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Interpreting Deep Networks



Visualizing the Filters

[Stanford CS231]



[Stanford CS231]
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Deconv Analysis

[Stanford CS231]



Guided Backpropagation

Rather than ∂`/∂x we are interested in ∂neuron/∂x.

We are interested in ∂neuron/∂x where x in one color channel
of one input pixel.

It turns out that ∂neuron/∂x looks like image noise.

Instead we compute x.ggrad — a guided version of ∂neuron/∂x.



Guided Backpropagation

Guided backpropagation only considers computation paths that
activate (as opposed to suppress) the neuron all along the ac-
tivation path.

The backpropagation at activation functions is modified.

For a neuron y with y = s(x) for activation function s:

x.ggrad = I [y.ggrad > 0] y.ggrad ds/dx



Guided Backpropagation



Guided Backpropagation

[Zeigler and Fergus 2013]



Guided Backpropagation Layer 2

[Zeigler and Fergus 2013]



Guided Backpropagation Layer 3

[Zeigler and Fergus 2013]



Guided Backpropagation Layer 4

[Zeigler and Fergus 2013]



Guided Backpropagation Layer 5

[Zeigler and Fergus 2013]



Identifying Unit Correspondences

Convergent Learning: Do Different Neural Networks Learn
The Same Representations?, Li eta al., ICLR 2016.

Train Alexnet twice with different initializations to get net1
and net2.

For each convolution layer, each channel i of net1, and each
channel j of net2, compute their correlation.

ρi,j = E

[
(ui − µi)(uj − µj)

σiσj

]



Semi-matching and Bipartite matching

Semi-matching: for each i in net1 find the best j in net2:

ĵ(i) = argmax
j

ρi,j

Biparetitie Matching: Find the best one-to-one corre-
spondence.

ĵ = argmax
ĵ a bijection

∑
i

ρ
i,ĵ(i)

Bipartite matching can be solved by a classical algorithm [Hopcroft
and Karp, 1973]. John Hopcroft (age 77) is an author on this
ICLR paper.



Correlations at Layer 1 (Wavelet Layer)



Alexnet Layer 1

[Krizhevsky et al.]



Best Matches in Layer 1 semi-matching

[Li et al.]



Worst Matches in Layer 1 semi-matching

[Li et al.]



Layer 1 in Other Networks

[Stanford CS231]



Regression Between Networks at Layer 1

Model each channel of net1 as a linear combination of channels
of net2 using least squares regression.

Before the regression each channel is normalized to have zero
mean and unit variance.

No correlation would yield a square loss of 1.000.

No regularization gives a square loss of 0.170 and uses 96 units
in each prediction.

L1 regularization gives a square loss of 0.235 and uses 4.7 units
in each prediction.



Deeper Layers

In the regression experiment squared error was not significantly
reduced at layers 3 through 5 even without regularization.



A Wheel and Face Detector

The nine strongest stimulators of the “wheel and face cell” are
the following.

[Zeigler and Fergus 2013]



[Alyosho Efros]



Kaurnaugh Maps
The Karnaugh map, also known as the K-map, is a method to
simplify boolean algebra expressions.

F (A,B,C,D) = AC ′ + AB′ + BCD′ + AD′

= (A + B)(A + C)(B′ + C ′ + D′)(A + D′)



A Person Detector

Wheel or Face

Hand or Flower Hand or Flower

Leg or Tree Leg or Tree

The set of locally minimal models (circuits) could be vast (ex-
ponential) without damaging performance.

Is a Boolean circuit a distributed representation?



Model Compression

Deep Compression: Compressing Deep Neural Networks With
Pruning, Trained Quantization and Huffman Coding, Han et
al., ICLR 2016.

• Compressed Models can be downloaded to mobile devices
faster and fit in lower-power CPU memory. (The motivation
of this paper).

• Sparse models may be more interpretable than dense mod-
els.

•Model size is a measure of model complexity and can be
viewed as a form of regularization.

VGG-16 is reduced by 49× from 552MB to 11.3MB with no
loss of accuracy.



Three Stages

• Sparsification by simple weight thresholding. (10× reduc-
tion).

• Trained Quantization (6× reduction).

•Huffman coding (40% reduction).



Quantization

They use 5 bits of numerical precision for the weights.

This is done by having a table of the 32 possible weight values.

We have to cluster the weights into 32 groups and decide on a
centroid value for each weight.

This is done with K-means clustering.



Initialization of Centroids



After Running K-means



Retrain to Adjust Centroids

Run over the data again doing backpropagation to adjust the
table of the 32 possible weights.

This leaves the 5-bit code of each weight in the model un-
changed.



Huffman Coding

Different 5-bit numerical codes have different frequencies.

This can be viewed as distribution over the 32 code words.

We can reduce the average number of bits per weight using
fewer bits to code the more common weight values.

Huffman coding is applied to both the 5 bit weight coding and
a three bit code used in the sparse representation of the weight
matrices.

This results in about 5 bits per nonzero weight in a sparse
coding of the weight matrices.



Dense-Sparse-Dense

DSD: Dense-Sparse-Dense Training for Deep Neural Networks,
Han et al., ICLR 2017

1. Train a model.

2. Make the model sparse by weight thresholding.

3. Retrain the model holding the sparsity pattern fixed (still
32 bits per weight).

4. Go back to a dense model with all pruned weights initialized
to zero.

5. Retrain the dense model.

Results in significant performance improvements in a wide va-
riety of models.



Step 1



Step 2



Step 3



Step 4



Step 5



Results



END


