

TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Some Generalization Theory

Generalization Bounds

A generalization bound is a theorem guaranteeing a certain performance on test data.

PAC-Bayesian generalization bounds are sufficiently general to handle arbitrary feed-forward computation (or even arbitrary prediction rules).

However, PAC-Bayesian Bounds for circuits with real-valued parameters typically involve simultaneous weight norm regularization and ensemble regularization.

A PAC-Bayesian Generalization Bound

For $\Theta \in \mathbb{R}^d$ and $(x, y) \in \mathcal{Z}$ let $\ell(x, y, \Theta)$ be any loss function such that for all Θ , x and y we have $\ell(x, y, \Theta) \in [0, 1]$.

Assume a data distribution from which we can draw problem instances and a training set $(x_1, y_1), \dots, (x_N, y_N)$ drawn IID from that distribution.

$$\hat{\ell}(\Theta) = \frac{1}{N} \sum_{i=0}^{N-1} \ell(x_i, y_i, \Theta)$$

$$\ell(\Theta) = \mathbb{E}_{(x,y)} [\ell(x, y, \Theta)]$$

A Generalization Theorem

Now we consider an ensemble model.

Each model in the ensemble is defined by a random vector ϵ (analogous to the random mask μ of dropout).

Here ϵ is drawn from $\mathcal{N}(0, 1)^d$.

$$\hat{\ell}_{\text{ens}}(\Theta) = \mathbb{E}_\epsilon \left[\hat{\ell}(\Theta + \epsilon) \right]$$

$$\ell_{\text{ens}}(\Theta) = \mathbb{E}_\epsilon [\ell(\Theta + \epsilon)]$$

The Theorem

For any $\lambda > 1/2$, with probability at least $1 - \delta$ over the draw of the sample, we have that the following holds **simultaneously** for all $\Theta \in \mathbb{R}^d$.

$$\ell_{\text{ens}}(\Theta) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\hat{\ell}_{\text{ens}}(\Theta) + \frac{\lambda}{N} \left(\frac{1}{2} \|\Theta\|^2 + \ln \frac{1}{\delta} \right) \right)$$

More General Ensembles

We can consider any probability density Q on \mathbb{R}^d as defining an ensemble of models.

$$\hat{\ell}_Q(\Theta) = \mathbb{E}_{\Theta \sim Q} [\hat{\ell}(\Theta)]$$

$$\ell_Q(\Theta) = \mathbb{E}_{\Theta \sim Q} [\ell(\Theta)]$$

More General Ensembles

For any “prior” distribution P on \mathbb{R}^d , for any $\lambda > 1/2$, with probability at least $1 - \delta$ over the draw of the sample, we have that the following holds **simultaneously** for all ensembles Q .

$$\ell_Q(\Theta) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\hat{\ell}_Q(\Theta) + \frac{\lambda}{N} \left(KL(Q, P) + \ln \frac{1}{\delta} \right) \right)$$

A Proof

$$\ell_Q(\Theta) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\hat{\ell}_Q(\Theta) + \frac{\lambda}{N} \left(KL(Q, P) + \ln \frac{1}{\delta} \right) \right)$$

$$\ell_{\text{ens}}(\Theta) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\hat{\ell}_{\text{ens}}(\Theta) + \frac{\lambda}{N} \left(\frac{1}{2} \|\Theta\|^2 + \ln \frac{1}{\delta} \right) \right)$$

To prove the second from the first we take P to be $\mathcal{N}(0, 1)^d$ (the noise distribution) and Q to be the distribution defined by $\Theta + \epsilon$ for noise ϵ . We then have

$$KL(Q, P) = \frac{1}{2} \|\Theta\|^2$$

Compression Regularization

Highly compressed models may have improved generalization.

Consider finite precision representations of Θ . Let $|\Theta|$ be the number of bits it takes to represent Θ .

Theorem: With probability at least $1 - \delta$ over the draw of the sample the following holds *simultaneously* for all Θ and $\lambda > 1/2$.

$$\ell(\Theta) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\hat{\ell}(\Theta) + \frac{\lambda}{N} \left((\ln 2)|\Theta| + \ln \frac{1}{\delta} \right) \right)$$

Here there is no ensemble involved.

Proof

Note that for a fixed Θ we have that $\hat{\ell}(\Theta)$ is different for different training sets.

