
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2018

Stochastic Gradient Descent (SGD)

The Classical Convergence Thoerem

RMSProp, Momentum and Adam

Scaling Learnng Rates with Batch Size

SGD as MCMC and MCMC as SGD

An Original SGD Algorithm

1

Vanilla SGD

Φ -= ηĝ

ĝ = E(x,y)∼Batch ∇Φ loss(Φ, x, y)

g = E(x,y)∼Train ∇Φ loss(Φ, x, y)

For theoretical analysis we will focus on the case where the
training data is very large — essentially infinite.

2

Issues

•Gradient Estimation. The accuracy of ĝ as an estimate
of g.

•Gradient Drift (second order structure). The fact
that g changes as the parameters change.

3

A One Dimensional Example

Suppose that y is a scalar, and consider

loss(β, x, y) =
1

2
(β − y)2

g = E(x,y)∼Train d loss(β, x, y)/dβ = β − ETrain[y]

ĝ = E(x,y)∼Batch d loss(β, x, y)/dβ = β − EBatch[y]

4

SGD as MCMC — The SGD Stationary Distribution

For small batches we have that each step of SGD makes a
random move in parameter space.

Even if we start at the training loss optimum, an SGD step
will move away from the optimum.

SGD defines an MCMC process with a stationary distribution.

To converge to a local optimum the learning rate must be
gradually reduced to zero.

5

The Classical Convergence Theorem

Φ -= ηt∇Φ loss(Φ, xt, yt)

For “sufficiently smooth” non-negative loss with

ηt > 0 and lim
t→0

ηt = 0 and
∑
t

ηt =∞,

we have that the training loss of Φ converges (in practice Φ
converges to a local optimum of training loss).

Rigor Police: One can construct cases where Φ converges to a saddle point or even a limit cycle.

See “Neuro-Dynamic Programming” by Bertsekas and Tsitsiklis proposition 3.5.

6

Physicist’s Proof of the Convergence Theorem

Since limt→0 η
t = 0 we will eventually get to arbitrarilly small

learning rates.

For sufficiently small learning rates any meaningful update of
the parameters will be based on an arbitrarily large sample of
gradients at essentially the same parameter value.

An arbitrarily large sample will become arbitrarily accurate as
an estimate of the full gradient.

But since
∑
t η
t = ∞, no matter how small the learning rate

gets, we still can make arbitrarily large motions in parameter
space.

7

Statistical Intuitions for Learning Rates

For intuition consider the one dimensional case.

At a fixed parameter setting we can sample gradients.

Averaging together N sample gradients produces a confidence
interval on the true gradient.

g = ĝ ± 2σ√
N

To have the right direction of motion this interval should not
contain zero. This gives.

N ≥ 2σ2

ĝ2

8

Statistical Intuitions for Learning Rates

N ≥ 2σ2

ĝ2

To average N gradients we need that N gradient updates have
a limited influence on the gradient.

This suggests

ηt ∝ 1

N
∝ (gt)2

(σt)2

The constant of proportionality will depend on the rate of
change of the gradient (the second derivative of loss).

9

Statistical Intuitions for Learning Rates

ηt ∝ (gt)2

(σt)2

This is written in terms of the true (average) gradient gt at
time t and the true standard deviation σt at time t.

This formulation is of conceptual interest but is not (yet) di-
rectly implementable (more later).

As gt→ 0 we expect σt→ σ > 0 and hence ηt→ 0.

10

Running Averages

We can try to estimate gt and σt with a running average.

It is useful to review general running averages.

Consider a time series x1, x2, x3,

Suppose that we want to approximate a running average

µ̂t ≈
1

N

t∑
s=t−N+1

xs

This can be done efficiently with the update

µ̂t+1 =

(
1− 1

N

)
µ̂t +

(
1

N

)
xt+1

11

Running Averages

More explicitly, for µ̂0 = 0, the update

µ̂t+1 =

(
1− 1

N

)
µ̂t +

(
1

N

)
xt+1

gives

µ̂t =
1

N

∑
1≤s≤t

(
1− 1

N

)−(t−s)
xs

where we have

∑
n≥0

(
1− 1

N

)−n
= N

12

Back to Learning Rates

In high dimension we can apply the statistical learning rate
argument to each dimension (parameter) Φ[c] of the parameter
vector Φ giving a separate learning rate for each dimension.

