
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Vanishing and Exploding Gradients

ReLUs

Xavier Initialization

Batch Normalization

Highway Architectures: Resnets, LSTMs and GRUs

Causes of Vanishing and Exploding Gradients

Activation function saturation

Repeated multiplication by network weights

Activation Function Saturation

Consider the sigmoid activation function 1/(1 + e−x).

The gradient of this function is quite small for |x| > 4.

In deep networks backpropagation can go through many sig-
moids and the gradient can “vanish”

Activation Function Saturation

ReLU(x) = max(x, 0)

The ReLU does not saturate at positive inputs (good) but is
completely saturated at negative inputs (bad).

Alternate variations of ReLU still have small gradients at neg-
ative inputs.

Repeated Multiplication by Network Weights

Consider a deep CNN.

Li+1 = Relu(Conv(Li, Fi))

For i large, Li has been multiplied by many weights.

If the weights are small then the neuron values, and hence the
weight gradients, decrease exponentially with depth.

If the weights are large, and the activation functions do not sat-
urate, then the neuron values, and hence the weight gradients,
increase exponentially with depth.

Methods for Maintaining Gradients

Initialization

Batch Normalization

Highway Architectures (Skip Connections)

Methods for Maintaining Gradients

[Kaiming He]

We will say “highway architecture” rather than “skip connec-
tions”.

Initialization

Xavier Initialization

Initialize a weight matrix (or tensor) to preserve zero-mean
unit variance distributions.

If we assume xi has unit mean and zero variance then we want

yj =

N−1∑
j=0

xiwi,j

to have zero mean and unit variance.

Xavier initialization randomly sets wi,j to be uniform in the

interval

(
−
√

3
N ,
√

3
N

)
.

Assuming independence this gives zero mean and unit variance
for yj.

EDF Implementation

def xavier(shape):

sq = np.sqrt(3.0/np.prod(shape[:-1]))

return np.random.uniform(-sq,sq,shape)

This assumes that we sum over all but the last index.

For example, an image convolution filter has shape (H, W, C1, C2)
and we sum over the first three indices.

Kaiming Initialization

A ReLU nonlinearity reduces the variance.

Before a ReLU nonlinearity it seems better to use the larger

interval

(
−
√

6
N ,
√

6
N

)
.

Batch Normalization

Normalization

We first compute the mean and variance over the batch for
each channel and renormalizes the channel value.

Norm(x) =
x− µ̂
σ̂

µ̂ =
1

B

∑
b

xb

σ̂ =

√
1

B − 1

∑
b

(xb − µ̂)2

Backpropagation Through Normalization

Note that we can backpropgate through the normalization op-
eration. Here the different batch elements are not independent.

At test time a single fixed estimate of µ and σ is used.

Adding an Affine Transformation

BatchNorm(x) = γNorm(x) + β

Keep in mind that this done seperately for each channel.

This allows the batch normlization to learn an arbitrary affine
transformation (offset and scaling).

It can even undo the normaliztion.

Batch Normalization

Batch Normalization is empirically very successful in CNNs.

Not so successful in RNNs (RNNs are discussed below).

It is typically used just prior to a nonlinear activation function.

It was originally justified in terms of “covariant shift”.

However, it can also be justified along the same lines as Xavier
initialization — we need to keep the input to an activation
function in the active region.

Normalization Interacts with SGD

Consider backpropagation through a weight layer.

y.value[· · ·] += w.value[· · ·] x.value[. . .]

w.grad[· · ·] += y.grad[· · ·] x.value[· · ·]

Replacing x by x/σ̂ seems related to RMSProp for the update
of w.

Highway Architectures

Deep Residual Networks (ResNets) by Kaiming He 2015

Here we have a “highway”
with “diversions”.

The highway path connects
input to outputs and pre-
serves gradients.

Resnets were introduced in
late 2015 (Kaiming He et al.)
and revolutionized computer
vision.

The resnet that won the Im-
agenet competition in 2015
had 152 diversions.

Pure and Gated Highway Architectures

Pure (Resnet): Li+1 = Li + Di

Forget Gated (LSTM): Li+1 = Fi ∗ Li + Di

Exclusively Gated (GRU): Li+1 = Fi ∗ Li + (1− Fi) ∗Di

In the pure case the “diversion” Di “fits the residual of the
identity function”

Methods for Maintaining Gradients

[Kaiming He]

Identity skip connections give a pure highway architecture.

[Kaiming He]

Deep Residual Networks
As with most of deep learn-
ing, not much is known about
what resnets are actually do-
ing.

For example, different di-
versions might update dis-
joint channels making the
networks shallower than they
look.

They are capable of repre-
senting very general circuit
topologies.

A Bottleneck Diversion

This reduction in the num-
ber of channels used in the di-
version suggests a modest up-
date of the highway informa-
tion.

[Kaiming He]

Long Short Term Memory (LSTMs)

Recurrent Neural Networks

[Christopher Olah]

ht+1 = tanh(Wh ht + Wxxt + β)

In EDF:

for t in range(T):

H.append(None)

H[t+1] = Sigmoid(ADD(VDot(Wh,H[t]), VDot(Wx,X[t]), Beta))

Gradient Clipping

An RNN uses the same weights at every time step.

If we avoid saturation of the activation functions then we get
exponentially growing or shrinking eigenvectors of the weight
matrix.

To handle exploding gradients we can define a gradient clipping
component.

ht+1 = clip(tanh(Wh ht + Wxxt + b))

The forward method of the clip component is the identity func-
tion.

The backward method shrinks the gradients to stay within
some limit.

Long Short Term Memory (LSTM)

[Christopher Olah]

The highway path goes across the top and is called the Carry:

Resnet: Li+1 = Li + Di

LSTM: Ct+1 = Ft ∗ Ct + Dt

Long Short Term Memory (LSTM)

[Christopher Olah]

The highway path C (across the top of the figure) is gated.

Ct+1 = Ft ∗ Ct + Dt

The product F ∗ C is componentwise (as in Numpy).

We say F gates C. F is called the “forget gate”.

Long Short Term Memory (LSTM)

[Christopher Olah]

Ct+1 = Ft ∗ Ct + Dt
Ft = σ(WF [Xt, Ht])

Dt = σ(WI [Xt, Ht]) ∗ tanh(WD[Xt, Ht])

Ht+1 = σ(WO[Xt, Ht]) ∗ tanh(WHCt+1)

Gated Recurrent Unity (GRU) by Cho et al. 2014

[Christopher Olah]

The highway path is H .

Ht+1 = (1− It) ∗Ht + It ∗Dt
It = σ(WI [Xt, Ht])

Dt = tanh(WD[Xt, σ(Wr[xt, Ht]) ∗Ht])

GRUs vs. LSTMs

In TTIC31230 class projects GRUs consistently outperformed
LSTMs.

They are also conceptually simpler.

GRU Language Models

GRU Character Language Models

h0 and c0 are parameters.

For t > 0, we have ht as defined by the GRU equations.

P (xt+1 | x0, x1, . . . , xt) = Softmax(Wo ht)

The parameterWo has shape (V,H) where V is the vocabulary
size (number of characters in a character model) and H is the
dimension of the hidden state vectors.

`(x0, ..., xT−1) =

T−1∑
t=0

ln 1/P (xt | x0, . . . , xT−1)

Generating from a Character Language Model

Repeatedly select xt+1 from P (xt+1 | x0, x1, . . . , xt)

END