Note that $\hat{\ell}(\Theta)$ is an average over a large number of measurements. The law of large numbers says that such an average should be normally distributed.

$$p(\hat{\ell}(\Theta)) \approx e^{\frac{-(\hat{\ell}(\Theta) - \ell(\Theta))^2}{2\sigma^2}}$$

More precisely we have the following Chernoff bound.

$$P_{\text{draw_of_train}} \left(\hat{\ell}(\Theta) \leq \ell(\Theta) - \epsilon \right) \leq e^{-N \frac{\epsilon^2}{2\ell(\Theta)}}$$

For a given $h \in \mathcal{H}$ the relative Chernoff bound states that

$$P \left(\hat{\ell}(\Theta) \leq \ell(\Theta) - \epsilon \right) \leq e^{-N \frac{\epsilon^2}{2\ell(\Theta)}}$$

Let Pr be any “prior” distribution on Θ and take

$$\epsilon = \sqrt{\frac{2\ell(\Theta) \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right)}{N}}$$

we get

$$P \left(\ell(\Theta) > \hat{\ell}(\Theta) + \sqrt{\frac{2\ell(\Theta) \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right)}{N}} \right) \leq Pr(\Theta)\delta$$

$$P \left(\ell(\Theta) > \hat{\ell}(\Theta) + \sqrt{\frac{2\ell(\Theta) \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right)}{N}} \right) \leq Pr(\Theta)\delta$$

Union Bound:

$$P(\exists x \Phi[x]) \leq \sum_x P(\Phi[x])$$

$$P \left(\exists \Theta \ \ell(\Theta) > \hat{\ell}(\Theta) + \sqrt{\ell(\Theta) \left(\frac{2 \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right)}{N} \right)} \right) \leq \delta$$

With probability at least $1 - \delta$

$$\forall \Theta \quad \ell(\Theta) \leq \widehat{\ell}(\Theta) + \sqrt{\ell(\Theta) \left(\frac{2 \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right)}{N} \right)}$$

using $\sqrt{ab} = \inf_{\lambda > 0} \frac{a}{2\lambda} + \frac{\lambda b}{2}$ we have

$$\ell(\Theta) \leq \widehat{\ell}(\Theta) + \frac{\ell(\Theta)}{2\lambda} + \left(\frac{\lambda \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right)}{N} \right)$$

$$\ell(\Theta) \leq \hat{\ell}(\Theta) + \frac{\ell(\Theta)}{2\lambda} + \left(\frac{\lambda \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right)}{N} \right)$$

Solving for $\ell(\Theta)$ we have

$$\ell(\Theta) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\hat{\ell}(\Theta) + \frac{\lambda}{N} \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right) \right)$$

$$\ell(\Theta) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\hat{\ell}(\Theta) + \frac{\lambda}{N} \left(\ln \frac{1}{Pr(\Theta)} + \ln \frac{1}{\delta} \right) \right)$$

Using $Pr(\Theta) = 2^{-|\Theta|}$ we get

$$\ell(\Theta) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\hat{\ell}(\Theta) + \frac{\lambda}{N} \left((\ln 2)|\Theta| + \ln \frac{1}{\delta} \right) \right)$$

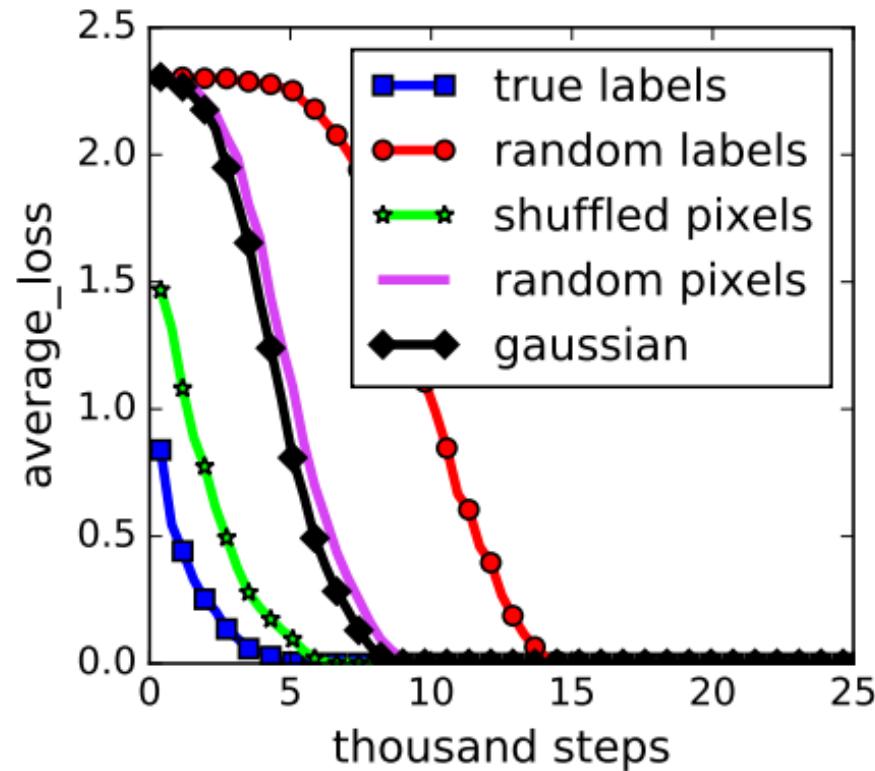
Implicit Regularization

“Understanding deep learning requires rethinking generalization”, Zhang et al. (November 2016).

