
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Second Order Optimization Methods

Review of CNNs

Li+1 = Relu (Conv(Li, f, p, s))

Li has shape (H,W,C), f has shape (F, F, C,C ′) (for a square
filter). p is padding, s is stride

L′i = Pad(Li, p)

Li+1[x, y, c′] = Relu

∑
u,v,c

f [u, v, c, c′]L′i[sx + u, sy + v, c]


Li+1 has shape (H ′,W ′, C ′) where H ′ = b(H+2p−F)/sc+1

Second Order SGD

The Gradient as a Dual Vector

Newton Updates and Quasi-Newton Methods

Hessian-Vector Products

Complex-Step Differentiation

Second Order Adaptive Descent (Speculative)

Review of SGD Central Issues

Consider a parameter vector Θ.

•Gradient Estimation. Estimating the gradient at a
fixed Θ.

•Gradient Drift. The gradient changes as Θ changes.

•Exploration. At large learning rates SGD can behave like
MCMC.

What is a Gradient? Units of the Gradient.

∂`/∂Θi is a change in cost (dollars or yen) per change in Θi.

Consider log loss in nats ln 1/P vs. log loss in bits log2 1/P .

This will have a different numerical value if we use nats than
if we use bits.

Consider

Θi -= η(∂`/∂Θi)

The update will be a different size if we switch the units on
the loss but leave η unchanged.

Abstract Vector Spaces and Coordinate Systems

For a vector space we can make an arbitrary choice of basis
vectors (unit vectors) u1, . . ., un that are linearly independent
and span the space.

For any such basis, and for any vector x, there exist unique
scalars α1, . . ., αn such that

x = α1u1 + · · · + αnun

The values (α1, . . . , αn) are the numerical coordinates of x
under that choice of basis (coordinate system).

The choice of basis (coordinates) is fundamentally arbitrary.

What is a Gradient?

The gradient ∇Θ `(Θ) is the change in ` per change in Θ.

More formally, ∇Θ `(Θ) is a linear map from ∆Θ to ∆`.

`(Θ + ∆Θ) ≈ `(Θ) + [∇Θ `(Θ)] (∆Θ)

[∇Θ `(Θ)] (∆Θ) ≡ lim
ε→0

`(Θ + ε∆Θ)− `(Θ)

ε

No coordinates required.

Coordinates and Gradients

The dual of a vector space over the reals is the set of linear
functions form the vector space to the reals.

The gradient ∇Θ` is a dual vector.

Observation: Consider a gradient vector (dual vec-
tor) ∇Θ `(Θ) and consider any direction ∆Θ such that
[∇Θ `(Θ)] (∆Θ) > 0.

There exists a coordinate system (a basis) in which∇Θ `(Θ)
has the same coordinates as ∆Θ.

For an abstract vector space there is no natural
or canonical update direction corresponding to a
gradient.

Newton’s Method: The Hessian

We can make a second order approximation to the loss function

`(Θ + ∆Θ) ≈ `(Θ) + (∇Θ `(Θ))∆Θ +
1

2
∆Θ>H∆Θ

where H is the second derivative of `, the Hessian, equal to
∇Θ∇Θ `(Θ).

Again, no coordinates are needed — we can define the operator
∇Θ generally indpendent of coordinates.

∆Θ>1 H ∆Θ2 =
(
∇Θ

(
(∇Θ `t(Θ)) ·∆Θ1

))
·∆Θ2

Newton’s Method
We consider the first order expansion of the gradient.

∇Θ `(Θ) @ (Θ + ∆Θ) ≈ (∇Θ `(Θ) @ Θ) + H∆Θ

We approximate Θ∗ by setting this gradient approximation to
zero.

