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Some Generalization Theory



Generalization Bounds

A generalization bound is a theorem guaranteeing a certain
performance on test data.

PAC-Bayesian generalization bounds are sufficiently general to
handle arbitrary feed-forward computation (or even arbitrary
prediction rules).

However, PAC-Bayesian Bounds for circuits with real-valued
parameters typically involve simultaneous weight norm regu-
larization and ensemble regularization.



A PAC-Bayesian Generalization Bound

For Θ ∈ Rd and (x, y) ∈ Z let `(x, y,Θ) be any loss function
such that for all Θ, x and y we have `(x, y,Θ) ∈ [0, 1].

Assume a data distribution from which we can draw problem
instances and a training set (x1, y1), . . . , (xN , yN ) drawn
IID form that distribution.

ˆ̀(Θ) =
1

N

N−1∑
i=0

`(xi, yi, Θ)

`(Θ) = E(x,y) [`(x, y, Θ)]



A Generalization Theorem

Now we consider an ensemble model.

Each model in the ensemble is defined by a random vector ε
(analogous to the random mask µ of dropout).

Here ε is drawn from N (0, 1)d.

ˆ̀ens(Θ) = Eε

[
ˆ̀(Θ + ε)

]
`ens(Θ) = Eε [`(Θ + ε)]



The Theorem

For any λ > 1/2, with probability at least 1−δ over the draw of
the sample, we have that the following holds simultaneously
for all Θ ∈ Rd.

`ens(Θ) ≤ 1

1− 1
2λ

(
ˆ̀ens(Θ) +

λ

N

(
1

2
||Θ||2 + ln

1

δ

))



More General Ensembles

We can consider any probability density Q on Rd as defining
an ensemble of models.

ˆ̀
Q(Θ) = EΘ∼Q

[
ˆ̀(Θ)

]
`Q(Θ) = EΘ∼Q [`(Θ)]



More General Ensembles

For any “prior” distribution P on Rd, for any λ > 1/2, with
probability at least 1− δ over the draw of the sample, we have
that the following holds simultaneously for all ensembles
Q.

`Q(Θ) ≤ 1

1− 1
2λ

(
ˆ̀
Q(Θ) +

λ

N

(
KL(Q,P ) + ln

1

δ

))



A Proof

`Q(Θ) ≤ 1

1− 1
2λ

(
ˆ̀
Q(Θ) +

λ

N

(
KL(Q,P ) + ln

1

δ

))

`ens(Θ) ≤ 1

1− 1
2λ

(
ˆ̀ens(Θ) +

λ

N

(
1

2
||Θ||2 + ln

1

δ

))
To prove the second from the first we take P to be N (0, 1)d

(the noise distribution) and Q to be the distribution defined
by Θ + ε for noise ε. We then have

KL(Q,P ) =
1

2
||Θ||2



Compression Regularization

Highly compressed models may have improved generalization.

Consider finite precision representations of Θ. Let |Θ| be
the number of bits it takes to represent Θ.

Theorem: With probability at least 1 − δ over the draw of
the sample the following holds simultaneously for all Θ and
λ > 1/2.

`(Θ) ≤ 1

1− 1
2λ

(
ˆ̀(Θ) +

λ

N

(
(ln 2)|Θ| + ln

1

δ

))
Here there is no ensemble involved.



Proof

Note that for a fixed Θ we have that ˆ̀(Θ) is different for dif-
ferent training sets.

Note that ˆ̀(Θ) is an average over a large number of measure-
ments. The law of large numbers says that such an average
should be normally distributed.

p(ˆ̀(Θ)) ≈ e
−(ˆ̀(Θ)−`(Θ))2

2σ2

More precisely we have the following Chernoff bound.

Pdraw of train

(
ˆ̀(Θ) ≤ `(Θ)− ε

)
≤ e
−N ε2

2`(Θ)



For a given h ∈ H the relative Chernoff bound states that

P
(

ˆ̀(Θ) ≤ `(Θ)− ε
)
≤ e
−N ε2

2`(Θ)

Let Pr be any “prior” distribution on Θ and take

ε =

√√√√2`(Θ)
(

ln 1
Pr(Θ)

+ ln 1
δ

)
N

we get

P

`(Θ) > ˆ̀(Θ) +

√√√√2`(Θ)
(

ln 1
Pr(Θ)

+ ln 1
δ

)
N

 ≤ Pr(Θ)δ



P

`(Θ) > ˆ̀(Θ) +

√√√√2`(Θ)
(

ln 1
Pr(Θ)

+ ln 1
δ

)
N

 ≤ Pr(Θ)δ

Union Bound: P (∃x Φ[x]) ≤
∑
xP (Φ[x])

P

∃Θ `(Θ) > ̂̀(Θ) +

√√√√√√`(Θ)

2
(

ln 1
Pr(Θ)

+ ln 1
δ

)
N


 ≤ δ



With probability at least 1− δ

∀Θ `(Θ) ≤ ̂̀(Θ) +

√√√√√√`(Θ)

2
(

ln 1
Pr(Θ)

+ ln 1
δ

)
N


using

√
ab = infλ>0

a
2λ + λb

2 we have

`(Θ) ≤ ̂̀(Θ) +
`(Θ)

2λ
+

λ
(

ln 1
Pr(Θ)

+ ln 1
δ

)
N





`(Θ) ≤ ̂̀(Θ) +
`(Θ)

2λ
+

λ
(

ln 1
Pr(Θ)

+ ln 1
δ

)
N



Solving for `(Θ) we have

`(Θ) ≤ 1

1− 1
2λ

(
ˆ̀(Θ) +

λ

N

(
ln

1

Pr(Θ)
+ ln

1

δ

))



`(Θ) ≤ 1

1− 1
2λ

(
ˆ̀(Θ) +

λ

N

(
ln

1

Pr(Θ)
+ ln

1

δ

))

Using Pr(Θ) = 2−|Θ| we get

`(Θ) ≤ 1

1− 1
2λ

(
ˆ̀(Θ) +

λ

N

(
(ln 2)|Θ| + ln

1

δ

))



Implicit Regularization

“Understanding deep learning requires rethinking generaliza-
tion”, Zhang et al. (November 2016).



Troubling Experiments

“Our experiments establish that state-of-the-art con-
volutional networks for image classification trained with
stochastic gradient methods easily fit a random labeling
of the training data.”



Training on Corrupted Data

Inception on CIFAR10



Test Error as a Function of Training Label Corruption



Implicit Regularization

One can modify the PAC-Bayesian bound (and other bounds)
to replace ||Θ||2 with ||Θ− Θinit||2.
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