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Deep Graphical Models



Review: Deep Q Networks (DQN)

Q-network QΘ(s, a)

Θ -= η∇Θ (QΘ(st, at)−Rt)2

π(s)← argmax
a

QΘ(s, a)



Review: Asynchronous Advantage Actor-Critic (A3C)

Policy network πΦ(a|s)
State value network VΨ(s)

Φ += η (∇Φ ln πΦ(at|st)) (Rt − VΨ(st))

Ψ -= η∇Ψ (VΨ(st)−Rt)2



Deep Graphical Models



Image Segmentation with Superpixels

[Achanta et al.]
We want to assign each superpixel a semantic label. Maybe
“face”, “hand”, or “hat”. (More typically “person”, “car”,
“road”, “building” or “background”.)



Exponential Softmax

If we have K superpixels and N possible semantic labels we
have NK possible semantic labelings.

We will define a probability distribution over the semantic la-
belings with an exponential softmax.



Segmentation Features

We have K superpixels and N possible semantic labels.

We define KN features Uk,n where Uk,n = 1 if segment k has
label n and 0 otherwise.

If each superpixel has D neightbors we define DK/2 features
Bk,k′ where Bk,k′ = 1 (with k < k′ ) if neighboring segments

k and k′ have different labels, and 0 otherwise.

Let Φ(y) be the feature vector of segmentation y.



Scoring by Weighting Features

We can score a segmentation y by providing a vector of weights
for the features.

sw(y) = w · Φ(y)

We can then define an exponential softmax over the semantic
assignments.

Pw(y) = softmax
y

sw(y)



Weight Networks

We will consider a weight networkWΘ(x) which assigns weights
to the features of y.

sΘ(y|x) = WΘ(x) · Φ(y)

PΘ(y|x) = softmax
y

sΘ(y|x)



Cross Entropy Training

Θ∗ = argmin
Θ

E(x,y)∼D [− lnPΘ(y|x)]

PΘ(y|x) = softmax
y

sΘ(y|x)

Note that the same equations apply whether y is drawn from
a small set or an exponentially large set.



It Suffices to Compute w.grad

w = WΘ(x)

P = softmax s(·|w)

` = − lnP (y)

Θ.grad = w.grad ∇ΘW (x,Θ)



Computing w.grad

`(y|w) = − lnP (y|w)

P (y|w) =
1

Z(w)
ew·Φ(y)

Z(w) =
∑
y

ew·Φ(y)

`(y|w) = lnZ(w)− w · Φ(y)

∇w `(y|w) = ∇w lnZ(w)− Φ(y)



Negative Sampling

−w.grad = Φ(y)−∇w lnZ(w)

= Φ(y)− 1

Z

∑
y′
ew·Φ(y′) Φ(y′)

= Φ(y)−
∑
y′

(
1

Z
ew·Φ(y′)

)
Φ(y′)

= Φ(y)− Ey′∼P (·|w)

[
Φ(y′)

]
We can estimate Ey′∼P (·|w)

[
Φ(y′)

]
by sampling. This is called

negative sampling.

We move toward Φ(y) and away from Φ(y′).



Monte Carlo Markov Chain (MCMC) Sampling

Metropolis Algorithm

Assume that each y has a set of N “neighbors” where the
neighbor relation is symmetric.

Pick an initial y then repeat for the mixing time.

1. pick a neighbor y′ of y uniformly at random.

2. If s(y′|w) > s(y|w) update y = y′

3. If s(y′|w) ≤ s(y|w) then update y = y′ with probability
e−∆s, ∆s = s(y|w)− s(y′|w).



Markov Processes and Stationary Distributions

A Markov process is a process defined by a fixed state transi-
tion probability P (y′|y) = My′,y.

Let P t the probability distribution for time t.

P t+1 = MP t

If every state can be reached form every state (ergodic process)
then P t converges to a unique stationary distribution P∞

P∞ = MP∞



Correctness of Metropolis

To verify that the Metropolis process has the correct stationary
distribution we simply verify that MP = P where P is the
desired distribution.