ηt[c] ∝ gt[c]2

σt[c]2

Φt+1[c] = Φt[c]− ηt[c]Φt[c]

13

RMSProp

RMS — Root Mean Square — was introduced by Hinton and
proved effective in practice. We start by computing a running
average of ĝ[c]2.

st+1[c] = βst[c] + (1− β) ĝ[c]2

The PyTorch Default for β is .99 which corresponds to a run-
ning average of 100 values of ĝ[c]2.

If gt[c] << σt[c] then st[c] ≈ σt[c]2.

RMSProp:

ηt[c] ∝ 1/
√
st[c] + ε

14

RMSProp

RMSProp

ηt[c] ∝ 1/
√
st[c] + ε

bears some similarity to

ηt[c] ∝ gt[c]2/σt[c]2

but there is no attempt to estimate gt[c].

15

Momentum

Rudin’s blog

The theory of momentum is generally given in terms of gra-
dient drift (the second order structure of total training loss).

I will instead analyze momentum as a running average of ĝ.

16

Momentum, Nonstandard Parameterization

g̃t+1 = µg̃t + (1− µ)ĝ µ ∈ (0, 1) Typically µ ≈ .9

Φt+1 = Φt − ηg̃t+1

For µ = .9 we have that g̃t approximates a running average of
10 values of ĝ.

17

Running Averages Revisited

Consider any sequence yt derived from xt by

yt+1 =

(
1− 1

N

)
yt + f (xt) for any function f

We note that any such equation defines a running average of
Nf (xt).

yt+1 =

(
1− 1

N

)
yt +

(
1

N

)
(Nf (xt))

18

Momentum, Standard Parameterization

vt+1 = µvt + η ∗ ĝ µ ∈ (0, 1)

Φt+1 = Φt − vt+1

By the preceding slide vt is a running average of (η/(1− µ))ĝ
and hence the above definition is equivalent to

g̃t+1 = µg̃t + (1− µ)ĝ µ ∈ (0, 1)

Φt+1 = Φt −
(

η

1− µ

)
g̃t+1

Momentum

g̃t+1 = µg̃t + (1− µ)ĝ µ ∈ (0, 1), typically .9

Φt+1 = Φt −
(

η

1− µ

)
g̃t+1 standard parameterization

Φt+1 = Φt − η′g̃t+1 nonstandard parameterization

The total contribution of a gradient value ĝt is η/(1 − µ) in
the standard parameterization and is η′ in the nonstandard
parameterization (independent of µ). This suggests that the
optimal value of η′ is independent of µ and that the µ does
nothing.

Adam — Adaptive Momentum

g̃t+1[c] = β1g̃
t[c] + (1− β1)ĝ[c] PyTorch Default: β1 = .9

st+1[c] = β2s
t[c] + (1− β2)ĝ[c]2 PyTorch Default: β2 = .999

Φt+1[c] -=
lr√

(1− βt2)st+1[c] + ε
(1− βt1)g̃t+1[c]

Given the argument that momentum does nothing, this should
be equivalent to RMSProp. However, implementations of RM-
SProp and Adam differ in details such as default parameter val-
ues and, perhaps most importantly, RMSProp lacks the “initial
bias correction terms” (1− βt) (see the next slide).

Bias Correction in Adam

Adam takes g̃0 = s0 = 0.

For β2 = .999 we have that st is very small for t << 1000.

To make st[c] a better average of gt[c]2 we replace st[c] by
(1− βt2)st[c].

For β2 = .999 we have βt2 ≈ exp(−t/1000) and for t >> 1000

we have (1− βt2) ≈ 1.

Similar comments apply to replacing gt[c] by (1− βt1)gt[c].

22

Learning Rate Scaling

Recent work has show that by scaling the learning rate with
the batch size very large batch size can lead to very fast (highly
parallel) training.

