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Information Theory and Distribution Modeling



Why do we model distributions and conditional distributions
using the following objective functions?

1
OF = argminE,.._p [ln ]
o Po(x)

1
OF = argminE, . . [ln ]
o WP T Py(yla)

Why is “bits per word” the natural measure of the performance
of a language model?

How is “bits per sample” related to actual data compression?



Shannon’s Source Coding (Compression) Theorem

Consider a data distribution D such as the ‘“natural” distribu-
tion on sentences.

Shannon’s theorem states that the average compressed size (in
bits) under optimal compression when drawing x from D is

the entropy H (D)

H(D) = Epep 1022 5|

Note that if D is the uniform distribution on 2%V items then it
takes IV bits to name one of the items.



Shannon’s Source Coding (Compression) Theorem
Consider a probability distribution D on a finite set X.

We define a tree T over X to be a binary branching tree whose
leaves are labeled with (all) the elements of X

Let d(x;T) be the depth of the leaf that is labeled with .
We can name each element with a bit string of length d(x;T').
Define d(T; D) = E,...p |d(z; T)] = average compressed size.

Theorem:
VT d(T;D)> H(D)
AT d(T; D) < H(D)+1



Huffman Coding

Maintain a list of trees 17, ..., Th.

Inititally each tree is just one root node labeled with an element

of X.

Each tree T; has a weight equal to the sum of the probabilities
of the nodes on the leaves of that tree.

Repeatedly merge the two trees of lowest weight into a single
tree until all trees are merged.



Optimality of Huffman Coding

Theorem: The Huffman code T' for D is optimal — for any
other tree T" we have d(T; D) < d(T"; D).

Proof: The algorithm maintains the invariant that there ex-
ists an optimal tree including all the subtrees on the list.

To prove that a merge operation maintains this invariant we
consider any tree containing the given subtrees.

Consider the two subtrees T; and T’ of minimal weight. With-
out loss of generality we can assume that 75 is at least as deep
as 1.

J

Swapping the sibling of T; for T; brings T; and T} together
and can only improve the average depth.



H(D, Py)

Modeling a Distribution

= argmin H(D, Pg)

©

= cross entropy = E....p [logg

]
Po(z)

|



Distribution Modeling and Data Compression

Theorem: For any Pg there exists a code 7' such that for all
reX

1
Po(z)

1
logs <d(x;T) < (1og2 P@(x)> +1

Optimal average compressed size is achieved by

1
* = argmin H(D, Pg) = argmin E..p [logQ ]
o o Fo(z)

Minimizing Cross-Entropy is the same as optimizing data
compression is the same as distribution modeling.



Cross Entropy vs. Entropy

An LSTM language models allow us to calculate the probabil-
ity of given sentence.

This allows us to measure H (D, Pg) by sampling.

While we can measure the cross-entropy H (D, Pg) we can-
not measure the true entropy of the source H(D) which, for
language, presumably involves semantic truth.

But we can show

H(D) < H(D, P)

The cross cross entropy to the model upper bounds the true
data source entropy.



KL Divergence

The KL divergence is

KL(D,P)=H(D,P)—H(D)=E,.p [10%2 11381

We can show K L(D, P) > 0 using Jensen’s inequality applied
to the convexity of the negative of the log function.



KL Divergence
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Rate-Distortion Autoencoders
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Rate-Distortion Autoencoders

Rate-distortion theory addresses lossy compression. We as-
sume

e An encoder (compression) network zg(x) where zg(x) is a
bit string in a prefix-free code (a code corresponding to the
leaves of a binary tree). We write |z| for the number of bits
in the string z.

e A decoder (decompression) network Zy(z)

e A distortion function L(x, Z)

O, U = argmin By | |zo(@)| + AL(2, Zy(z9(2))) |



Summary of Distribution Modeling

Distribution modeling is important when the distribution be-
ing modeled (D(x) or D(y|x)) is highly distributed and precise
prediction is impossible.

Mathematically, distribution modeling (minimizing cross en-
tropy) is the same as optimizing data compression.



Summary of Distribution Modeling
©* = argming H (D, Pg)

Conditional version:

O = argming E,.p H(D(y|z), Po(y|r))
H(D, P) = By |log) iy
H(D) = Eyrp |logs ]

H(D,P) > H(D)

D(z)
P(z)

KL(D,P)=H(D,P)— H(D) = E,.p [1og2 } > ()



Summary of Distribution Modeling

O©* = argming H (D, Pg)

Consistency:

If there exists © with Pg = D then Pg+ = D.

This follows from

H(D,D)= H(D) < H(D, P)



Methods of Modeling Distributions

Structured Prediction.

P(ylz) = soft;nax Wo(x) - d(y)

where this is an exponential softmax.
Rate-Distortion Autoencoding.
Variational Autoencoding.

Generative Adversarial Networks.



END



