
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

AlphaGo



AlphaGo



AlphaGo Policy and Value Networks

[Silver et al.]
The layers use 5× 5 filters with Relu on 256 channels



AlphaGo Training

Imitation Learning Policy Gradient and Regression



Board Features



Imitation Policy Learning

We trained a 13-layer policy network, which we call the SL
policy network, from 30 million positions from the KGS Go
Server.

The network predicted expert moves on a held out test set
with an accuracy of 57.0% using all input features, and 55.7%
using only raw board position and move history.

State-of-the-art from other research groups was 44.4% at the
date of submission.

Small improvements in move prediction lead to large improve-
ments in probability of win.



Fast Rollout Policy

Softmax of linear combination of pattern features.

An accuracy of 24.2%, using just 2µs to select an action, rather
than 3ms for the policy network.



Policy Gradient Training

Imitation Learning Policy Gradient and Regression



Policy Gradient for Go

AlphaGo does policy gradient on “self play”.

Actually, the program plays games against fixed (not updated)
earlier versions of itself.

The paper states that this diversity of opponents prevents over-
fitting

Machine learning for board games by self play dates back to
the Samuel’s checkers program in 1959.

Samuel’s observed cycles in the feature weights.

Playing against a mixture of earlier versions may prevent cy-
cles.



Policy Gradient for Go

∇Θ R(Θ) = ∇Θ E [z | Θ]

{
z = 1 for a win
z = −1 for a loss

Let ai be the program’s move and bi be the opponents re-
sponse.

An episode is a series of moves a1, b1, a2, b2, . . . , aN , bN .

Θπ += z ∇Θπ ln π(at|st; Θπ)



When played head-to-head, the policy gradient trained RL pol-
icy network won more than 80% of games against the immita-
tion trained SL policy network.

Using no search at all, the RL policy network won 85% of
games against the previous leading go program.



Value Network Regression

Imitation Learning Policy Gradient and Regression



Regression Training of Value Function

Using self-play of the final RL policy we generate a database
of 30 million pairs (s, z) where s is a board position and z ∈
{−1, 1} is an outcome and each pair is from a different game.

We then train a value network by regression.

Θ∗ = argmin
Θ

E(s,z)

[
(V (s,Θ)− z)2

]

Θ -= η(V (s,Θ)− z)∇Θ V (s,Θ)



Monte Carlo Tree Search (MCTS)

In actual play a move selected by tree search.

Each board state data structure s has a list of edge data struc-
ture (s, a) for each legal action from s.

The edge data structure (s, a) may or may not point to a new
state data structure. (We have “dangling” edges.)



Monte Carlo Tree Search (MCTS)

Each state s in the tree has a value

s.V = (1− λ)V (s) + λz

where V (s) is the value network value and z is value of a rollout
from s using the fast rollout policy.

Each edge (s, a) has the following properties

• (s, a).P is the imitation-trained policy value for a at s.

• (s, a).N is count of the number of traversals of (s, a).

• (s, a).V is the sum over traversals of (s, a) of sL.V where
sL is the leave state reached in that traversal.



Traversing the Tree

We traverse the tree by starting at the root and, recursively,
from state s traversing the edge (s, a∗) where

a∗ = argmax
a

(s, a).V

(s, a).N
+ γ

(s, a).P

1 + (s, a).N

The paper does not explain the case (s, a).N = (s, a).V = 0.

If the selected edge (s, a) is “dangling” (there is no next state
attached) then a new state (and all of its dangling edges) may
be created.

Once the search is deemed complete, the most traversed edge
from the root is selected as the move.



END


