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A Case Study in Rate-Distortion Autoencoding



A Case Study in Image Compression

End-to-End Optimized Image Compression, Balle,
Laparra, Simoncelli, ICLR 2017.

[Kevin Frans]



Rate-Distortion Autoencoders

We consider lossy compression. Here we assume:

•An deterministic encoder network zΦ(x).

•A “coding distribution” P code
Θ (z) defining lossless coding

and decoding for z.

•A decoder network x̂Ψ(z)

•A distortion function L(x, x̂)

Φ∗,Ψ∗,Θ∗ = argmin
Φ,Ψ,Θ

Ex∼D

[
log

1

P code
Θ (zΦ(x))

+ λL(x, x̂Ψ(zΦ(x)))

]
A formal comparison with variational autoencoders is given at
the end of these slides.



The Encoder

This paper uses a three layer CNN for the encoder.

The first layer is computed stride 4.

The last two layers are computed stride 2.

They use a normalization layer rather than an activation func-
tion.

vi =
ui(

βi +
∑
j γi,j u

2
j

)1/2

βi and γi,j = γj,i are trained.



The number of numbers

Final image dimension is reduced by a factor of 16 with 192
channels per pixel (192 channels is for color images).

192 < 16× 16× 3 = 768

These 192 numbers are rounded to integers.

The 192 integers are coded losslessly using P code
Θ .



The Decoder

This is a deconvolution network of the same architecture with
independent parameters.

There is a special parameterization of the “inverter” for the
normalization layer.



Rounding the Numbers

We let zΦ(x) be the unrounded numerical representation and
x̂Φ(x) be the result of rounding.

ẑΦ(x)i = round(zΦ(x)i) = bzΦ(x)i + 1/2c

Each integer channel of the final layer is coded independently.

Context-based adaptive binary arithmetic coding framework
(CABAC; Marpe, Schwarz, and Wiegand, 2003).



Training

We now have the optimization problem

Φ∗, Θ∗, Ψ∗

= argmin
Φ,Θ,Ψ

Ex

[(
log2

1

PΘ(ẑΦ(x))

)
+ λ||x− x̂Ψ(ẑΦ(x))||2

]

Issue: The rounding causes the gradients for Φ to be zero.



Modeling Rounding with Noise

At train time (but not test time) the rounding is replaced with
additive noise.

Φ∗, Θ∗, Ψ∗

= argmin
Φ,Θ,Ψ

Ex,ε

[(
log2

1

PΘ(zΦ(x) + ε)

)
+ λ||x− x̂Ψ(zΦ(x) + ε)||2

]

εi drawn uniformly from [−1/2, 1/2]

PΘ defines a piecewise linear density for each coordinate of z.



Noise vs. Rounding



Differential Entropy vs. Discrete Entropy



Varying the Level Of Compression

Φ∗, Θ∗, Ψ∗

= argmin
Φ,Θ,Ψ

Ex,ε

[(
log2

1

PΘ(zΦ(x) + ε)

)
+ λ||x− x̂Ψ(zΦ(x) + ε)||2

]
Different levels of compression correspond to different values
of λ.

In all levels of compression we replace 768 numbers by 192
numbers.

Higher levels of compression result in more compact distribu-
tions on the 192 numbers.



JPEG at 4283 bytes or .121 bits per pixel



JPEG 2000 at 4004 bytes or .113 bits per pixel



Proposed Method at 3986 bytes or .113 bits per pixel



Rate-Distortion vs. Variational Autoencoders

Φ∗, Ψ∗, Θ∗

= argmin
Φ,Ψ,Θ

Ex

[(
log

1

P code
Θ (zΦ(x))

)
+ λL(x, x̂Ψ(zΦ(x)))

]
= argmin

Φ,Ψ,Θ
Ex

[(
log

1

P gen
Θ (zΦ(x))

)
+ log

1

P dec
Ψ (x|zΦ(x))

]
= argmin

Φ,Ψ,Θ
Ex

[(
log

1

P gen
Θ (zΦ(x))P dec

Ψ (x|zΦ(x))

)]
= argmin

Φ,Ψ,Θ
Ex∼D,z∼P enc

Φ (·|x)

[(
log

1

P gen
Θ (z)P dec

Ψ (x|z)

)]
−H(P enc

Φ (·|x))



Rate-Distortion vs. Variational Autoencoders

argmin
Φ,Ψ,Θ

Ex∼D,z∼P enc
Φ (·|x)

[(
log

1

P gen
Θ (z)P dec

Ψ (x|z)

)]
−H(P enc

Φ (·|x))

= argmin
Φ,Ψ,Θ

Ex

[
log

1

PΘ,Ψ(x)
+ KL(P enc

Φ (z|x), PΘ,Ψ(z|x))

]

In the Rate-distortion autoencoder P enc
Φ (z|x) is deterministic

and the KL divergence term cannot be driven to zero for rates
less then H(x).

We should avoid interpreting the distortion term as log(1/P dec
Ψ (x|z)).
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