TTIC 31230, Fundamentals of Deep Learning
David McAllester, April 2017

AlphaGo

AlphaGo

Ar last — a computer I.ifllerTl'E t}ut
can beat a champion Go player ¢

ALLSYS TEMS GO

AlphaGo Policy and Value Networks

Policy network Value network
Py, (@ |s) vy (8)
L
b |

&> &

[Silver et al.]
The layers use 5 X 5 ﬁlters with Relu on 256 channels

AlphaGo Training

Rollout policy SL policy network RL policy network Value network

p_—r pﬂ pﬂ 1’”

M4 R e R
\o! p4

Human expert positions Self-play positions

Imitation Learning Policy Gradient and Regression

Board Features

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color | Whether current player is black

Imitation Policy Learning

We trained a 13-layer policy network, which we call the SL
policy network, from 30 million positions from the KGS Go
Server.

The network predicted expert moves on a held out test set
with an accuracy of 57.0% using all input features, and 55.7%
using only raw board position and move history.

State-of-the-art from other research groups was 44.4% at the
date of submission.

Small improvements in move prediction lead to large improve-
ments in probability of win.

Fast Rollout Policy

Softmax of linear combination of pattern features.

Feature # of patterns Description

Response 1 Whether move matches one or more response pattern features
Save atari 1 Move saves stone(s) from capture

Neighbour 8 Move is 8-connected to previous move

Nakade 8192 Move matches a nakade pattern at captured stone

Response pattern 32207 Move matches 12-point diamond pattern near previous move
Non-response pattern 69338 Move matches 3 x 3 pattern around move

Self-atari 1 Move allows stones to be captured

Last move distance 34 Manhattan distance to previous two moves

Non-response pattern 32207 Move matches 12-point diamond pattern centred around move

An accuracy of 24.2%. using just 2us to select an action, rather
than 3ms for the policy network.

Policy Gradient Training

Rollout policy SL policy network RL policy network Value network

p_—r pﬂ p,f—' 1’”

M4 R e R
W

Human expert positions Self-play positions

Imitation Learning Policy Gradient and Regression

Policy Gradient for Go
AlphaGo does policy gradient on “self play”.

Actually, the program plays games against fixed (not updated)
earlier versions of itself.

The paper states that this diversity of opponents prevents over-
fitting

Machine learning for board games by self play dates back to
the Samuel’s checkers program in 1959.

Samuel’s observed cycles in the feature weights.

Playing against a mixture of earlier versions may prevent cy-
cles.

Policy Gradient for Go

z =1 for awin
z = —1 for a loss

Vo R(O) = Ve E[z | 6 {

Let a; be the program’s move and b; be the opponents re-
sponse.

An episode is a series of moves a1, b1,a9,b9,...,an,bpN.

Or += 2 Vg_ Inm(at|st; Or)

When played head-to-head, the policy gradient trained RL pol-
icy network won more than 80% of games against the immita-
tion trained SL policy network.

Using no search at all, the RL policy network won 85% of
games against the previous leading go program.

Value Network Regression

Rollout policy SL policy network RL policy network Value network

p_—r pﬂ p,f—' 1’”

M4 R e R
YR,

Human expert positions Self-play positions

Imitation Learning Policy Gradient and Regression

Regression Training of Value Function

Using self-play of the final RL policy we generate a database
of 30 million pairs (s, z) where s is a board position and z &€
{—1,1} is an outcome and each pair is from a different game.

We then train a value network by regression.
O* = argmin Ers .y [(V(s,0) = 2)?
@ Y

©-=nV(s,0)—2)Vg V(s,O)

Monte Carlo Tree Search (MCTS)

In actual play a move selected by tree search.

Each board state data structure s has a list of edge data struc-
ture (s, a) for each legal action from s.

The edge data structure (s, a) may or may not point to a new
state data structure. (We have “dangling” edges.)

Monte Carlo Tree Search (MCTS)

Fach state s in the tree has a value
sV =(1-=X\NV(s)+ Az

where V (s) is the value network value and z is value of a rollout
from s using the fast rollout policy.

Each edge (s, a) has the following properties
e (s,a).P is the imitation-trained policy value for a at s.
e (s,a).N is count of the number of traversals of (s, a).

e (s,a).V is the sum over traversals of (s,a) of s;.V where
st 1s the leave state reached in that traversal.

Traversing the Tree

We traverse the tree by starting at the root and, recursively,
from state s traversing the edge (s, a™) where

V P
a® = argmax (5, 0) + (5, 9)

a (s,a).N Ty (s,a).N

The paper does not explain the case (s,a).N = (s,a).V = 0.

[f the selected edge (s, a) is “dangling” (there is no next state
attached) then a new state (and all of its dangling edges) may
be created.

Once the search is deemed complete, the most traversed edge
from the root is selected as the move.

END

