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Some (Generalization Theory



(Generalization Bounds

A generalization bound is a theorem guaranteeing a certain
performance on test data.

PAC-Bayesian generalization bounds are sufficiently general to
handle arbitrary feed-forward computation (or even arbitrary
prediction rules).

However, PAC-Bayesian Bounds for circuits with real-valued
parameters typically involve simultaneous weight norm regu-
larization and ensemble regularization.



A PAC-Bayesian Generalization Bound

For © € R? and (z,y) € Z let £(x,y, 0) be any loss function
such that for all ©, x and y we have £(z,y,0) € [0, 1].

Assume a data distribution from which we can draw problem

instances and a training set (z1, v1), ..., (zy, yy) drawn
[ID form that distribution.
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A Generalization Theorem

Now we consider an ensemble model.

Each model in the ensemble is defined by a random vector €
(analogous to the random mask p of dropout).

Here € is drawn from N(0,1)<.
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The Theorem

For any A > 1/2, with probability at least 1—§ over the draw of

the sample, we have that the following holds simultaneously
for all © € RY,
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More General Ensembles

We can consider any probability density () on R? as defining
an ensemble of models.
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More General Ensembles

For any “prior” distribution P on Rd, for any A > 1/2, with
probability at least 1 — 0 over the draw of the sample, we have
that the following holds simultaneously for all ensembles
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A Proof

1 A A 1

(®)< 1 (éQ(@HN (KL(Q,P)+1DS>>
1/ AN,

fs(®) < 1y ((®) 4 7 (51007 415

To prove the second from the first we take P to be A/(0,1)%
(the noise distribution) and @ to be the distribution defined
by © + € for noise . We then have

1
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Compression Regularization
Highly compressed models may have improved generalization.

Consider finite precision representations of ©. Let |©| be
the number of bits it takes to represent O.

Theorem: With probability at least 1 — 0 over the draw of
the sample the following holds simultaneously for all © and

A>1/2.
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Here there is no ensemble involved.



Proof
Note that for a fixed © we have that £(©) is different for dif-

ferent training sets.

Note that ¢ (©) is an average over a large number of measure-
ments. The law of large numbers says that such an average
should be normally distributed.
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More precisely we have the following Chernoft bound.
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For a given h € H the relative Chernoft bound states that
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Let Pr be any “prior” distribution on © and take
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Union Bound:
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With probability at least 1 — ¢

VO £(0) < 1(O)+ |£(O)
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Implicit Regularization

“Understanding deep learning requires rethinking generaliza-
tion”, Zhang et al. (November 2016).



Troubling Experiments

“Our experiments establish that state-of-the-art con-
volutional networks for image classification trained with
stochastic gradient methods easily fit a random labeling
of the training data.”



Training on Corrupted Data
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Test Error as a Function of Training Label Corruption
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Implicit Regularization

One can modify the PAC-Bayesian bound (and other bounds)
to replace ||| with ||© — Oypit||*.
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