Troubling Experiments

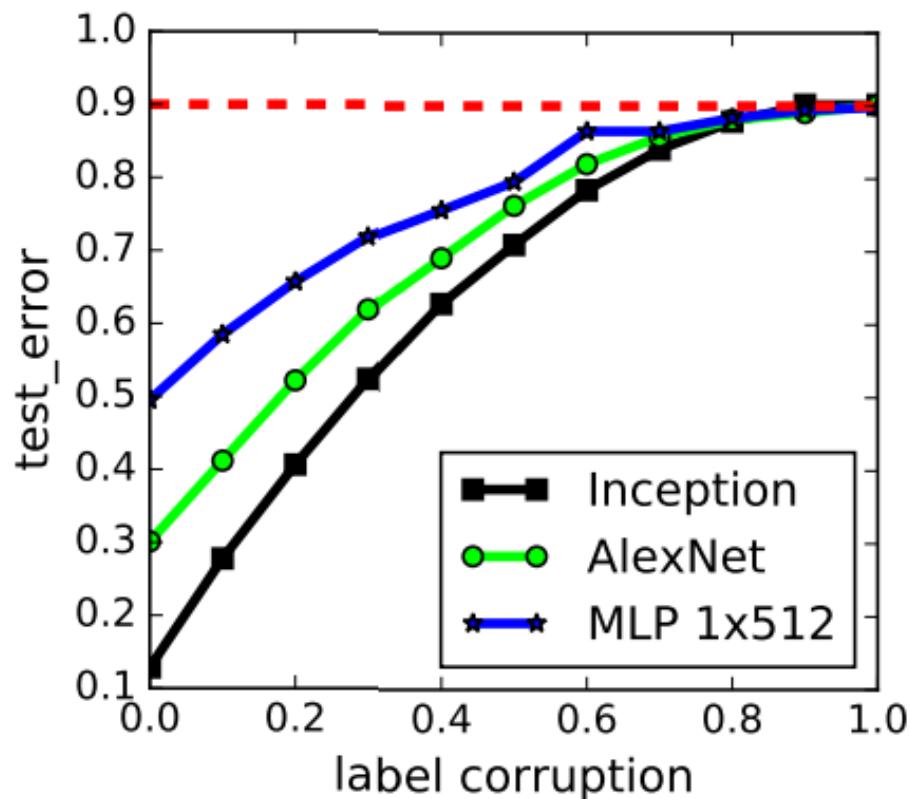
“Our experiments establish that state-of-the-art convolutional networks for image classification trained with stochastic gradient methods easily fit a random labeling of the training data.”

Training on Corrupted Data



Inception on CIFAR10

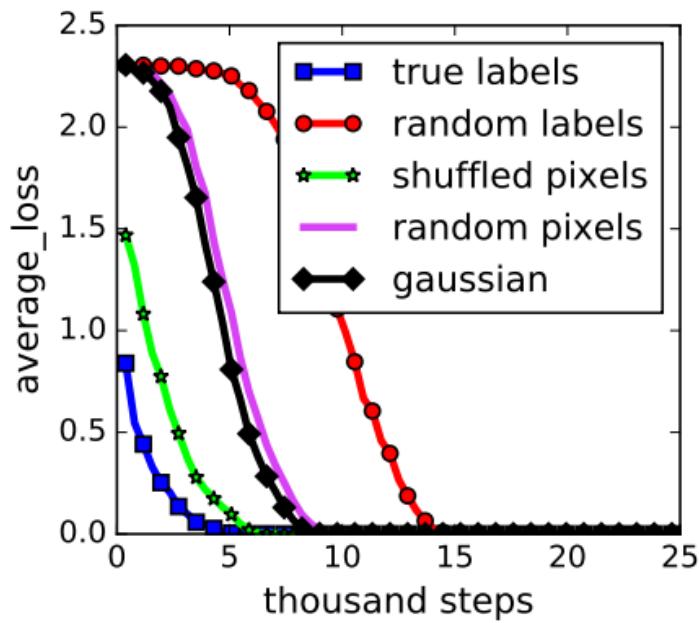
Test Error as a Function of Training Label Corruption



(c) generalization error growth

Implicit Regularization

One can modify the PAC-Bayesian bound (and other bounds) to replace $\|\Theta\|^2$ with $\|\Theta - \Theta_{\text{init}}\|^2$.



END