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A Case Study in Rate-Distortion Autoencoding



A Case Study in Image Compression

End-to-End Optimized Image Compression, Balle,
Laparra, Simoncelli, ICLR 2017.
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Rate-Distortion Autoencoders

We consider lossy compression. Here we assume:

e An deterministic encoder network zg(z).

e A “coding distribution” P(E)Ode(z) defining lossless coding

and decoding for z.

e A decoder network Zy(2)

e A distortion function L(x, 2)
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A formal comparison with variational autoencoders is given at

the end of these slides.




The Encoder
This paper uses a three layer CNN for the encoder.
The first layer is computed stride 4.
The last two layers are computed stride 2.

They use a normalization layer rather than an activation func-
tion.
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The number of numbers

Final image dimension is reduced by a factor of 16 with 192
channels per pixel (192 channels is for color images).

192 < 16 X 16 X 3 =768

These 192 numbers are rounded to integers.

code

The 192 integers are coded losslessly using Pg



The Decoder

This is a deconvolution network of the same architecture with
independent parameters.

There is a special parameterization of the “inverter” for the
normalization layer.



Rounding the Numbers

We let zg(x) be the unrounded numerical representation and
Tg(x) be the result of rounding.
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Zop(x); = round(zg(x);) = [2e(x); +1/2]
Each integer channel of the final layer is coded independently:.

Context-based adaptive binary arithmetic coding framework
(CABAC; Marpe, Schwarz, and Wiegand, 2003).



Training

We now have the optimization problem
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Issue: The rounding causes the gradients for ® to be zero.



Modeling Rounding with Noise

At train time (but not test time) the rounding is replaced with
additive noise.
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e; drawn uniformly from [—1/2, 1/2]

Pg defines a piecewise linear density for each coordinate of z.



error due to uniform noise [MSE]
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Differential Entropy vs. Discrete Entropy
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Varying the Level Of Compression
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Different levels of compression correspond to different values
of A.
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In all levels of compression we replace 768 numbers by 192
numbers.

Higher levels of compression result in more compact distribu-
tions on the 192 numbers.



JPEG at 4283 bytes or .121 bits per pixel
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JPEG, 4283 bytes (0.121 bit/px), PSNR: 24.85 dB/29.23 dB, MS-SSIM: 0.8079



JPEG 2000 at 4004 bytes or .113 bits per pixel

JPEG 2000, 4004 bytes (0.113 bit/px), PSNR: 26.61 dB/33.88 dB, MS-55IM: (1.886(0



Proposed Method at 3986 bytes or .113 bits per pixel

\

Proposed method, EQ-EE; bytes (0.113 bip:r._‘], PSNR: 27.01 dB/34.16 dB, MS-55IM: 0.9039



Rate-Distortion vs. Variational Autoencoders
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Rate-Distortion vs. Variational Autoencoders
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[n the Rate-distortion autoencoder Pgl“(z|z) is deterministic
and the K L divergence term cannot be driven to zero for rates

less then H (x).

We should avoid interpreting the distortion term as log(1/ P\%ec(x 12)).
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