Accurate, Large Minibatch SGD: Training Ima-
geNet in 1 Hour, Goyal et al., 2017.

23

Learning Rate Scaling

Consider two consecutive updates for a batch size of 1 with
learning rate η1.

Φt+1 = Φt − η1∇Φloss(Φt, xt, yt)

Φt+2 = Φt+1 − η1∇Φloss(Φt+1, xt+1, yt+1)

≈ Φt+1 − η1∇Φloss(Φt, xt+1, yt+1)

= Φt − η1((∇Φloss(Φt, xt, yt)) + (∇Φloss(Φt, xt+1, yt+1)))

24

Learning Rate Scaling

Let ηB be the learning rate for batch size B.

Φt+2 ≈ Φt − η1((∇Φloss(Φt, xt, yt)) + (∇Φloss(Φt, xt+1, yt+1)))

= Φt − 2η1 ĝ for B = 2

Hence two updates with B = 1 at learning rate η1 is the same
as one update at B = 2 and learning rate 2η1.

η2 = 2η1, ηB = Bη1

25

SGD as MCMC and MCMC as SGD

•Gradient Estimation. The accuracy of ĝ as an estimate
of g.

•Gradient Drift (second order structure). The fact
that g changes as the parameters change.

•Convergence. To converge to a local optimum the learn-
ing rate must be gradually reduced toward zero.

•Exploration. Since deep models are non-convex we need
to search over the parameter space. SGD can behave like
MCMC.

26

Learning Rate as a Temperature Parameter

Gao Huang et. al., ICLR 2017

27

Gradient Flow

Total Gradient Descent: Φ -= ηg

Note this is g and not ĝ. Gradient flow is defined by

dΦ

dt
= −ηg

Given Φ(0) we can calculate Φ(t) by taking the limit as N →
∞ of Nt discrete-time total updates Φ -=

η
Ng.

The limit N →∞ of Nt batch updates Φ -=
η
N ĝ also gives

Φ(t).

28

Gradient Flow Guarantees Progress

d`

dt
= (∇Φ `(Φ)) · dΦ

dt

= −(∇Φ `(Φ)) · (∇Φ `(Φ))

= −||∇Φ `(Φ)||2

≤ 0

If `(Φ) ≥ 0 then `(Φ) must converge to a limiting value.

This does not imply that Φ converges.

29

An Original Algorithm Derivation

We will derive a learning rate by maximizing a lower bound
on the rate of reduction in training loss.

We must consider

•Gradient Estimation. The accuracy of ĝ as an estimate
of g.

•Gradient Drift (second order structure). The fact
that g changes as the parameters change.

30

Analysis Plan

We will calculate a batch size B∗ and learning rate η∗ by op-
timizing an improvement guarantee for a single batch update.

We then use learning rate scaling to derive the learning rate
ηB for a batch size B << B∗.

31

Deriving Learning Rates

If we can calculate B∗ and η∗ for optimal loss reduction in a
single batch we can calculate ηB.

ηB = B η1

η∗ = B∗η1

η1 =
η∗

B∗

ηB =
B

B∗
η∗

32

Calculating B∗ and η∗ in One Dimension

We will first calculate values B∗ and η∗ by optimizing the loss
reduction over a single batch update in one dimension.

g = ĝ ± 2σ̂√
B

σ̂ =

√
E(x,y)∼Batch

(
d loss(β, x, y)

dβ
− ĝ
)2

33

The Second Derivative of loss(β)

loss(β) = E(x,y)∼Train loss(β, x, y)

d2loss(β)/dβ2 ≤ L (Assumption)

loss(β −∆β) ≤ loss(β)− g∆β +
1

2
L∆β2

loss(β − ηĝ) ≤ loss(β)− g(ηĝ) +
1

2
L(ηĝ)2

34

A Progress Guarantee

loss(β − ηĝ) ≤ loss(β)− g(ηĝ) +
1

2
L(ηĝ)2

= loss(β)− η(ĝ − (ĝ − g))ĝ +
1

2
Lη2ĝ2

≤ loss(β)− η
(
ĝ − 2σ̂√

B

)
ĝ +

1

2
Lη2ĝ2

Optimizing B and η

loss(β − ηĝ) ≤ loss(β)− η
(
ĝ − 2σ̂√

B

)
ĝ +

1

2
Lη2ĝ2

We optimize progress per gradient calculation by optimizing
the right hand side divided by B. The derivation at the end
of the slides gives

B∗ =
16σ̂2

ĝ2
, η∗ =

1

2L

ηB =
B

B∗
η∗ =

Bĝ2

32σ̂2L
Recall this is all just in one dimension.

