
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

SGD Variants



Review

•A Computation Graph is a sequence of assignment state-
ments y = f (x).

• In the EDF frameword a computation is implemwnted with
assignments y = F (x) where x and y are objects with
value attributes x.value and y.value.

• Backprogation on computation graphs produces attributes
x.grad = ∂`.value/∂x.value.



Review

• EDF supports minibatching. For inputs and computed val-
ues x we have that x.value and x.grad now contain an
entire batch where the first index is the batch index.

• For parameters W we have that W .value and W .grad do
not have a batch index but are instead averaged over the
batch.

•Minibatching is required for efficiency.



Central SGD Issues

Consider a parameter vector Θ.

•Gradient Estimation. The need to estimate the gradi-
ent at a fixed Θ.

•Gradient Drift. The fact that the gradient changes as Θ
changes.

•Exploration. Since deep models are non-convex we need
to search over the parameter space. SGD can behave like
MCMC.



An Example

Consider the following where µ̂ and y are scalars.

`n(µ̂) =
1

2
(µ̂− yn)2 yn ∈ {−1, 1}

For random n repeat:

µ̂ -= η(d`n/dµ̂)

= η(µ̂− yn)

µ̂∗ = E [y]

The updates reflect the true gradient plus stochastic noise.

This defines a stochastic process with an equilibrium density
p[µ̂].

As η → 0 the width of this distribution goes to zero.



Gradient Flow

Gradient Descent: Θ -= η∇Θ `(Θ) `(Θ) =
1

N

N∑
n=1

`n(Θ)

Here we are considering total gradient descent (ignoring the
gradient estimation problem).

Take the limit η → 0 with the update repeated bT/ηc times.

dΘ = −dt ∇Θ `(Θ) or
dΘ

dt
= −∇Θ `(Θ)

The limit integrates this differential equation from t = 0 to
t = T .



Stochastic Gradient Flow

SGD: Θ -= η∇Θ `(Θ, xn, yn) for random n

Again take the limit η → 0 with the update repeated bT/ηc
times.

As η → 0 we get an arbitrarily large number of updates with
no gradient drift.

The direction of motion then becomes deterministic and we
get the same limiting differential equation.

dΘ

dt
= −∇Θ `(Θ)



Gradient Flow Guarantees Progress

d`

dt
= (∇Θ `(Θ)) · dΘ

dt

= −(∇Θ `(Θ)) · (∇Θ `(Θ))

= −||∇Θ `(Θ)||2

≤ 0

If `(Θ) ≥ 0 then `(Θ) must converge to a limiting value.

This does not imply that Θ converges.



Limit Cycles

It is possible that the value converges but the parameters do
not.

In practice if the value converges the parameters will also con-
verge.

Figure from the web page “First Order ODEs” by Mike Martin



A Classical Convergence Theorem

Consider

Θ -= ηt∇Θ `(Θ)

For `(Θ) “sufficiently smooth” with `(Θ) ≥ 0 and

ηt > 0 and lim
t→0

ηt = 0 and
∑
t

ηt =∞,

we have that `(Θ) will converge.

See “Neuro-Dynamic Programming” by Bertsekas and Tsitsiklis proposition 3.5.

Again, there are pathological (unrealistic) cases where Θ enters
a limit cycle and fails to converge.



Review of Minibatch SGD

Θ∗ = argmin
Θ

Ei [`i(Θ)]

minibatch SGD:

repeat:

Select a minibatch B at random

Θ -= η
1

|B|
∑
i∈B
∇Θ `i(Θ)

Each vector operation in the implementation operates on the
entire batch.

Minibatching is required for efficiency.



Popular SGD variants

Momentum

Nesterov Momentum

RMSProp

Adam



Momentum

ĝt+1 = µĝt + (1− µ)∇Θ `t(Θ) µ ∈ (0, 1)

Θt+1 = Θt − ηĝt+1

Each ∇Θ`
t(Θ) is an average over a minibatch of size B.

ĝ is a running average of ∇Θ`
t(Θ)

For µ = .9 we intuitively have that ĝ is an average over 10B
gradients.

Here ĝ is averaged over different model parameters Θ.



A Comment on Presentation

Momentum is often presented in the following equivalent way.

vt+1 = µvt + η′∇Θ `t(Θ) µ ∈ (0, 1)

Θt+1 = Θt − vt+1

However, setting η = η′/(1−µ) gives vt = (η′/(1−µ))ĝt and
the same sequence Θt.

The semantics of ĝt seems clearer than the semantics of vt.

A similar comment applies to Nesterov Momentum below.



Nesterov Momentum

ĝt+1 = µĝt + (1− µ)∇Θ `t(Θ)@(Θt − ηµgt)

Θt+1 = Θt − ηĝt+1

This is very similar to standard momentum except that the
gradient is measured at a “lookahead” parameter value differ-
ent from both Θt and Θt+1.



RMSProp

Adaptive Feature-specific Learning Rates.

RMS — Root Mean Square

st+1
i = βsti + (1− β)

(
∇Θ `t(Θ)

)2

i

sti is a mean square.

Θt+1
i = Θti −

η√
st+1
i + ε

(
∇Θ `t(Θ)

)
i



Adam — Adaptive Momentum

ĝt+1
i = β1ĝ

t
i + (1− β1)

(
∇Θ `t(Θ)

)
i

st+1
i = β2s

t
i + (1− β2)

(
∇Θ `t(Θ)

)2

i

Θt+1
i = Θti −

η√
st+1
i + ε

ĝt+1
i



Review of Issues

•Gradient Estimation. The need to estimate the gradi-
ent at a fixed Θ.

•Gradient Drift. The fact that the gradient changes as Θ
changes.

•Exploration. Since deep models are non-convex we need
to search over the parameter space. SGD can behave like
MCMC.



Comments

From empirical experience, Adam is generally recommended.

Adam seems less sensitive to the η parameter.

However, vanilla SGD remains competative when η is carefully
tuned.

The exploration performed by SGD (similar to MCMC) seems
important.



END