0 = ∇Θ `(Θ) + H∆Θ

∆Θ = −H−1 ∇Θ `(Θ)

This gives Newton’s method (without coordinates)

Θ -= H−1 ∇Θ `(Θ)

Newton Updates

It seems safer to take smaller steps. So it is common to use

Θ -= η H−1 ∇Θ `(Θ)

for η ∈ (0, 1) where η is naturally dimensionless.

Most second order methods attempt to approximate making
updates in the Newton direction.

Quasi-Newton Methods

It is often faster and more effective to approximate the Hessian.

Maintain an approximation M ≈ H−1.

Repeat:

•Θ -= ηM∇Θ `(Θ) (η is often optimized in this step).

•Restimate M .

The restimation of M typically involves a finite difference(
∇Θ `(Θ) @ Θt+1

)
−
(
∇Θ `(Θ) @ Θt

)
As a numerical approximation of H∆Θ.

Quasi-Newton Methods

Conjugate Gradient

BFGS

Limited Memory BFGS

Issues with Quasi-Newton Methods

In SGD the gradients are random even when Θ does not change.

We cannot use

(
∇Θ `t+1(Θ) @ Θt+1

)
−
(
∇Θ `t(Θ) @ Θt

)

as an estimate of H∆Θ.

Review of Adam

ĝ = β1ĝ + (1− β1)∇Θ `t(Θ)

Θ -= η � ĝ

Here ĝ is a gradient estimate — it is an average over a large
sample of gratients.

It turns out that Ht(η � ĝ) can be computed exactly by a
variant of backpropagation.

Ht = ∇Θ∇Θ `t(Θ)

Estimating Gradient Drift

We have

ġ = H(η � ĝ) = Ei

[
Hi(η � ĝ)

]

Here ġ is the rate of change of the gradient — the gradient
drift.

Second Order Adam (Speculation)

We can estimate the gradient drift ġ as part of the algorithm.

ĝ = β1ĝ + (1− β1)∇Θ `t(Θ)

̂̇g = β3
̂̇g + (1− β3)Ht(η � ĝ)

Θ -= η � ĝ

It seems likely that knowledge of the current gradient drift ġ
should help in setting ηi.

Here we need to compute Ht(η � ĝ).

Hessian-Vector Products

There is a general set of optimization methods, Krylov meth-
ods, that involve computations of products the form H ∆Θ
for the Hessian H and a vector ∆Θ.

It turns out that backpropagation can be modified to compute
Ht∆Θ as follows.

H ∆Θ = ∆Θ H = ∇Θ

(
(∇Θ `t(Θ)) ·∆Θ

)

Hessian-Vector Products

H∆Θ = ∇Θ

(
(∇Θ `t(Θ)) ·∆Θ

)
This is supported by Theano and Tensor flow which are symbol-
to-symbol frameworks but not other frameworks (including
EDF) which are symbol-to-number.

A symbol-to-symbol framework constructs a computation graph
for the computing the gradient. We can then do backpropa-
gation on the gradient graph to get a second derivative (the
Hessian).

Hessian-Vector Products

For backpropagation to be efficient it is important that the
value of the graph is a scalar (like a loss). But note that for v
fixed we have that

(∇Θ `t(Θ)) · v
is a scalar and hence its gradient with respect to Θ, which is
Hv, can be computed efficiently.

But there is much better way of computing Htv.

Complex-Step Differentiation

Consider a function f : R → R defined by a computer pro-
gram.

Assume this program can be run on complex numbers simply
by changing the data type of x.

Technically, we need that f (x) is an analytic function.

James Lyness and Cleve Moler, Numerical Differentiation of
Analytic Functions SIAM J. of Numerical Analysis, 1967.

Complex-Step Differentiation

Consider f (x+ iε) at real input x and consider the first order
Taylor expansion.

f (x + iε) = f (x) + i(df/dx)ε

Note that f (x) and df/dx must both be real. Therefore

Im(f (x + iε)) = ε(df/dx)

df

dx
=

Im(f (x + iε))

ε

Complex-Step Differentiation

df

dx
=

Im(f (x + iε))

ε

This is vastly better than

df

dx
≈ f (x + ε)− f (x)

ε

The point is that in complex arithmetic the real and imaginary
parts have independent floating point representations.

