
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Backpropagation

The Educational Framework (EDF)



Feed-Forward Computation Graphs

vk+1 = f1(v0, . . . , vk)

vk+2 = f2(v0, . . . , vk+1)
...

vk+d = fd(v0, . . . , vk+d−1)

` = fd+1(v0, . . . , vk+d)

` is a scalar loss.



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

For now assume all values are scalars.

We can think of each variable as potential input and consider,
for example, ∂`/∂z.

Note that ∂`/∂z depends on the value of z.



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

We will “backpopagate” each assignment in the reverse order.



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

∂`/∂u = 1



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

∂`/∂u = 1

∂`/∂z = (∂`/∂u) (∂h/∂z) (this uses the value of z)



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

∂`/∂u = 1

∂`/∂z = (∂`/∂u) (∂h/∂z)

∂`/∂y = (∂`/∂z) (∂g/∂y) (this uses the value of y and x)



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

∂`/∂u = 1

∂`/∂z = (∂`/∂u) (∂h/∂z)

∂`/∂y = (∂`/∂z) (∂g/∂y)

∂`/∂x = ??? Oops, we need to add up multiple occurrences.



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

We let x.grad be an attribute (as in Python) of object x.

We will accumulate different contributions to ∂`/∂x into x.grad.



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

z.grad = y.grad = x.grad = 0

u.grad = 1

Loop Invariant: For any variable u defined above the red
circuit, we have that u.grad is ∂`/∂u as defined by the red
circuit.



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

z.grad = y.grad = x.grad = 0

u.grad = 1

Loop Invariant: For any variable z defined above the red
circuit, we have that z.grad is ∂`/∂z as defined by the red
circuit.

z.grad += u.grad ∗ ∂h/∂z



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

z.grad = y.grad = x.grad = 0

u.grad = 1

Loop Invariant: For any variable y defined above the red
circuit, we have that y.grad is ∂`/∂y as defined by the red
circuit.

z.grad += u.grad ∗ ∂h/∂z
y.grad += z.grad ∗ ∂g/∂y
x.grad += z.grad ∗ ∂g/∂x



Backpropagation

y = f (x)

z = g(y, x)

u = h(z)

` = u

z.grad = y.grad = x.grad = 0

u.grad = 1

z.grad += u.grad ∗ ∂h/∂z
y.grad += z.grad ∗ ∂g/∂y
x.grad += z.grad ∗ ∂g/∂x
x.grad += y.grad ∗ ∂f/∂x



The EDF Framework
The educational frameword (EDF) is a simple Python-NumPy
implementation of a “framework” for defining computation
graphs and performing backpropagation. In EDF we write

y = F (x)

z = G(y, x)

u = H(z)

` = u

This is Python code where variables are bound to objects.



The EDF Framework
The educational frameword (EDF) is a simple Python-NumPy
implementation of a “framework” for defining computation
graphs and performing backpropagation. In EDF we write

y = F (x)

z = G(y, x)

u = H(z)

` = u

This is Python code where variables are bound to objects.

x is an object in the class Value.

y is an object in the class F .

z is an object in the class G.

u and ` are the same object in the class H .



y = F (x)

class F :
def init (self, x):

components.append(self)
self.x = x

def forward(self):
self.value = f(self.x.value)

def backward(self):
self.x.grad += self.grad*(∂f/∂x) #needs x.value



z = G(y, x)

class G:
def init (self,y,x):

components.append(self)
self.y = y
self.x = x

def forward(self):
self.value = g(self.y.value, self.x.value)

def backward(self):
self.y.grad += self.grad*(∂g/∂y) #needs y.value and x.value
self.x.grad += self.grad*(∂g/∂x) #needs y.value and x.value



The EDF Framework

y = F (x)

z = G(y, x)

u = H(z)

This computation graph has one input and three components.

This is equivalent to

u = H(G(F (x), x))



Backpropagation

def Forward():

for c in components: c.forward()

def Backward(loss):

for c in components: c.grad = 0

for c in params: c.grad = 0

for c in inputs: c.grad = 0

loss.grad = 1

for c in components[::-1]: c.backward()

def SGD(eta):

for p in params:

p.value -= eta*p.grad



The Vector Case

y = F (x)

z = G(y, x)

u = H(z)

` = u

x, y and z can be vector-valued.

The loss u is still a scalar.



The Vector-Valued Class G

class G:
def init (self,y,x):

components.append(self)
self.y = y
self.x = x

def forward(self):
self.value = g(self.y.value, self.x.value)

def backward(self):
self.y.grad += self.grad ∇y g #vector-matrix product
self.x.grad += self.grad ∇x g #vector-matrix product



The Jacobian Matrix

In the vector-valued case ∇x g is a Jacobian matrix.

∇x g = J

J [j, k] =
∂g[j]

∂x[k]



The General Case

Inputs v0, . . . , vk

vk+1 = F1(v0, . . . , vk)

vk+2 = F2(v0, . . . , vk+1)
...

vk+d = Fd(v0, . . . , vk+d−1)

` = vk+d

In general each vi is tensor-valued.

The computation is a “tensor flow”.



The Tensor-Valued Class G

class G:

...

def backward(self):
self.y.grad += self.grad ∇y g #tensor contraction
self.x.grad += self.grad ∇x g #tensor contraction

The indeces of self.grad are contracted with the value indeces
of g.


