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Variational Autoencoders



In a variational autoencoder a distribution on x is modeled by
en d
Poy(x,2) = Py (2) Py(x]2)

Pou(w) = E,_pi {Pgec(a:]z)}

We would like

1
O, U* = argmin E,.p |log = argmin H (D, Pg )
o,U Py w() 6.7 ’

However, computing Pg () by sampling z from P(%en is very
inefficient as z is rarely compatible with x.



The Variational Lower Bound

[t would be more efficient to sample 2z from Pg y(z|z). We ap-
proximate this marginal by an encoding distribution Pg'“(z|x).

O* O U* = aql;gén\ipn E.wp|—L(z,®, 0,0

|
log < —L(z,?,0,V
Pyl = © )

L(z,2,0,V) = E_ _pene( |y log Pg y(x, 2)| + H(Pg™(-|x))

For Gaussian distributions gradient estimation through sam-
pling is now feasible.



The Variational Lower Bound

L(x,D,0,V) = B~ penc(.ja) log Pow(x, 2)] + H(Pg™(-|z))
= E.opene( ) [log Pow(z)Po w(z|x)| + H(Pg™(-|))
= E.wpoe()e) [log Pow(2)] + E.perc(je) log Pow(2|2)] + H(Pg™(-|2))
= log Po w(7) + E.<perc( ) log Po w(z2]z) — log(Fg™(z]z))]

— log Po.u(x) — KL(PZ™(|z), Pou(z))

S 10g P@jq;(iﬁ)



Consistency Theorem

O* O U* = argmin E,.p[—L(z,D,0, V)]

0,0,V

= argmin E,..p |log
$.0,0

1

Po ()

+ KL(Py"(|z), Po,w(-|2))

— argmin H(D, Po.y) + K L(PY(x), Po.u(-|))

OO0,V

Consistency Theorem: If for all © and W there exist &
such that Pg'“(z|z) = P y(z|7) then

O, U* = argmin H(D, Pg )

O,V



Sampling from Variational Autoencoders

For Gaussian distributions samples from a variational autoen-
coder appear blurry:.
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