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Second Order Optimization Methods



Review of CNNs

Li+1 = Relu (Conv(Ly, ,p, )
L; has shape (H, W, C), f hasshape (F, I, C, C") (for a square
filter). p is padding, s is stride

L) = Pad(L;, p)

Lii1lz,y, ] = Relu Z flu,v,c, c’]Lé[sx +u, sy + v,

u,v,c

L;,1 has shape (H', W' C") where H' = |(H+2p—F)/s]|+1



Second Order SGD
The Gradient as a Dual Vector
Newton Updates and Quasi-Newton Methods
Hessian-Vector Products
Complex-Step Differentiation

Second Order Adaptive Descent (Speculative)



Review of SGD Central Issues

Consider a parameter vector O.

e Gradient Estimation. Estimating the gradient at a

fixed ©.

e Gradient Drift. The gradient changes as © changes.

e Exploration. At large learning rates SGD can behave like
MCMC.



What is a Gradient? Units of the Gradient.

0¢/00; is a change in cost (dollars or yen) per change in 6.
Consider log loss in nats In 1/ P vs. log loss in bits logy 1/ P.

This will have a different numerical value if we use nats than
if we use bits.

Consider
O; -=n(0L/00;)

The update will be a different size if we switch the units on
the loss but leave 1 unchanged.



Abstract Vector Spaces and Coordinate Systems

For a vector space we can make an arbitrary choice of basis
vectors (unit vectors) uq, ..., uy that are linearly independent
and span the space.

For any such basis, and for any vector x, there exist unique
scalars aq, ..., ay such that

r = QU]+ -+ Qpup

The values (aq, ..., ap) are the numerical coordinates of x
under that choice of basis (coordinate system).

The choice of basis (coordinates) is fundamentally arbitrary.



What is a Gradient?
The gradient Vg £(0) is the change in ¢ per change in ©.

More formally, Vg ¢(0) is a linear map from AO to Al.

(O + AB) ~ ((O) + [V £(0)] (AB)

Ve ((0)](AO) = lim QO F€A0) = UO)

e—0 €

No coordinates required.



Coordinates and Gradients

The dual of a vector space over the reals is the set of linear
functions form the vector space to the reals.

The gradient Vg/ is a dual vector.

Observation: Consider a gradient vector (dual vec-
tor) Vg £(0) and consider any direction A© such that
Ve l(O)] (AB) > 0.

There exists a coordinate system (a basis) in which Vg £(©)
has the same coordinates as A©.

For an abstract vector space there is no natural
or canonical update direction corresponding to a
gradient.



Newton’s Method: The Hessian

We can make a second order approximation to the loss function

1
0O+ AB) = ((O) + (Vo £(O)AB + §A@THA@

where H is the second derivative of £, the Hessian, equal to

VeV ((O).

Again, no coordinates are needed — we can define the operator
Vg generally indpendent of coordinates.

A6 H AO, = (v@ ((v@ @) - A@l)) NS



Newton’s Method
We consider the first order expansion of the gradient.

Ve lO) Q0+ AB)~ (Vg {(O) Q)+ HAO
We approximate ©F by setting this gradient approximation to
Z€T10.

0 = Ve ((0) + HAB

AO = —H ' Vg ((0)

This gives Newton’s method (without coordinates)

©-=H Vg ((O)



Newton Updates

It seems safer to take smaller steps. So it is common to use

O -=n H Vg ((0)
for n € (0,1) where 7 is naturally dimensionless.

Most second order methods attempt to approximate making
updates in the Newton direction.



Quasi-Newton Methods
[t is often faster and more effective to approximate the Hessian.
Maintain an approximation M ~ H -1

Repeat:
e O -=nMVg £(O) (n is often optimized in this step).
e Restimate M.

The restimation of M typically involves a finite difference

(v@ ((©) a @t“) _ (v@ ((0) a @t)

As a numerical approximation of HAO.



Quasi-Newton Methods

Conjugate Gradient

BFGS

Limited Memory BFGS



Issues with Quasi-Newton Methods
In SGD the gradients are random even when © does not change.

We cannot use

(v@ o) a @t“) _ (v@ /o) a @t)

as an estimate of HAG.



Review of Adam

g = Bg+(1—p)Ve £1(©)

©-=n0g

Here g is a gradient estimate — it is an average over a large
sample of gratients.

It turns out that H'(n ® §) can be computed exactly by a
variant of backpropagation.

H!' =VgVg ¢4(0)



Estimating Gradient Drift

We have

g=H(nog)=E |Hine )]

Here ¢ is the rate of change of the gradient — the gradient
drift.



