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Interpreting Deep Networks



Visualizing the Filters
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Visualizing the representation

t-SNE visualization

[van der Maaten & Hinton]

Embed high-dimensional points so that
locally, pairwise distances are conserved

I.e. similar things end up in similar places.
dissimilar things end up wherever

Right: Example embedding of MNIST digits
(0-9) in 2D

[Stanford CS231]



{d) Classifier, probability

Occlusion experiments o e conecicms
[Zeiler & Fergus 2013]

(as a function of the
position of the
square of zeros in
the original image)

B True Label: CarWheel |

True Label: Afghan Hound
I
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Deconv Analysis

Deconv approaches

1. Feed image into net
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2. Pick a layer, set the gradient there to be all zero except for one 1 for
some neuron of interest “Guided

3. Backprop to image: backpropagation:”
instead

[Stanford CS231]



Guided Backpropagation

Rather than 9¢/0x we are interested in dneuron/0z.

We are interested in dneuron/dx where x in one color channel
of one input pixel.

[t turns out that Oneuron/dx looks like image noise.

[nstead we compute x.ggrad — a guided version of Oneuron/0x.



Guided Backpropagation

Guided backpropagation only considers computation paths that
activate (as opposed to suppress) the neuron all along the ac-
tivation path.

The backpropagation at activation functions is modified.

For a neuron y with y = s(x) for activation function s:

r.ggrad = I|y.ggrad > 0] y.ggrad ds/dx



Guided Backpropagation




Guided Backpropagation

Zeigler and Fergus 2013]



Guided Backpropagation Layer 2

Zeigler and Fergus 2013]



Guided Backpropagation Layer 3

[Zeigler and Fergus 2013]



Guided Backpropagation Layer 4




Guided Backpropagation Layer 5

Zeigler and Fergus 2013]



Identifying Unit Correspondences

Convergent Learning: Do Different Neural Networks Learn
The Same Representations?, Li eta al., ICLR 2016.

Train Alexnet twice with different initializations to get netl
and net?2.

For each convolution layer, each channel 7 of netl, and each
channel 5 of net2, compute their correlation.
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Semi-matching and Bipartite matching

Semi-matching: for each ¢ in netl find the best 7 in net2:

j(i) = argmax p; ;
J
Biparetitie Matching: Find the best one-to-one corre-
spondence.

] = ~ argmax Z Pii(i)
7 a bijection

Bipartite matching can be solved by a classical algorithm [Hopcroft
and Karp, 1973]. John Hopcroft (age 77) is an author on this
ICLR paper.



correlation with assigned unit
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Alexnet Layer 1

[Krizhevsky et al.]



Best Matches in Layer 1 semi-matching
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Worst Matches in Layer 1 semi-matching

worst match
-

0.40 0.37 0.36 0.35 0.33 0.28 0.28 0.18
| |




Layer 1 in Other Networks
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Regression Between Networks at Layer 1

Model each channel of netl as a linear combination of channels
of net2 using least squares regression.

Before the regression each channel is normalized to have zero
mean and unit variance.

No correlation would yield a square loss of 1.000.

No regularization gives a square loss of 0.170 and uses 96 units
in each prediction.

L1 regularization gives a square loss of 0.235 and uses 4.7 units
in each prediction.



Deeper Layers
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convolutional layers

In the regression experiment squared error was not significantly
reduced at layers 3 through 5 even without regularization.



A Wheel and Face Detector

The nine strongest stimulators of the “wheel and face cell” are
the following.

Zeigler and Fergus 2013]



it's like "vodka & potato” classifier!

|Alyosho Efros]



Kaurnaugh Maps
The Karnaugh map, also known as the K-map, is a method to

simplify boolean algebra expressions.
Truth table of a function A B

A B C D fABCD)
sTolololol o 00 01 11 _ 10
1. 00/01 0
2 0010 0 3 1 1
3 0011 0
a0/10/0 o
5 0101 0 =)
6 0110 1 )
70111 0 @)
8 1000 1 -
o 1/ 0/0 1 1
101010 1
11011 1 S . 1 1
12/1/1/0]0 1
B|1]119]1 ! f(A,B,C.D) = E(6,8,9,10,11,12,13,14)
b I ) I L F=AC'+AB'+BCD'+AD'
L RIRERAR 0 F=(A+B)(A+C)(B'+C'+D')(A+D")

F(A,B,C,D) = AC' + AB'+ BCD' + AD'
— (A+B)(A+CO)B ' +C"+ DA+ D



A Person Detector
Wheel or Face
Hand or Flower Hand or Flower
Leg or Tree Leg or Tree

The set of locally minimal models (circuits) could be vast (ex-
ponential) without damaging performance.

Is a Boolean circuit a distributed representation?



Model Compression

Deep Compression: Compressing Deep Neural Networks With

Pruning, Trained Quantization and Huffman Coding, Han et
al., ICLR 2016.

e Compressed Models can be downloaded to mobile devices
faster and fit in lower-power CPU memory. (The motivation
of this paper).

e Sparse models may be more interpretable than dense mod-
els.

e Model size is a measure of model complexity and can be
viewed as a form of regularization.

VGG-16 is reduced by 49x from 552MB to 11.3MB with no
loss of accuracy.



Three Stages

e Sparsification by simple weight thresholding. (10x reduc-
tion).

e Trained Quantization (6x reduction).

e Huffman coding (40% reduction).



Quantization

They use 5 bits of numerical precision for the weights.

This is done by having a table of the 32 possible weight values.

We have to cluster the weights into 32 groups and decide on a
centroid value for each weight.

This is done with K-means clustering.



Initialization of Centroids
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After Running K-means
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Retrain to Adjust Centroids

Run over the data again doing backpropagation to adjust the
table of the 32 possible weights.

This leaves the 5-bit code of each weight in the model un-
changed.



Huffman Coding
Different 5-bit numerical codes have different frequencies.
This can be viewed as distribution over the 32 code words.

We can reduce the average number of bits per weight using
fewer bits to code the more common weight values.

Huffman coding is applied to both the 5 bit weight coding and
a three bit code used in the sparse representation of the weight
madtrices.

This results in about 5 bits per nonzero weight in a sparse
coding of the weight matrices.



Dense-Sparse-Dense

DSD: Dense-Sparse-Dense Training for Deep Neural Networks,
Han et al., ICLR 2017

1. Train a model.
2. Make the model sparse by weight thresholding.

3. Retrain the model holding the sparsity pattern fixed (still
32 bits per weight).

4. Go back to a dense model with all pruned weights initialized
to zero.

5. Retrain the dense model.

Results in significant performance improvements in a wide va-
riety of models.
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Pruning the Network
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Step 4

Recover Zero Weights
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Results

Neural Network Domain  Dataset Type Baseline DSD  Abs. Imp. Rel. Imp.

GoogLeNet Vision ImageNet CNN 31.1%"  30.0% 1.1% 3.6%
VGG-16 Vision ImageNet CNN 31.5%'  27.2% 4.3% 13.7%
ResNet-18 Vision ImageNet CNN 304%' 292% 1.2% 4.1%
ResNet-30 Vision ImageNet CNN 24.0%'  229% 1.1% 4.6%
NeuralTalk Caption Flickr-8K LSTM 16.8* 18.5 1.7 10.1%
DeepSpeech Speech  WSI'93  RNN 33.6%° 31.6% 2.0% 5.8%

DeepSpeech-2  Speech  WSJ'93  RNN 145%° 13.4% 1.1% 7.4%




END



