
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Multilayer Perceptrons

Stochastic Gradient Descent

Multiclass Classification

We will start by considering the problem of multiclass classifi-
cation.

We consider the problem of taking an input x (such as an
image of a hand written digit) and classifying it into some
small number of classes (such as the digits 0 through 9).

MNIST

Multiclass Classification

Assume a data distribution D on pairs (x, y) for x ∈ Rd and
y ∈ C.

For MNIST x is a 28 × 28 image which we take to be a 784
dimensional vector giving x ∈ R784.

For MNIST C is the set {0, . . . , 9}.

Assume a sample (x0, y0), . . . , (xN−1, yN−1) drawn from D.

We want to use the sample to construct a rule for predicting
y given x.

Class Scores

Assume a sample (x0, y0), . . . , (xN−1, yN−1) drawn from D

with x ∈ Rd and y ∈ {0, . . . , K}.
For a new x we compute a score s(ŷ) for each possible label ŷ.

s(ŷ) =

d∑
j=1

Wŷ,j xj + bŷ

or in vector notation

s = Wx + b

Here Wŷ,j is the weight on component j of x for predicting
class ŷ and bŷ is a “bias term” for class ŷ.

Softmax

We can convert the scores to probabilities using a Gibbs dis-
tribution

P (ŷ) =
1

Z
es(ŷ)

Z =
∑
ŷ

es(ŷ)

Softmax

In vector notation

P = softmax Wx + b

(softmax s)i =
1

Z
esi

Z =
∑
i

esi

Log Loss

we have

PW,b(·|x) = softmax Wx + b

We can define our “error” or “loss” to be negative log proba-
bility of the true label.

loss(P (y|x)) = − logP (y|x) = log
1

P (y|x)

We want

W ∗, b∗ = argmin
W,b

E(x,y)∼D

[
log

1

PW,b(y|x)

]

Multiclass Logistic Regression

For now we consider

W ∗, b∗ = argmin
W,b

`train(W, b)

`train(W, b) =
1

N

∑
n

log
1

PW,b(yn|xn)

This is multiclass logistic regression.

Multi Layer Perceptrons (MLPs)

σ(u) =
1

1 + e−u

L0 = σ(W 0x + b0)

L1 = softmax(W 1L0 + b1)

In the first equaiton σ is applied to each component of the
vector W 0x + b0. In general we will use the notation f (x)
where f is a scalar function and x is a vector (or tensor) to
denote the vector (or tensor) that results from applying f to
each element of x.

MLPs

L0 = σ(W 0x + b0)

L1 = softmax(W 1L0 + b1)

Here L0 and L1 are vectors. We will call the elements of L0

“channels” (also called units or neurons).

The elements of L1 are the class probabilities.

We now learn W 0, b0, W 1 and b1.

A More General Setting

Consider a system of parameters Θ.

For a two-layer MLP for MNIST we have that Θ is a tuple
(W 0, b0,W 1, b1).

Consider a scalar loss function `(Θ, x, y).

For MNIST we have

`(Θ, x, y) = − logPΘ(y|x) = log
1

PΘ(y|x)

This is a very common loss function.

Optimizing the Loss Function

We consider minimizing the loss on the training data.

Θ∗ = argmin
Θ

1

N

N∑
i=1

`(Θ, xi, yi)

We will do this by gradient descent.

Gradients with Respect to Systems of Parameters

∇Θ `(Θ, x, y) denotes the partial derivative of `(Θ, x, y) with
respect to the parameter system Θ.

For a scalar loss `(Θ, x, y) we have that ∇Θ `(Θ, x, y) has the
same shape (scalar, vector, or tensor) as Θ.

For each real number component of Θ there is a corresponding
component of ∇Θ `(Θ, x, y) giving the partial derivative of
`(Θ, x, y) with respect to that component of Θ.

Here can think of Θ as a single vector with

(∇Θ `(Θ, x, y))i = ∂`(Θ, x, y)/∂Θi

Total Gradient Descent

`n(Θ) = `(Θ, xn, yn)

`(Θ) =
1

N

N−1∑
n=0

`n(Θ)

We want: Θ∗ = argmin
Θ

`(Θ)

repeat:
Θ -= η ∇Θ `(Θ)

Stochastic Gradient Descent (SGD)

repeat: Select n at random.

Θ -= η ∇Θ `n(Θ)

SGD can make progress with only a small subset of the training
data.

Note that

En [∇Θ `n(Θ)] =
∑
n

P (n) ∇Θ`n(Θ)

= ∇Θ `(Θ)

SGD for MLPs

Consider an MLP

Θ = (W 0, b0,W 1, b1)

L0 = σ(W 0xn + b0)

L1 = softmax(W 1L0 + b1)

`(Θ, x, y) = − log(L1
y)

We now need to be able to compute
∂`(Θ,x,y)
∂Θk

for all scalar

parameters Θk. To be continued ...

END