36

Estimating ĝB∗ and σ̂B∗

ηB =
Bĝ2

32σ̂2L

We are left with the problem that ĝ and σ̂ are defined in terms
of batch size B∗ >> B.

We can estimate ĝB∗ and σ̂B∗ using a running average with a
time constant corresponding to B∗.

37

Estimating ĝB∗

ĝB∗ =
1

B∗
∑

(x,y)∼Batch(B∗)

d Loss(β, x, y)

dβ

=
1

N

t∑
s=t−N+1

ĝs with N =
B∗

B
for batch size B

g̃t+1 =

(
1− B

B∗

)
g̃t +

B

B∗
ĝt+1

We are still working in just one dimension.

38

A Complete Calculation of η (in One Dimension)

g̃t+1 =

(
1− B

B∗(t)

)
g̃t +

B

B∗(t)
ĝt+1

s̃t+1 =

(
1− B

B∗(t)

)
s̃t +

B

B∗(t)
(ĝt+1)2

σ̃t =
√
s̃t − (g̃t)2

B∗(t) =

{
K for t ≤ K

16(σ̃t)2/((g̃t)2 + ε) otherwise

39

A Complete Calculation of η (in One Dimension)

ηt =

{
0 for t ≤ K

(g̃t)2

32(σ̃t)2L
otherwise

As t → ∞ we expect g̃t → 0 and σ̃t → σ > 0 which implies
ηt→ 0.

40

The High Dimensional Case

So far we have been considering just one dimension.

We now propose treating each dimension Φ[c] of a high di-
mensional parameter vector Φ independently using the one
dimensional analysis.

We can calculate B∗[c] and η∗[c] for each individual pa-
rameter Φ[c].

Of course the actual batch size B will be the same for all
parameters.

41

A Complete Algorithm

g̃t+1[c] =

(
1− B

B∗(t)[c]

)
g̃t[c] +

B

B∗(t)[c]
ĝt+1[c]

s̃t+1[c] =

(
1− B

B∗(t)[c]

)
s̃t[c] +

B

B∗(t)[c]
ĝt+1[c]2

σ̃t[c] =
√
s̃t[c]− g̃t[c]2

B∗(t)[c] =

{
K for t ≤ K

λBσ̃
t[c]2/(g̃t[c]2 + ε) otherwise

42

A Complete Algorithm

ηt[c] =

 0 for t ≤ K
ληg̃

t[c]2

σ̃t[c]2
otherwise

Φt+1[c] = Φt[c]− ηt[c]ĝt[c]

Here we have meta-parameters K, λB, ε and λη.

Appendix: Optimizing B and η

loss(β − ηĝ) ≤ loss(β)− ηĝ
(
ĝ − 2σ̂√

B

)
+

1

2
Lη2ĝ2

Optimizing η we get

ĝ

(
ĝ − 2σ̂√

B

)
= Lηĝ2

η∗(B) =
1

L

(
1− 2σ̂

ĝ
√
B

)
Inserting this into the guarantee gives

loss(Φ− ηĝ) ≤ loss(Φ)− L

2
η∗(B)2ĝ2

44

Optimizing B

Optimizing progress per sample, or maximizing η∗(B)2/B, we
get

η∗(B)2

B
=

1

L2

(
1√
B
− 2σ̂

ĝB

)2

0 = −1

2
B−

3
2 +

2σ̂

ĝ
B−2

B∗ =
16σ̂2

ĝ2

η∗(B∗) = η∗ =
1

2L

45

END

