TTIC 31230, Fundamentals of Deep Learning
David McAllester, April 2017

Backpropagation

The Educational Framework (EDF)

Feed-Forward Computation Graphs

Vg1 = S1(vo, -, vg)

Vg2 = folvo, -y vp11)

Vtd = Ja(vo, -+ Vppg—1)
C= far1(vo, - Viyq)

¢ 1s a scalar loss.

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

For now assume all values are scalars.

We can think of each variable as potential input and consider,
for example, 0¢/0z.

Note that 0¢/0z depends on the value of z.

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

We will “backpopagate” each assignment in the reverse order.

ol /ou =1

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

ol /0u =1
Ol/0z = (00/Ou) (Oh/0z) (this uses the value of z)

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

ol /0u =1
0l/0z = (0¢/0u) (Oh/0z)
Ol/0y = (00/0z) (0g/dy) (this uses the value of y and x)

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

ol /0u =1

0l/0z = (0¢/0u) (Oh/0z)

0l/dy = (9t/0z) (9g/dy)

Ol /0x = 777 Oops, we need to add up multiple occurrences.

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

We let x.grad be an attribute (as in Python) of object x.

We will accumulate different contributions to 9¢/0x into x.grad.

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

z.grad = y.grad = x.grad = 0
u.grad =1
Loop Invariant: For any variable u defined above the red

circuit, we have that u.grad is 0¢/0u as defined by the red
circuit.

Backpropagation

y = f(z)
< = g(yvx)
u = h(z)
¢ = u

z.grad = y.grad = x.grad = 0
u.grad =1
Loop Invariant: For any variable z defined above the red

circuit, we have that z.grad is 0¢/0z as defined by the red
circuit.

z.grad += u.grad * Oh/0z

Backpropagation

y = f(z)
& = g(y,il?)
u = h(z)
¢ = u

z.grad = y.grad = x.grad = 0
u.grad =1
Loop Invariant: For any variable y defined above the red

circuit, we have that y.grad is 0¢/0y as defined by the red
circuit.

z.grad += u.grad * Oh/0z
y.grad += z.grad * 0g /0y
r.grad += z.grad * 0g/0x

Backpropagation

y = f(z)
< = g(y7x>
u = h(z)
¢ = u

z.grad = y.grad = x.grad = 0
u.grad =1

z.grad += u.grad * Oh/0z
y.grad += z.grad *x 0g /0y
r.grad += z.grad x g/0x
r.grad += y.grad x f /Ox

The EDF Framework
The educational frameword (EDF) is a simple Python-NumPy
implementation of a “framework” for defining computation
oraphs and performing backpropagation. In EDF we write

y = F(z)
z = Gy,)
u = H(z)
¢ = u

This is Python code where variables are bound to objects.

The EDF Framework
The educational frameword (EDF) is a simple Python-NumPy
implementation of a “framework” for defining computation
oraphs and performing backpropagation. In EDF we write

y = F(z)
< = G(y,ZE)
u = H(z)
{ =u

This is Python code where variables are bound to objects.

x 1s an object in the class Value.
y is an object in the class F'.
z 1s an object in the class G.

u and £ are the same object in the class H.

y = F(z)

class F":
def init (self, x):
components.append(self)
self. x = x

def forward(self):
self.value = f(self.x.value)

def backward(self):
self. x.grad += self.grad®(0f /Ox)

#needs x.value

z =Gy,)

class G
def __init__(self,yx):
components.append(self)

self.y =y
self.x = x
def forward(self):

self.value = g(self.y.value, self.x.value)

def backward(self):

self.y.grad += self.grad®(0g/0y) F#needs y.value and x.value
self x.grad += self.grad*(0g/0x) #needs y.value and x.value

The EDF Framework

y = F(z)
z = Gy,)
u = H(z)

This computation graph has one input and three components.

This is equivalent to

uw=H(G(F(z),z))

def

def

def

Backpropagation

Forward() :
for ¢ in components: c.forward()

Backward(loss):

for ¢ in components: c.grad =
for ¢ in params: c.grad = 0
for ¢ in inputs: c.grad = 0O
loss.grad = 1

for ¢ in components[::-1]: c.backward()

0

SGD (eta) :
for p in params:
p.value -= eta*p.grad

The Vector Case

y = F(x)
z = Gy,)
u = H(z)
¢ = u

x, y and z can be vector-valued.

The loss u 1s still a scalar.

The Vector-Valued Class G

class G-
def _init__(self,y,x):
components.append (self)

self.y =y
self.x = x
def forward(self):

self.value = g(self.y.value, self.x.value)

def backward(self):

self.y.grad += self.grad V, g #vector-matrix product
self.x.grad += self.grad Vg, g #vector-matrix product

The Jacobian Matrix

In the vector-valued case V, g is a Jacobian matrix.

V:z:g:j

dglj]

Tl k] = Ox[k]

The General Case

Inputs vg, ..., vg
vpr1 = Filvo, .., vg)
Vg2 = Folvo, -y vpyq)
Vird = Falvo, -5 Vgga—1)
b= Vktq

In general each v; is tensor-valued.

The computation is a “tensor flow”.

The Tensor-Valued Class G

class G-

def backward (self):

self.y.grad +=self.grad V, g #tensor contraction
selt x.grad += self.grad V., g #tensor contraction

The indeces of self.grad are contracted with the value indeces
of g.

