TTIC 31230, Fundamentals of Deep Learning
David McAllester, April 2017

Vanishing and Exploding (Gradients
ReLUs
Xavier Initialization

Batch Normalization

Highway Architectures: Resnets, LSTMs and GRUs

Causes of Vanishing and Exploding Gradients

Activation function saturation

Repeated multiplication by network weights

Activation Function Saturation

Consider the sigmoid activation function 1/(1 +e™7).

1.0

0.8

0.6

0.4

0.2

0.0

The gradient of this function is quite small for |z| > 4.

In deep networks backpropagation can go through many sig-
moids and the gradient can “vanish”

Activation Function Saturation
ReLLU(z) = max(z,0)

6

5

4

3

2

1

0
=6 -4 -2 0 2 4 6

The ReLU does not saturate at positive inputs (good) but is
completely saturated at negative inputs (bad).

Alternate variations of ReLLU still have small gradients at neg-
atlve Inputs.

Repeated Multiplication by Network Weights

Consider a deep CNN.
Li—i—l = Relu(ConV(LZ-, FZ))
For ¢ large, L; has been multiplied by many weights.

If the weights are small then the neuron values, and hence the
weight gradients, decrease exponentially with depth.

If the weights are large, and the activation functions do not sat-
urate, then the neuron values, and hence the weight gradients,
increase exponentially with depth.

Methods for Maintaining (radients

Initialization

Batch Normalization

Highway Architectures (Skip Connections)

Methods for Maintaining (radients
Spectrum of Depth

— 5 layers: easy
—— >10 layers: initialization, Batch Normalization

——p >30 layers: skip connections

» >100 layers: identity skip connections

r >1000 layers: ?
l L L L

shallower deeper

[Kaiming He]
We will say “highway architecture” rather than “skip connec-
tions”.

Initialization

Xavier Initialization

[nitialize a weight matrix (or tensor) to preserve zero-mean
unit variance distributions.

If we assume x; has unit mean and zero variance then we want

N—1
yj= D Tty
j=0

to have zero mean and unit variance.

Xavier initialization randomly sets w; ; to be uniform in the

- 3 3
interval | —4/ =, \/% .

Assuming independence this gives zero mean and unit variance
for y;.

EDF Implementation

def xavier(shape):
sq = np.sqrt(3.0/np.prod(shapel[:-1]))
return np.random.uniform(-sq,sq,shape)

This assumes that we sum over all but the last index.

For example, an image convolution filter has shape (H, W, Cy, C9)
and we sum over the first three indices.

Kaiming Initialization
A ReLU nonlinearity reduces the variance.

Before a ReLLU nonlinearity it seems better to use the larger

interval (—\/%, \/%>

Batch Normalization

Normalization

We first compute the mean and variance over the batch for
cach channel and renormalizes the channel value.

Norm(z) =

Backpropagation Through Normalization

Note that we can backpropgate through the normalization op-
eration. Here the different batch elements are not independent.

At test time a single fixed estimate of p and o is used.

Adding an Affine Transformation

BatchNorm(x) = yNorm(x) +

Keep in mind that this done seperately for each channel.

This allows the batch normlization to learn an arbitrary affine
transformation (offset and scaling).

It can even undo the normaliztion.

Batch Normalization
Batch Normalization is empirically very successful in CNNs.
Not so successful in RNNs (RNNs are discussed below).
It is typically used just prior to a nonlinear activation function.
It was originally justified in terms of “covariant shift”.

However, it can also be justified along the same lines as Xavier
initialization — we need to keep the input to an activation
function in the active region.

Normalization Interacts with SGD

Consider backpropagation through a weight layer.

y.value|- - - | += w.value|- - - | x.value|. . .|

w.grad|- - - | += y.grad|- - - | z.value]|- - |

Replacing x by z /& seems related to RMSProp for the update
of w.

Highway Architectures

Deep Residual Networks (ResNets) by Kaiming He 2015

Here we have a “highway”
with “diversions”.

\ The highway path connects

input to outputs and pre-
serves gradients.

PN Resnets were introduced in

late 2015 (Kaiming He et al.)

\ and revolutionized computer
‘\.,l

VIS1On.
The resnet that won the Im-

agenet competition in 2015
had 152 diversions.

