TTIC 31230, Fundamentals of Deep Learning
David McAllester, April 2017

SGD Variants

Review

e A Computation Graph is a sequence of assignment state-
ments y = f(x).

e [n the EDF frameword a computation is implemwnted with
assignments y = F'(z) where x and y are objects with
value attributes x.value and vy.value.

e Backprogation on computation graphs produces attributes
x.grad = Of.value/0x.value.

Review

e EDF supports minibatching. For inputs and computed val-
ues r we have that r.value and r.grad now contain an
entire batch where the first index is the batch index.

e For parameters W we have that W .value and W .grad do

not have a batch index but are instead averaged over the
batch.

e Minibatching is required for efficiency.

Central SGD Issues

Consider a parameter vector ©.

e Gradient Estimation. The need to estimate the gradi-
ent at a fixed ©.

e Gradient Drift. The fact that the gradient changes as ©
changes.

e Exxploration. Since deep models are non-convex we need

to search over the parameter space. SGD can behave like
MCMC.

An Example

Consider the following where (1 and y are scalars.

1

En(ﬂ) = §<A - yn>2 Yn € {_17 1}

For random n repeat:

i == n(dly/dp)
= n(ft — Yn)
= Ely]

The updates reflect the true gradient plus stochastic noise.

This defines a stochastic process with an equilibrium density

AN

pla)
As n — 0 the width of this distribution goes to zero.

Gradient Flow

1
Gradient Descent: © -=nVg ((O) {((O) = N Z (n(O)

Here we are considering total gradient descent (ignoring the
gradient estimation problem).

Take the limit n — 0 with the update repeated |T/n]| times.

de
dO = —dt Vg ((©) or e —Vg 4(O)

The limit integrates this differential equation from ¢ = 0 to
t="1T.

Stochastic Gradient Flow

SGD: © -=nVg (O, zy, yp) for random n

Again take the limit — 0 with the update repeated |T/n]
times.

As n — 0 we get an arbitrarily large number of updates with
no gradient drift.

The direction of motion then becomes deterministic and we
oet the same limiting differential equation.

dO
— =V (O

Gradient Flow Guarantees Progress

dl do

prie (Ve €(0)) - p

— —(Veo () - (Vg £(6))

= —|IVe €O)|]

VAN

0

I[f £(©) > 0 then £(©) must converge to a limiting value.

This does not imply that © converges.

Limit Cycles

It is possible that the value converges but the parameters do

not.
In practice if the value converges the parameters will also con-

verge.

Figure from the web page “First Order ODEs” by Mike Martin

A Classical Convergence Theorem

Consider

O -=n:Veo ((O)
For £(©) “sufficiently smooth” with ¢(©) > 0 and

>0 and Ilm m» =0 and = 00,
0y lim 7 zt:m

we have that ¢(©) will converge.
See “Neuro-Dynamic Programming” by Bertsekas and Tsitsiklis proposition 3.5.

Again, there are pathological (unrealistic) cases where © enters
a limit cycle and fails to converge.

Review of Minibatch SGD

O = argmin E; [(;(O)]
©

minibatch SGD:
repeat:

Select a minibatch B at random

‘B‘Z Vo 4;(©

1€B

Each vector operation in the implementation operates on the
entire batch.

Minibatching is required for efliciency.

Popular SGD variants

Momentum

Nesterov Momentum

RMGSProp

Adam

Momentum

gt =g+ 1= Ve (©) pe(0,1)

@t—l—l _ @t . n§t+1

Each Vgt (©) is an average over a minibatch of size B.
g is a running average of Vg/'(0)

For 1 = .9 we intuitively have that g is an average over 1085
oradients.

Here g is averaged over different model parameters ©.

A Comment on Presentation

Momentum is often presented in the following equivalent way:.

o =l + /v (0) we (0,1)

@t—l—l _ @t o ?Jt+1

However, setting n = 0’ /(1 — p) gives v' = (n' /(1 — 1))g* and
the same sequence OF.

The semantics of §! seems clearer than the semantics of v?.

A similar comment applies to Nesterov Momentum below.

Nesterov Momentum

G = pugt + (1 —) Ve £(©)a(e! — nugh

@t—l—l _ @If o n§t+1

This is very similar to standard momentum except that the

oradient is measured at a “lookahead” parameter value differ-
ent from both ©F and O,

RMSProp
Adaptive Feature-specific Learning Rates.

RMS — Root Mean Square

2

S = Bst+ (1-8) (Ve €1(0))

[/

S,tL 1S & mean square.

n
oitl = of — (v@ zt(@>)
i+ + €

o

1

Adam — Adaptive Momentum

G = pgl+ (1- 81) (Ve £10)).

[/

S = Bst o+ (1-) (Vo £10))

[/

n ~t41
@g—l—l _ @If o gt—l—

1
sgﬂ —+ €

Review of Issues

e Gradient Estimation. The need to estimate the gradi-
ent at a fixed ©.

e Gradient Drift. The fact that the gradient changes as ©
changes.

e Exxploration. Since deep models are non-convex we need

to search over the parameter space. SGD can behave like
MCMC.

Comments

From empirical experience, Adam is generally recommended.

Adam seems less sensitive to the n parameter.

However, vanilla SGD remains competative when n is carefully
tuned.

The exploration performed by SGD (similar to MCMC) seems
important.

END

