
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Convolutional Neural Networks — CNNs

Imagenet Classification

1000 kinds of objects.

Speech Recognition

Current state of the art speech recognition systems use CNNs
(as well as RNNs).

Computer transcription of conversational speech now matches
the error rate of professional human transcribers.

(It should be noted that RNNs are also are being used in vi-
sion).

Protein Folding

Very Recent work of Jinbo Xu (here at TTIC) has used CNNs
to fold proteins.

Construct an image Ix,y where x and y are positions in the
sequence of protein P and Ix,y is the mutual information be-
tween variants at position x and variants at position y in the
different version of P in different species.

For proteins with known structure, construct a target image
Dx,y where Dx,y is the physical distance between the residue
at position x and the residue at position y.

Train a CNN (resnet) to produce output Dx,y from input im-
age Ix,y.

The result is a revolution in predicting three dimensional struc-
ture from a protein sequence.

Convolution

In Deep learning we use the following definition of (1D) con-
volution.

(x ∗ f)(t) =

|f |−1∑
j=0

x[t + j]f [j]

This version has the spatial dimensions of the filter reversed
relative to the classical definition.

The classical definition yields f ∗ g = g ∗ f which does not
hold for the deep learning definition.

2D Convnets

1D: Conv(s, f)[t] =
∑
j

s[t + j]f [j]

2D: Conv(I, f)[x, y] =
∑
j,k

I [x + j, y + k]f [j, k]

We will write equations for 1D convnets.

For 2D one just replaces the time dimension with two spatial
dimensions in both the signal and the filter.

Padding

Conv(x, f)[i] =

|f |−1∑
j=0

x[t + j]f [j]

|Conv(f, x)| = |x| − |f | + 1

We typically want the filter to slide off the edge of the signal
to some extent.

This is done by padding the signal with zeros.

Pad(x, 2) = (0, 0, x[0], x[1], . . . , x[|x| − 1], 0, 0)

Padding in Numpy

class Pad

def __init__(self, x, p):

...

def forward(self):

x = self.x

p = self.p

s = x.size

self.value = np.zeros(s+2*p)

self.value[p:p+size] = x.value

Incorporating Padding into a Convolution Layer

Typically |f | is odd and we do

Conv(Pad(x, b|f |/2c), f)

For convenience we could define a procedure

Convp(x, f) ≡ Conv(Pad(x, |f |/2), f)

Or, for efficiency, we could implement Convp directly as a class.

Channels

In speech or audition one typically is given a channel vector,
such as the Mel-cepstral coefficients, at each time position of
the input.

The convolution operation also produces a channel vector at
each time position.

In this case the filter has shape (T,C2, C1) and we have

Conv(x, f)[t, c] =
∑
j,c′

x[t + j, c′]f [j, c′, c]

Note that the time dimension is handled as before.

Padding can be generalized straightforwardly to handle chan-
nels.

Adding An Activation Function

Each convolution operation is typically followed by an activa-
tion function nonlinearity.

Relu(Conv(x, f))

Note that the activation function is scalar-to-scalar and is ap-
plied to each channel at each time (or image) position.

Max Pooling

Pooling merges a segment of length p into a single channel
vector by selecting, for each channel, the maximum value of
that channel over the segment.

There are two parameters.

p is the size of the region pooled.

s is the “stride” — the size of the region shift on each iteration.

MaxPool(x, p, s)[t, c] = max
j∈{0,...,p−1}

x[st + j, c]

|MaxPool(x, p, s)| = b(|x| − p)/sc + 1

MaxPooling Handles “Deformation”

The deformable part model (DPM):

In DPM the part filters are at a higher spatial resolution ap-
plied in a region around their nominal position.

Average Pooling

Average pooling is the same as max pooling but takes an av-
erage rather than a max.

AvePool(x, p, s)[t, c] =
1

p

∑
j∈{0,...,p−1}

x[st + j, c]

|MaxPool(x, p, s)| = b(|x| − p)/sc + 1

Example

Stanford CS231 Network

Convolution with Strides

Instead of advancing the filter one time value at each iteration,
it is common to advance the filter by a stride s.

we can add a stride parameter to the convolution operation.

Conv(x, f, s)[t, c] =
∑
j,c′

x[st + j, c′]f [j, c, c′]

|MaxPool(x, p, s)| = b(|x| − |f |)/sc + 1

Thinking About the Backward Method

Consider y = Conv(x, f, s).

y.value[t, c] += x.value[st + j, c′]f.value[j, c, c′]

Each increment can be backpropagated independently.

x.grad[st + j, c′] += y.grad[t, c] f.value[j, c, c′]

f.grad[j, c, c′] += y.grad[t, c] x.value[st + j, c′]

Until someone writes an appropriate compiler, one must still
hand code the appropriate Numpy or CUDA vector operations.

The Backward Method with Minibatching

Forward:

y.value[b, t, c] += x.value[b, st + j, c′]f.value[j, c, c′]

Backward:

x.grad[b, st + j, c′] += y.grad[b, t, c] f.value[j, c, c′]

f.grad[j, c, c′] += y.grad[t, c] x.value[b, st + j, c′]

Note that the backpropagation to f sums over both b and t.

Image to Column (Im2C)
Matrix multiplication is a highly optimized operation. Using
more space, convolution can be reduced to matrix multiplica-
tion.

Conv(x, f)[t, c] =
∑
j,c′

x[t + j, c′]f [j, c′, c]

=
∑
j,c′

X [t, j, c′]f [j, c′, c]

X [t, j, c′] = x[t + j, c′]

This uses more space, the same value of x is included multiple
times in X . The second line can be computed by a matrix
multiplication of reshapings.

END