Second Order Adam (Speculation)

We can estimate the gradient drift ¢ as part of the algorithm.

g = Bg+(1—p)Ve £1(©)

g = B3g+(1—B3)H (o)

It seems likely that knowledge of the current gradient drift ¢
should help in setting n;.

ZaN

Here we need to compute H'(n ® §).



Hessian-Vector Products

There is a general set of optimization methods, Krylov meth-
ods, that involve computations of products the form H A©
for the Hessian H and a vector AO.

It turns out that backpropagation can be modified to compute

HU'AO as follows.

HAO=AO H = Vg ((v@ o)) A@)



Hessian-Vector Products

HAO = Vg ((v@ @) - A@)

This is supported by Theano and Tensor flow which are symbol-
to-symbol frameworks but not other frameworks (including
EDF) which are symbol-to-number.

A symbol-to-symbol framework constructs a computation graph
for the computing the gradient. We can then do backpropa-
gation on the gradient graph to get a second derivative (the
Hessian).



Hessian-Vector Products

For backpropagation to be efficient it is important that the
value of the graph is a scalar (like a loss). But note that for v
fixed we have that
(Vo £'(0))-v
©
is a scalar and hence its gradient with respect to ©, which is
Huv, can be computed efficiently.

But there is much better way of computing H'v.



Complex-Step Differentiation

Consider a function f : R — R defined by a computer pro-
oram.

Assume this program can be run on complex numbers simply
by changing the data type of x.

Technically, we need that f(x) is an analytic function.

James Lyness and Cleve Moler, Numerical Differentiation of
Analytic Functions SIAM J. of Numerical Analysis, 1967.



Complex-Step Differentiation

Consider f(x + 7€) at real input & and consider the first order
Taylor expansion.

flx+ie) = f(x) +i(df /dx)e
Note that f(x) and df /dx must both be real. Therefore

Im(f(x+1€)) = e(df /dx)

df  Tm(f(z +ie))

dx €




Complex-Step Differentiation

df  Im(f(z +ie))
dr €

This is vastly better than

df _ flz+e)— flz)

dx €
The point is that in complex arithmetic the real and imaginary
parts have independent floating point representations.

In 64 bit floating point arithmetic e can be taken to be 27

For e = 279V division by e simply changes the exponent of the
floating point representation leaving the mantissa unchanged.



First Order Polynomial Arithmetic

Numerically, complex-step differentiation is equivalent to first
order polynomial arithmetic.

(a+be)(a +be) = (a+d)+ (ab + a'b)e

Differentiation based on first order polynomial arithmetic is
exact.



Equivalence to Polynomial Arithmetic

(a + ibe)(a' +ibe) = (a + ' — bb'€?) +i(ab’ + a'b)e

e =2V

Here the €2 term is below the precision of a + d/.

Numerically, complex-step arithmetic and first order polyno-
mial arithmetic are the same.



Hessian-Vector Products

We are interested in computing H'v for v = (n ® §).

Im(Vgl(©) Q (O + iev))

€

_ 2—50



Adaptive Descent

© -=n10g




Second Order Adaptive Descent (Speculative)

O -=1n0yg

2
A 2 y
=@ k=) = (E)

9i = (1 — g) gi + (g) (V@ ft(@))i
2

s; = Bs; +(1—p) (V@ gt(@)).

(4

g =PBg+(1-PB)H (oG



Second Order Adaptive Descent (Speculative)

O -=1n0yg

2
A 2 y
=@ k=) =g (E)

9i = (1 — k%) gi + (g) (V@ ft(@))i
2

s; = Bs; +(1—p) (V@ gt(@).

(4

g =PBg +(1—PB)H (1O



Second Order Adaptive Descent (Speculative)

© -=n10g

=/si— (97 k= (‘2;1)2

b= (1-2) o (2) (o 0)
2

= Bsi+(1-B) (Ve £10))

[/

g =53 +<1—52>Ht< ® 9)

B
= Bom; + (1 — 52)2 - k@)




Summary
The Gradient as a Dual Vector
Newton and Quasi-Newton Methods
Hessian-Vector Products
Complex-Step Differentiation

Second Order Adaptive Descent (Speculative)



Postscript on Analytic Functions

f : C — C is analytic if it has a complex-valued derivative

df /dx.

Note that a function from complex numbers maps two num-
bers (the real and imaginary part) to two numbers (a real and
imaginary part).

Note that for f(z) : R? — R? we have that V. f(z)isa 2 x 2
Jacobian matrix with four degrees of freedom.

However, if it is possible to calculate an expression for the
derivative over the complex numbers then the derivative is a
single complex number (with two degrees of freedom).

For example, the derivative of z2 is 2z.



END