Pure and Gated Highway Architectures

Pure (Resnet): Livi1=L;+ D,

Forget Gated (LSTM)I Liv1=F;xL;,+ D,

Exclusively Gated (GRU): L 1 = F;x L; + (1 — F;) % D;

In the pure case the “diversion” D; “fits the residual of the
identity function”

Methods for Maintaining (radients

Spectrum of Depth

5 layers: easy
>10 layers: initialization, Batch Normalization

>30 layers: skip connections

>100 layers: identity skip connections

>1000 layers: ?

shallower deeper

[Kaiming He]

Identity skip connections give a pure highway architecture.

plain net

er)

[MaTeerm e d |
T

ol 2

| |

| 33 carr, 64 |

33 cera, 64]

[dcomms |

| 3ud G, b4 |
¥

dedceme 64|
¥

33 coow, 178,17 |
¥

| dmdeerids |
*

ud conw, 138

[a3eoew,1a |
L

33 poov, 128 |

I3 poew, 128

¥
[HEeew |

[dedeeew, i |

[sdmwim |

Jdpone. 128 |

Fdpone. 128 |

¥
| Mm;'.'.?!]

| Bt coew, 285,07 |

[T

I

¥

[s3coew. 256 |

| Eedene 542,07 |

dudeew, 512 |

oo 51|

¥
Jud gere, 513 _|

3 coaw, 512 |
¥

[
¥

[mamwsa |
¥

|

[

dnd e, 512 | n3 eeew, 512
¥ ¥
3u3 poew, 512 3ud goew, 512
g p0ed v, proed
| fe L0000] e L0 |

ResNet

[Kaiming He]

Deep Residual Networks

N
-
O

As with most of deep learn-
ing, not much is known about
what resnets are actually do-
ng.

For example, different di-
versions might update dis-
joint channels making the

networks shallower than they
look.

They are capable of repre-
senting very general circuit
topologies.

A Bottleneck Diversion

256-d

1x1, 64

lrem

3x3, 64

lrem

1x1, 256

bottleneck
(for ResNet-50/101/152)

[Kaiming He]

This reduction in the num-
ber ot channels used in the di-
version suggests a modest up-
date of the highway informa-
tion.

Long Short Term Memory (LSTMs)

Recurrent Neural Networks

® ® ® ®
TTT [

— — A

S O S

[Christopher Olah]

hiy1 = tanh(Wp, hy + Weay + B)
In EDF:

for t in range(T):
H.append (None)
H[t+1] = Sigmoid (ADD(VDot(Wh,H[t]), VDot (Wx,X[t]), Beta

Gradient Clipping
An RNN uses the same weights at every time step.

If we avoid saturation of the activation functions then we get
exponentially growing or shrinking eigenvectors of the weight
matrix.

To handle exploding gradients we can define a gradient clipping
component.

hiiq1 = clip(tanh(Wy, hy + Wiy + b))
The forward method of the clip component is the identity func-

tion.

The backward method shrinks the gradients to stay within
some limit.

Long Short Term Memory (LSTM)

7 ¢ T
oA heetl] A
© ® ©

[Christopher Olah]

The highway path goes across the top and is called the Carry:

Resnet: Liv1=L;+ D;

LSTM: Cii1=FxCy+ Dy

Long Short Term Memory (LSTM)
& ® %9

A

' I ' ™
P
({anh>
A [lelel A
> > >

| |
&) ® &)

[Christopher Olah]

The highway path C' (across the top of the figure) is gated.
Cry1=Fx Cy + Dy
The product F' x C' is componentwise (as in Numpy).

We say F' gates C'. F'is called the “forget gate”.

Long Short Term Memory (LSTM)

® ® 3
A el A
&) Q, é

[Christopher Olah]

Ciy1 = FrxCy+ Dy

Iy = o(Wp[Xt, Hy)
Dy = O(W][Xt, Ht]) % tanh(WD[Xt, Ht])
Hiy = o(WolXt, Hy]) * tanh(WgCyyq)

Gated Recurrent Unity (GRU) by Cho et al. 2014

[Christopher Olah]

The highway path is H.
Hip = (1— 1) * Hy+ Iy x Dy
Iy = o(Wy| Xy, Hy])
Dy = tanh(WD[Xt, O‘(Wr[a?t, HtD * Ht])

GRUs vs. LSTMs

In TTIC31230 class projects GRUs consistently outperformed
LSTMs.

They are also conceptually simpler.

GRU Language Models

GRU Character Language Models

ho and cq are parameters.

For t > 0. we have hy as defined by the GRU equations.
P(xsyq | xo, x1, ..., x¢) = Softmax(W, hy)

The parameter W, has shape (V, H) where V' is the vocabulary
size (number of characters in a character model) and H is the
dimension of the hidden state vectors.

1T—1
l(xq, ..., Tp_1) Z In 1/P(xt | xg,...,27_1)
t=0

Generating from a Character Language Model

Repeatedly select x4y from P(x¢yq | zo, 1, ..., 2¢)

END

