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Generative Adversarial Networks (GANs)



The Generator and The Discriminator

A GAN consists of two networks: a generator P
gen
Θ (x) and a

discriminator P disc
Ψ (y|x).

Θ∗ = argmax
Θ

min
Ψ

E(x,y)∼(D ] P gen
Θ )

[
log

1

P disc
Ψ (y|x)

]

Here x is drawn from the data distribution D or the generator
distribution P

gen
Θ with equal propability and y = 1 if x is

drawn from D and −1 if x is drawn from P
gen
Θ .

The discriminator tries to determine which source x came from
and the generator tries to fool the discriminator.



Consistency

If the discriminator is perfect, then the only way to fool it is
to exactly copy the data distribution.

Consistency Theorem: If P
gen
Θ (x) and P disc

Ψ (y|x) are both
universally expressive (any distribution can be represented)
then P

gen
Θ∗ = D.
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The Generator



Generated Bedrooms



Interpolated Faces
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Conditional Distribution Modeling

All distribution modeling methods apply to conditional distri-
butions.

For conditional GANs we allow the generator to take x as an
input and generate a conditional value c.

Θ∗ = argmax
Θ

min
Ψ

Ex∼D, (c,y)∼( D(c|x) ] P gen
Θ (c|x) )

[
log

1

P disc
Ψ (y|c, x)

]

Here y = 1 if c is drawn from D(c|x) and y = −1 if c is drawn
from P

gen
Θ (c|x).



The Case of Imperfect Generation

Θ∗ = argmax
Θ

min
Ψ

E(x,y)∼(D ] P gen
Θ )

[
log

1

P disc
Ψ (y|x)

]

Ψ∗(Θ) = argmin
Ψ

E(x,y)∼(D ] P gen
Θ )

[
log2

1

P (y|x)

]

P disc
Ψ∗(Θ)(y = 1|x) =

P (x, y = 1)

P (x)
=

D(x)

D(x) + P
gen
Θ (x)



Θ∗ = argmax
Θ

E(x,y)∼(D ] P gen
Θ )

[
− log2P

disc
Ψ∗(Θ)(y|x)

]

= argmax
Θ

1

2
E(x,1)∼D

[
log2

D(x) + π(x|Θ)

D(x)

]
+

1

2
E(x,−1)∼P gen

Θ

[
log2

D(x) + P
gen
Θ (x)

P
gen
Θ (x)

]

= argmax
Θ

1− 1

2
KL(D,A)− 1

2
KL(P

gen
Θ , A)

A(x) =
1

2
(D(x) + P

gen
Θ (x))



Jensen-Shannon Divergence (JSD)

We have arrived at the Jensen-Shannon divergence.

Θ∗ = argmin
Θ

JSD(D,P
gen
Θ )

JSD(P,Q) =
1

2
KL

(
P,
P + Q

2

)
+

1

2
KL

(
Q,
P + Q

2

)

0 ≤ JSD(P,Q) = JSD(Q,P ) ≤ 1



The Discriminator Tends to Win

If the discriminator “wins” the discriminator log loss goes to
zero (becomes exponentially small) and there is no gradient to
guide the generator.

In this case the learning stops and the generator is blocked
from minimizing JSD(D,P

gen
Θ ).



The Standard Fix

The standard fix is to replace the loss

` = − logP disc
Ψ (y|x)

with

˜̀ = −y logP disc
Ψ (1|x)

These two loss functions agree when y = 1 (the case where x
is drawn from D) but are very different when x is drawn from
the generator (y = −1) and P disc

Ψ (1|x) is exponentially close
to zero.



A Margin Interpretation of the Standard Fix

The standard fix can be interpreted in terms of the “margin”
of binary classification.

For y ∈ {−1, 1} we typically have sΨ(1|x) = −sΨ(−1|x) and
softmax over 1 and -1 gives

PΨ(y|x) =
1

1 + e−m

where the margin m = 2ysΨ(x).

The margin is large when the prediction is confidently corrent.



A Margin Interpretation of the Standard Fix

In the standard fix we (essentially) take the loss to be the
margin of the discriminator.

The generator wants to reduce the discriminator’s margin.

The direction of the update is the same but the step is much
larger under margin-loss for generated inputs and large dis-
criminator margins.



END


