
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Deep Reinforcement Learning



Review of Attention

P (· |x, y1, . . . , yi) = softmax Wy [si, e(yi), ci]

si+1 = GRU(si, [e(yi), ci], Θs)

ci+1 =
∑
t

αi,t
↔
h t

αi+1,t = softmax
t

si ·
↔
h t



Attention

[Bahdanau, Cho, Bengio (2014)]



Definition of Reinforcement Learning

RL is defined by the following properties:

•An environment with state.

• State changes are influenced by sequential decisions.

•Reward (or loss) depends on making decisions that lead
to desirable states.



Reinforcement Learning Examples

• Board games (chess or go)

•Atari Games (pong)

•Robot control (driving)

•Dialog



Immitation Learning



Immitation Learning

Construct a dataset of state-action pairs (s, a) from experts.

Define stochastic policy πΘ(s).

Θ∗ = argmin
Θ

E(s,a) [− ln πΘ(a | s)]

This is just log loss for labeled data.



Dangers of Imperfect Immitation Learning

Perfect imitation learning would reproduce expert behavior.
Imitation learning is off-policy — the state distribution in
the training data is different from that defined by the policy
being learned.

Imperfect imitation learning can generate state distributions
very different from that in the training data.

Also, imitating experts can never exceed expert performance
(consider go).



Markov Decision Processes



Markov Decision Processes (MDPs)

For an RL problem we work with an action policy π

st is the state at time t

rt is the reward at time t

at is the action taken at time t.

rt = R(st, at) reward at time t

π(at|st) probability of action at in state st

T (st+1|st, at) state transition probability

The state space, action space, R and T define a Markov
Decision Process or MDP.



Optimizing Reward

In RL we maximize reward rather than minimize loss.

π∗ = argmax
π

R(π)

R(π) = E
[∑T

t=0 rt

]
episodic reward (go)

or E
[∑∞

t=0 γ
trt
]

discounted reward (Atari games)

or limT→∞
1
T

∑T
t=0 rt asymptotic average reward (driving)



The Value Function

For discounted reward:

V π(s) = E

[∑
t

γtrt | π, s0 = s

]
V ∗(s) = max

π
V π(s)

π∗(a|s) = argmax
a

Es′∼T (s′|s,a)

[
V ∗(s′)

]
V ∗(s) = max

a
R(s, a) + γEs′∼T (·|s,a)

[
V ∗(s′)

]



The Q Function

For discounted reward:

Qπ(s, a) = E

[∑
t

γtrt | π, s0 = s, a0 = a

]
Q∗(s, a) = max

π
Qπ(s, a)

π∗(a|s) = argmax
a

Q∗(s, a)

Q∗(s, a) = R(s, t) + γEs′∼T (·|s,a)

[
max
a′

Q∗(s′, a′)
]



Q-Learning



Q-Learning

We will assume a parameterized Q function QΘ(s, a).

Define the Bellman error(
QΘ(s, a)−

(
R(s, a) + γ Es′∼S(·|s,a)

[
max
a′

QΘ(s′, a′)
]))2

Theorem: If this error is zero for all s, a then QΘ = Q∗.

Algorithm: run the policy argmaxa QΘ(st+1, a) and repeat

Θ -= η∇Θ (QΘ(st, at)− (rt + γ max
a

QΘ(st+1, a)))2



Issues with Q-Learning

Problem 1: Nearby states in the same run are highly correlated.

Problem 2: SGD on Bellman error tends to be unstable.

To address these problems we can use a replay buffer.



Using a Replay Buffer

We use a replay buffer of tuples (st, at, rt, st+1).

Repeat:

1. Run the policy argmaxaQΘ(s, a) to add tuples to the replay
buffer. Remove oldest tuples to maintain a maximum buffer
size.

2. Ψ = Θ

3. for N times select a random element of the replay buffer
and do

Θ -= η∇Θ (QΘ(st, at)− (rt + γ argmax
a

QΨ(st+1, a))2



Multi-Step Q-learning

Θ -=
∑
t

∇Θ

QΘ(st, at)−
K∑
δ=0

γδr(t+δ)

2



Deep Q-Learning (DQN)

Human-level control through deep reinforcement learning, Mnih
et al., Nature, 2015. (Deep Mind)

Asynchronous Methods for Deep Reinforcement Learning, Mnih
et al., Arxiv, 2016 (Deep Mind)



Deep Q-Networks

We consider a Deep Q-network — a deep network with
parameters Θ and computing a Q-value QΘ(s, a).



Asynchronous Q-Learning (Simplified)

No replay buffer. Many aynchronous threads each repeating:

Θ̃ = Θ (retrieve global Θ)

using policy argmaxaQΘ̃(s, a) compute

st, at, rt, . . . , st+K, at+K, rt+K

Ri =

t+K−i∑
δ=0

γi+δr(i+δ)

Update global Θ:

Θ -= η
t+K∑
i=t

∇Θ̃ (QΘ̃(si, ai)−Ri)2



Policy Gradient

We assume a parameterized policy πΦ(a|s).

πΦ(a|s) is normalized while QΘ(s, a) is not.

Φ += η∇Φ R(Φ)



Policy Gradient Theorem (Episodic Case)

E [R | Φ] =
∑

s0,a0,s1,a1,...,sT ,aT

P (s0, a0, s1, a1, . . . , sT , aT ) R

∇Φ P (. . .)R = P (S0)∇Φ π(a0)P (s1)π(a1) · · ·P (sT )π(aT ) R

+P (S0)π(a0)P (s1)∇Φ π(a1) · · ·P (sT )π(aT ) R
...

+P (S0)π(a0)P (s1)π(a1) · · ·P (sT )∇Φ π(aT ) R

= P (. . .)

(∑
i

∇Φ πΦ(ai)

πΦ(ai)

)
R

∇Φ E [R | Φ] = E

[
R
∑
t

∇Φ ln πΦ(at|st)

]



Policy Gradient Theorem (Episodic Case)

∇ΦR(Φ) =
∑
s

ρ(s)
∑
a

(∇Φ πΦ(a|s))QπΦ(s, a)

ρ(s) is the expected number of occurances of s

Qπ(s, a) = Eπ [
∑
t rt | s0 = s, a0 = a]

This corresponds to an Actor-Critic Algorithm



Policy Gradient Theorem (Episodic Case)

∇ΦR(Φ) =
∑
s

ρ(s)
∑
a

(∇Φ πΦ(a|s)) (QπΦ(s, a)− V πΦ(s))

V π(s) = Ea∼π(·|s) [Q(s, a)]

This corresponds to an Advantage Actor-Critic Algorithm.



Asynchronous Advantage Actor-Critic (A3C)

Asynchronous Methods for Deep Reinforcement Learning, Mnih
et al., Arxiv, 2016 (Deep Mind)



Asynchronous Advantage Actor-Critic (A3C)

Φ̃ = Φ; Ψ̃ = Ψ (retrieve global Φ and Ψ)

using policy πΦ̃ compute st, at, rt, . . . , st+K, at+K, rt+K

Ri =

t+K−i∑
δ=0

γi+δr(i+δ)

Update global Φ and Ψ

Φ += η

t+K∑
i=t

(
∇Φ̃ ln πΦ̃(ai|si)

) (
Ri − VΨ̃(si)

)
Ψ -= η

t+K∑
i=t

∇Ψ̃ (VΨ̃(si)−Ri)2



END