In 64 bit floating point arithmetic ε can be taken to be 2−50.

For ε = 2−50, division by ε simply changes the exponent of the
floating point representation leaving the mantissa unchanged.

First Order Polynomial Arithmetic

Numerically, complex-step differentiation is equivalent to first
order polynomial arithmetic.

(a + bε)(a′ + b′ε) = (a + a′) + (ab′ + a′b)ε

Differentiation based on first order polynomial arithmetic is
exact.

Equivalence to Polynomial Arithmetic

(a + ibε)(a′ + ib′ε) = (a + a′ − bb′ε2) + i(ab′ + a′b)ε

ε = 2−50

Here the ε2 term is below the precision of a + a′.

Numerically, complex-step arithmetic and first order polyno-
mial arithmetic are the same.

Hessian-Vector Products

We are interested in computing Htv for v = (η � ĝ).

Htv =
Im(∇Θ`(Θ) @ (Θ + iεv))

ε

ε = 2−50

Adaptive Descent

Θ -= η � ĝ

σi =
√
si − (ĝi)2 ki =

(
2σi
|ĝi|

)2
ηi = 1

2L

(
B
ki

)
ĝi =

(
1− B

ki

)
ĝi +

(
B

ki

)(
∇Θ `t(Θ)

)
i

si = βsi + (1− β)
(
∇Θ `t(Θ)

)2

i

Second Order Adaptive Descent (Speculative)

Θ -= η � ĝ

σi =
√
si − (ĝi)2 ki =

(
2σi
|ĝi|

)2
ηi = 1

2 |̂̇gi|
(
B
ki

)
ĝi =

(
1− B

ki

)
ĝi +

(
B

ki

)(
∇Θ `t(Θ)

)
i

si = βsi + (1− β)
(
∇Θ `t(Θ)

)2

î̇g = β2
̂̇g + (1− β2)Ht(η � ĝ)

Second Order Adaptive Descent (Speculative)

Θ -= η � ĝ

σi =
√
si − (ĝi)2 ki =

(
2σi
|ĝi|

)2
ηi = 1

2 |̂̇gi|
(
B
ki

)
ĝi =

(
1− B

ki

)
ĝi +

(
B

ki

)(
∇Θ `t(Θ)

)
i

si = βsi + (1− β)
(
∇Θ `t(Θ)

)2

î̇g = β2
̂̇g + (1− β2)Ht(η � ĝ)

Second Order Adaptive Descent (Speculative)

Θ -= η � ĝ

σi =
√
si − (ĝi)2 ki =

(
2σi
|ĝi|

)2

ĝi =

(
1− B

ki

)
ĝi +

(
B

ki

)(
∇Θ `t(Θ)

)
i

si = βsi + (1− β)
(
∇Θ `t(Θ)

)2

î̇g = β2
̂̇g + (1− β2)Ht(η � ĝ)

ηi = β2ηi + (1− β2)
1

2 |̂̇gi|
(
B

ki

)

Summary

The Gradient as a Dual Vector

Newton and Quasi-Newton Methods

Hessian-Vector Products

Complex-Step Differentiation

Second Order Adaptive Descent (Speculative)

Postscript on Analytic Functions

f : C → C is analytic if it has a complex-valued derivative
df/dx.

Note that a function from complex numbers maps two num-
bers (the real and imaginary part) to two numbers (a real and
imaginary part).

Note that for f (x) : R2→ R2 we have that ∇x f (x) is a 2×2
Jacobian matrix with four degrees of freedom.

However, if it is possible to calculate an expression for the
derivative over the complex numbers then the derivative is a
single complex number (with two degrees of freedom).

For example, the derivative of x2 is 2x.

END

