TTIC 31230, Fundamentals of Deep Learning
David McAllester, April 2017

Multilayer Perceptrons

Stochastic Gradient Descent

Multiclass Classification

We will start by considering the problem of multiclass classifi-
cation.

We consider the problem of taking an input x (such as an
image of a hand written digit) and classifying it into some
small number of classes (such as the digits 0 through 9).

MNIST

Multiclass Classification

Assume a data distribution D on pairs (z,y) for z € R% and
y € C.

For MNIST x is a 28 x 28 image which we take to be a 784
dimensional vector giving 2z € R4

For MNIST C is the set {0,...,9}.
Assume a sample (zg,yg), ---, (xny_1,yny_1) drawn from D.

We want to use the sample to construct a rule for predicting
Yy glven .

Class Scores

Assume a sample (zg,y0), -.., (xy_1,yn—_1) drawn from D
withz € R and y € {0,..., K }.

For a new x we compute a score s(y) for each possible label g.

d
s(9) = 2 Wy wj+;
j=1
or 1n vector notation
s=Wux+b

Here Wy ; 18 the weight on component j of x for predicting
class g and by is a “bias term” for class .

Softmax

We can convert the scores to probabilities using a Gibbs dis-
tribution

In vector notation

Softmax

P = softmax Wz + b

(softmax s); = — e

Z:Zesi

Log Loss

we have

Py p(-|z) = softmax Wx + b

We can define our “error” or “loss” to be negative log proba-
bility of the true label.

loss(P(y|x)) = —log P(y|z) = log P(y[z)

We want

W* b* =argmin E,. _p |log
e P Pyl

Multiclass Logistic Regression

For now we consider

W, 0" = argmin Lipai, (W, D)

W.b
Civain (W, b) : > :
. b)) = — 0
train N e gpwyb(ynlxn)

This i1s multiclass logistic regression.

Multi Layer Perceptrons (MLPs)

o(u) = Il 4+e ¢

0
fffffffffffff

L' = oW + ")
L' = softmax(W!LY 4+ v

In the first equaiton o is applied to each component of the
vector W'z 4+ 0. In general we will use the notation f(x)
where f is a scalar function and z is a vector (or tensor) to
denote the vector (or tensor) that results from applying f to
cach element of z.

MLPs

L' = oW + ")
L' = softmax(W!LY 4+ b

Here LY and L! are vectors. We will call the elements of LY
“channels” (also called units or neurons).

The elements of L1 are the class probabilities.

We now learn WV, oY, W1 and b1,

A More General Setting
Consider a system of parameters ©.

For a two-layer MLP for MNIST we have that © is a tuple
(WO, 0, Wi phy.

Consider a scalar loss function £(0, z,).

For MNIST we have
1

Po(y|z)

((©,z,y) = —log Po(y|z) = log

This is a very common loss function.

Optimizing the Loss Function

We consider minimizing the loss on the training data.

N
1
O* = argénm N ;é(@, Ti, i)

We will do this by gradient descent.

Gradients with Respect to Systems of Parameters

Vo 4O, x,y) denotes the partial derivative of £(O, x, y) with
respect to the parameter system ©.

For a scalar loss £(0, x,y) we have that Vg £(O, x, y) has the
same shape (scalar, vector, or tensor) as ©.

For each real number component of © there is a corresponding
component of Vg (O, x,y) giving the partial derivative of
((©, x,y) with respect to that component of ©.

Here can think of © as a single vector with

(Vo €O, z,y)); = 0((O,z,y)/00;

repeat:

Total Gradient Descent

1 N—-1
(©) = - Y t®)
n=>0
We want: ©* = argmin £(O©)
©

© -= n Ve {(O)

Stochastic Gradient Descent (SGD)

repeat: Select n at random.
O -= n Vg (n(0)

SGD can make progress with only a small subset of the training
data.

Note that

En Ve In(0)] = Z P(n) Vgln(©)

n

— Vg ((O)

SGD for MLPs
Consider an MLP

o=mw" " w b
L' = o(W 2y + ")
L' = softmax(W!'L + bY)

(0, z,y) = —log(L,)
oL(O,x,y)

We now need to be able to compute 70, for all scalar

parameters ©;.. To be continued ...

END

