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Information Theory and Distribution Modeling



Why do we model distributions and conditional distributions
using the following objective functions?

Θ∗ = argmin
Θ

Ex∼D

[
ln

1

PΘ(x)

]

Θ∗ = argmin
Θ

E(x,y)∼D

[
ln

1

PΘ(y|x)

]
Why is “bits per word” the natural measure of the performance
of a language model?

How is “bits per sample” related to actual data compression?



Shannon’s Source Coding (Compression) Theorem

Consider a data distribution D such as the “natural” distribu-
tion on sentences.

Shannon’s theorem states that the average compressed size (in
bits) under optimal compression when drawing x from D is
the entropy H(D)

H(D) = Ex∼D

[
log2

1

D(x)

]
Note that if D is the uniform distribution on 2N items then it
takes N bits to name one of the items.



Shannon’s Source Coding (Compression) Theorem

Consider a probability distribution D on a finite set X .

We define a tree T over X to be a binary branching tree whose
leaves are labeled with (all) the elements of X .

Let d(x;T ) be the depth of the leaf that is labeled with x.

We can name each element with a bit string of length d(x;T ).

Define d(T ;D) = Ex∼D [d(x;T )] = average compressed size.

Theorem:
∀T d(T ;D) ≥ H(D)

∃T d(T ;D) ≤ H(D) + 1



Huffman Coding

Maintain a list of trees T1, . . . , TN .

Inititally each tree is just one root node labeled with an element
of X .

Each tree Ti has a weight equal to the sum of the probabilities
of the nodes on the leaves of that tree.

Repeatedly merge the two trees of lowest weight into a single
tree until all trees are merged.



Optimality of Huffman Coding

Theorem: The Huffman code T for D is optimal — for any
other tree T ′ we have d(T ;D) ≤ d(T ′;D).

Proof: The algorithm maintains the invariant that there ex-
ists an optimal tree including all the subtrees on the list.

To prove that a merge operation maintains this invariant we
consider any tree containing the given subtrees.

Consider the two subtrees Ti and Tj of minimal weight. With-
out loss of generality we can assume that Ti is at least as deep
as Tj.

Swapping the sibling of Ti for Tj brings Ti and Tj together
and can only improve the average depth.



Modeling a Distribution

Θ∗ = argmin
Θ

H(D,PΘ)

H(D,PΘ) = cross entropy = Ex∼D

[
log2

1

PΘ(x)

]



Distribution Modeling and Data Compression

Theorem: For any PΘ there exists a code T such that for all
x ∈ X

log2
1

PΘ(x)
≤ d(x;T ) ≤

(
log2

1

PΘ(x)

)
+ 1

Optimal average compressed size is achieved by

Θ∗ = argmin
Θ

H(D,PΘ) = argmin
Θ

Ex∼D

[
log2

1

PΘ(x)

]

Minimizing Cross-Entropy is the same as optimizing data
compression is the same as distribution modeling.



Cross Entropy vs. Entropy

An LSTM language models allow us to calculate the probabil-
ity of given sentence.

This allows us to measure H(D,PΘ) by sampling.

While we can measure the cross-entropy H(D,PΘ) we can-
not measure the true entropy of the source H(D) which, for
language, presumably involves semantic truth.

But we can show

H(D) ≤ H(D,P )

The cross cross entropy to the model upper bounds the true
data source entropy.



KL Divergence

The KL divergence is

KL(D,P ) = H(D,P )−H(D) = Ex∼D

[
log2

D(x)

P (x)

]

We can show KL(D,P ) ≥ 0 using Jensen’s inequality applied
to the convexity of the negative of the log function.



KL Divergence

−KL(D,P ) = Ex∼D

[
log

P (x)

D(x)

]
≤ log Ex∼D

[
P (x)

D(x)

]
= log

∑
x

D(x)
P (x)

D(x)

= log
∑
x

P (x) = 0

KL(D,P ) ≥ 0



Rate-Distortion Autoencoders

[Kevin Frans]



Rate-Distortion Autoencoders

Rate-distortion theory addresses lossy compression. We as-
sume

•An encoder (compression) network zΦ(x) where zΦ(x) is a
bit string in a prefix-free code (a code corresponding to the
leaves of a binary tree). We write |z| for the number of bits
in the string z.

•A decoder (decompression) network x̂Ψ(z)

•A distortion function L(x, x̂)

Φ∗,Ψ∗ = argmin
Φ,Ψ

Ex∼D [ |zΦ(x)| + λL(x, x̂Ψ(zΦ(x))) ]



Summary of Distribution Modeling

Distribution modeling is important when the distribution be-
ing modeled (D(x) orD(y|x)) is highly distributed and precise
prediction is impossible.

Mathematically, distribution modeling (minimizing cross en-
tropy) is the same as optimizing data compression.



Summary of Distribution Modeling

Θ∗ = argminΘH(D,PΘ)

Conditional version:
Θ∗ = argminΘ Ex∼D H(D(y|x), PΘ(y|x))

H(D,P ) = Ex∼D
[
log2

1
P (x)

]
H(D) = Ex∼D

[
log2

1
D(x)

]
H(D,P ) ≥ H(D)

KL(D,P ) = H(D,P )−H(D) = Ex∼D
[
log2

D(x)
P (x)

]
≥ 0



Summary of Distribution Modeling

Θ∗ = argminΘH(D,PΘ)

Consistency:

If there exists Θ with PΘ = D then PΘ∗ = D.

This follows from

H(D,D) = H(D) ≤ H(D,P )



Methods of Modeling Distributions

Structured Prediction.

P (y|x) = softmax
y

WΘ(x) · Φ(y)

where this is an exponential softmax.

Rate-Distortion Autoencoding.

Variational Autoencoding.

Generative Adversarial Networks.



END


