Two objects x and y are isomorphic just in case there
exists a symmetry (automorphism) of 〈U,∈〉 which carries x to y.

The second universal relation is the notion of essential property. To understand the notion of an
essential property in the context of symmetric set theory it is useful to consider some examples.
Suppose x is the set {p, {p, q}} where p and q are points. We could define p as “the element
of z which is also an element of an element of X.” Thus p is a “definable” property of the set
{p, {p, q}} (the set {p, {p, q}} is a standard representation for the pair 〈p, q〉). On the other hand
consider the set of points {p, q, r}. There is “no difference” between the points p and q as elements
of the set {p, q, r}. In fact p is not a definable property of the set {p, q, r}. The sense in which p
is a property of {p, {p, q}} but not a property of {p, q, r} is captured by the following definition:

Definition: We say that y is individuated by x just in case every symmetry of 〈U,∈〉 which leaves
x fixed also leaves y fixed.

Again consider the set {p, q, r}. It is easy to show that there is a symmetry of 〈U,∈〉 which
moves p to q, q to r, and r to p. This symmetry leaves the set {p, q, r} fixed while moving the
point p. Thus, the point p is not individuated in the context of the set {p, q, r}. This notion of
individuation seems to be related to the category theoretic notion of a “natural transformation.”
It is easily shown in symmetric set theory that there is no individuated linear bijection between
a point-based vector space and its dual.

The notion of individuation can be further clarified by the following notion of an essential func-
tion (the notion of an essential function is somewhat related to the notion of a generic embedding
between abstract data types [Dunlaing & Yap 1982]).

Definition: An essential function is a function f from U to U which commutes with symmetries
of the universe 〈U,∈〉, that is, for any symmetry ρ of universe and any object x, f (ρ(x)) equals
ρ (f(x)).

For any essential function f , if x is isomorphic to Y then f(x) must be isomorphic to f(y). In
some sense an essential function is one which can be defined purely in terms of its arguments, i.e.,
the function itself does not carry information. It is easy to see that an array function A is not
essential, A[i] need not be isomorphic to A[j] even when i and j are isomorphic. The following
lemma relates essential functions and the notion of individuation: Essential Property Lemma:

An object y is individuated by an object x just in case there exists an essential function f such
that y equals f(x).

We can now define the notion of an essential property in the obvious way:

Definition: We say that y is an essential property of x just in case y is individuated by x, or
equivalently, just in case there exists an essential function mapping x to y.

Essential properties can be more deeply understood by relating them to the points which objects
are “made of”: Definition: For any non-point object x, we let points(x) denote the set of all

points which are either elements of x, elements of elements of x, etc. For a point p, points(p)
denotes the singleton set containing p.

Essential Property Point Lemma: If y is an essential property of x then points(y) must be a
subset of points(x).

The above lemma says that an essential function cannot introduce points (an essential function
cannot “know” which point it should introduce).

The third universal relation is iso-onticity. Two things are iso-ontic just in case each is definable
in terms of the other. For example, an equivalence relation, as a set of pairs, is iso-ontic to a
partition into equivalence classes, i.e., a set of sets. A Topological space defined as pair of a set
and a set of subsets is iso-ontic to the same space considered as a simple set of sets.
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Definition: Two objects x and y are iso-ontic just in case each is an essential property of the
other.

If x and y are iso-ontic then points(x) must equal points(y). Furthermore, if x and y are iso-ontic
then any essential property of x is also an essential property of y and vice versa (for example every
property of an equivalence relation can be expressed as a property of the induced partition into
equivalence classes).

4 Eliminating Arbitrariness in Set-Theoretic Definitions

When using set-theoretic foundations one usually takes the ordered pair of x and y to be some
particular set, such as {x, {x, y}}. However this seems somewhat arbitrary; why not represent
the pair 〈x, y〉 as {{x}, {x, y}} or {y, {y, x}}? (This sort of set-theoretic arbitrariness is discussed
at great length in [Benacerraf 1965].) However the set-theoretic representation of a pair is not
completely arbitrary; the pair 〈x, y〉 could not in general be represented by the simple set {x, y}.
So what is the essence of the pair 〈x, y〉 such that some set-theoretic representations “work” while
others don’t?

The universal relations defined in the previous section provide a way of specifying the notion of
an ordered pair without making any commitment about particular set-theoretic representations.
More specifically we can specify the notion of a pair by assuming the existence of three essential
functions, pair, first, and second (the notion of an essential function can be easily generalized to
n-ary functions). We further require that these essential functions satisfy the following equations
for all objects x and y.

first (pair(x, y)) = x

second (pair(x, y)) = y

Given that the functions pair, first, and second are essential it is possible to prove that pair(x, y)
must be iso-ontic to {x, {x, y}}. However the set-theoretic nature of the functions need not
be specified and thus one is not committed to any particular set theoretic representation for
pair(x, y).

The essential function pair should be contrasted to an array A of two arguments. We have
specified that pair be an essential function so that pair(x, y) is an essential property of x and y.
However, a two dimensional array function A need not be essential, and in particular A[i, j] can
be arbitrary (it need not be an essential property of i and j).

This approach to specifying the notion of a pair is similar to modern techniques for alge-
braically specifying programs and data structures (for example, Guttag & Horning [1980], Burstall
& Goguen [1977]). The major innovation of the above approach involves the semantics of the equa-
tions. Previous approaches have interpreted equational specifications over sorted algebras [Goguen
et al. 1977]. However, sorted algebras do not provide an adequate theoretical bases for saying that
x and y are essential properties of pair(x, y), or that pair(x, y) is iso-ontic to the set {x, {x, y}}.

5 Discussion

It is hoped that the precise mathematical theory of universal relations presented above will prove
to be useful in guiding the construction of general purpose inference techniques. It seems clear
that human mathematicians make use of some universal notion of isomorphism, essential property,
and iso-onticity. This paper has not attempted explicate the utility of these universal concepts in
determining mathematical truths. Iso-onticity is perhaps the easiest universal relation to justify on
pragmatic grounds. Intuitively, it seems that one should be able to contract the space of possible
mathematical concepts by collapsing any two iso-ontic concepts into a single concept. By reducing
the number of concepts that can be asked about, the collapsing of iso-ontic mathematical concepts
reduces the number of distinct statements that can be formulated. A reduction in the number of
statements should make theorem-proving search processes more efficient. It seems likely that the
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concepts of isomorphism and iso-onticity can also be justified in terms of improved efficiency for
automated inference.

Semantics has traditionally improved our understanding of inference systems. It is hoped that
a precise theory of mathematical ontology and universal relations will shed further light on the
general nature of inference.
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