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Regularization



Last Lecture

Controlling Vanishing and Exploding Gradients.

Initialization, Batch Normalization and Highway Architectures.

Highways:

Pure (Resnet): Li+1 = Li + Di

Forget Gated (LSTM): Li+1 = Fi ∗ Li + Di

Exclusively Gated (GRU): Li+1 = Fi ∗ Li + (1− Fi) ∗Di



Weight Norm Regularization



Regularization as Model Bias

Many regularization methods can be viewed as imposing a
learning bias — some models or parameter values are preferred
over others.

Different biases yield different results and regularization often
helps.



L2 Regularization (Tikhonov Regularization)

p(Θ) ∝ e−
1
2λ||Θ||

2

Θ∗ = argmin
Θ

`train(Θ) +
1

2
λ||Θ||2

Θ -= η∇Θ `train(Θ)

Θ -= ηλΘ (shrinkage)

At equilibrum these two updates must sum to zero giving

Θ =
−1

λ
∇Θ `train(Θ)



L1 Regularization and Sparsity

p(Θ) ∝ e−||Θ||1 ||Θ||1 =
∑
i

|Θi|

Θ∗ = argmin
Θ

`train(Θ) + λ||Θ||1

Θ -= η∇Θ `train(Θ)

Θi -= ηλ sign(Θi) (shrinkage)

At equilibrium (sparsity is difficult to achieve with SGD)

Θi = 0 if |∂`/∂Θi| < λ
∂`/∂Θi = −λsign(Θi) otherwise



Early Stopping



Early Stopping

[Goodfellow et al.]



Early Stopping

[Goodfellow et al.]

For differential Newton updates on a quadratic loss function,
early stopping and L2 regularization are equivalent.



Using Fewer Parameters



Using Fewer Parameters

We prefer models with fewer parameters. (Occam’s Razor)

2×256×64 + 9×64×64 = 69, 632

9×256×256 = 589, 824

[Kaiming He]



Sparse Activation



Sparse Activation

We can impose an L1 regularization on the activations of the
network (the output of the activation function of each neuron).

Θ∗ = argmin
Θ

`(Θ) + λ||h||1

where h is the vector of neuron activation outputs.

This will tend to make activations sparse.



k-Sparse Coding (Orthogonal Matching Pursuit)

Let W be a matrix where we view W·,i is the ith “dictionary
vector”.

For input x we can construct a k-sparse representation h(x).

h(x) = argmin
h,||h||0=k

||x−Wh||2

Note

Wh =
∑
i∈I(x)

hi W·,i |I(x)| = k

We can now replace x by its sparse code h(x).



Ensembles



Ensembles under Square Loss

We average k regression models

f (x) =
1

k

k∑
i=1

fi(x)

f (x)− y =
1

k

k∑
i=1

(fi(x)− y)

ε =
1

k

k∑
i=1

εi, εi = fi − y (residuals)



Ensembles

Assume that E
[
ε2i
]

= σ2 and E
[
εiεj
]

= σ2ρ for i 6= j.

E


1

k

∑
i

εi

2
 =

1

k2
E

∑
i

ε2i +
∑
j 6=i

εiεj



=
1

k
σ2 +

k − 1

k
σ2ρ = σ2

(
1

k
+

(
1− 1

k

)
ρ

)

If Pearson’s correlation ρ = E
[
εiεj
]
/σ2 < 1 we win.



Ensembles Under Log Loss

For log loss we average the probability vectors.

P (y|x) =
1

k

∑
i

Pi(y|x)

− logP is a convex function of P . For any convex `(P )
Jensen’s inequality states that

`

1

k

∑
i

Pi

 ≤ 1

k

∑
i

`(Pi)

This implies that the loss of the average model cannot be worse
(can only be better) than the average loss of the models.



Finding Strong Diverse Models

In deep learning we typically get a variety of models by training
under different random initializations.

“Bagging” gets diverse models by training under different ran-
dom subsets of the training data.

“Random Forests” are decision trees learned under different
random sets of available features for each decision tree split.



Dropout



Dropout

Dropout can be viewed as an ensemble method.

To draw a model from the ensemble we randomly select a mask
µ with  µi = 0 with probability α

µi = 1 with probability 1− α

Then we use the model (Θ, µ) with weight layers defined by

yi = Relu

∑
j

Wi,j µjxj





Dropout Training

Repeat:

• Select a random mask µ

yi = Relu

∑
j

Wi,j µjxj


•Θ -= ∇Θ `(Θ, µ)

Backpropagation must use the same mask µ used in the for-
ward computation.



The Weight Scaling Rule

At train time we have

yi = Relu

∑
j

Wi,j µjxj


At test time we have

yi = Relu

(1− α)
∑
j

Wi,j xj


At test time we use the “average network”.



How to Average

It is not clear whether the weight scaling rule is superior to
standard model averaging defined by

P (y|x) = Eµ [P (y|x,Θ, µ)]

Goodfellow et al. (2013) found that the weight scaling rule
outperformed standard model averaging.

Gal and Ghahramani (2015) found the opposite.

It seems to be model dependent.



The Case of Least Squares Regression

Consider simple least square regression

Θ∗ = argmin
Θ

E(x,y) Eµ

[
(y − Θ · (µ ∗ x))2

]
= E

[
(µ ∗ x)(µ ∗ x)>

]−1
E [y(µ ∗ x)]

= argmin
Θ

E(x,y)(y − (1− α)Θ · x)2 +
∑
i

1

2
(α− α2)E

[
x2
i

]
Θ2
i

In this case dropout is equivalent to a form of L2 regularization
— see Wager et al. (2013).



Some Claims

According to Goodfellow et al., Srivistava (2014) has shown
(presented evidence?) that dropout is more effective than norm
regulrization, filter norm constraints, and sparse activation reg-
ularization.

However, combinations of dropout with other methods can still
yield improvements over dropout alone.



Dropout

Dropout regularization training allows a larger model (more
parameters) to be trained.

If training a larger model is not computationally feasible, then
there may be no point in using dropout.



Implicit Regularization

“Understanding deep learning requires rethinking generaliza-
tion”, Zhang et al. (November 2016).



Troubling Experiments

“Our experiments establish that state-of-the-art con-
volutional networks for image classification trained with
stochastic gradient methods easily fit a random labeling
of the training data.”



Training on Corrupted Data

Inception on CIFAR10



Test Error as a Function of Training Label Corruption



Implicit Regularization

One can modify the PAC-Bayesian bound (and other bounds)
to replace ||Θ||2 with ||Θ− Θinit||2.



END