This can be done by checking that under the desired distribu-
tion the flow from y to y′ equals the flow from y′ to y (detailed
balance).

For s(y) ≥ s(y′)

flow(y′→ y) =
1

Z
es(y

′) 1

N

flow(y → y′) =
1

Z
es(y) 1

N
e−∆s =

1

Z
es(y

′) 1

N

Detailed balance is not required in general.



Negative Sampling with MCMC

Sample y′ ∼ P (·|w) using MCMC.

−w.grad← Φ(y)− Φ(y′)

We move toward Φ(y) and away from Φ(y′).



Gibbs Sampling

The Metropolis algorithm wastes time by rejecting proposed
moves.

Gibbs sampling avoids this move rejection.

Gibbs sampling applies when y is a tuple (y1, . . . , yK).

In semantic segmentation yk is the class of superpixel k.



Gibbs Sampling

Initialize y

Repeat for the mixing time:

1. Select a component k

2. Update yk = y′k where y′k is drawn from

P (y′k |y1, . . . , yk−1, yk+1, . . . , yK)

For the models we are considering P (y′k |y1, . . . , yk−1, yk+1, . . . , yK)
is easily computed (the partition function Z cancels).



Correctness Proof

P (y) is a stationary distribution of Gibbs Sampling:

P t+1(y1, . . . , yK) =
1

K

∑
k

P t(yk |y1, . . . , yk−1, yk+1, . . . , yK)
P t(y1, . . . , yk−1, yk+1, . . . , yK)

=
1

K

∑
k

P t(y1, . . . , yk)

= P t(y1, . . . , yK)



Negative Sampling with Gibbs

Sample y′ ∼ P (·|w) using MCMC.

−w.grad← Φ(y)− Φ(y′)



Pseudolikelihood

In Pseudolikelihood we replace the objective lnP (y|w) with
the objective ln P̃ (y|w) where

P̃ (y|w) =
∏
k

P (y′k |y1, . . . , yk−1, yk+1, . . . , yK, w)

As in Gibbs sampling, we note that these probabilities are
easily computed.

−w.grad← ∇w ln P̃ (y|w)



Pseudolikelihood

Algorithm:

Θ∗ = argmin
Θ

E(x,y)∼D
[
− ln P̃ (y|W (x; Θ))

]
Theorem:

argmin
Q(y|x)

E(x,y)∼D
[
− ln Q̃(y|x)

]
= D(y|x)

This is called consistency.



Proof of Consistency I

We have

min
Q(y|x)

E(x,y)∼D
[
− ln Q̃(y|x)

]
≤ E(x,y)∼D

[
− ln D̃(y|x)

]
If we can show

min
Q(y|x)

E(x,y)∼D
[
− ln Q̃(y|x)

]
≥ E(x,y)∼D

[
− ln D̃(y|x)

]
Then the minimizer (the argmin) is D as desired.



Proof of Consistency II
We will prove the case of K = 2.
Consider unrelated distributionsQ1(y1|y2, x) andQ2(y2|y1, x).

min
Q(y|x)

E(x,y)∼D [− lnQ(y1|y2, x) Q(y2|y1, x)]

≥ min
Q1,Q2

E(x,y)∼D [− lnQ1(y1|y2, x) Q2(y2|y1, x)]

= min
Q1

E(x,y)∼D [− lnQ1(y1|y2, x)] + min
Q2

E(x,y)∼D [− lnQ2(y2|y1, x)]

= E(x,y)∼D [− lnD(y1|y2, x)] + E(x,y)∼D [− lnD(y2|y1, x)]

= E(x,y)∼D
[
− ln D̃(y|x)

]



Contrastive Divergence

Algorithm (CDk): Run k steps of MCMC for PΘ(y|x)
starting from y to get y′.

−w.grad← Φ(y)− Φ(y′)

Theorem: If PΘ(y|x) = D(y|x) then

E(x,y)∼D
[
Φ(y)− Φ(y′)

]
= 0

Here we can take k = 1 — no mixing time required.



Handling Task Loss



Different Costs for Different Errors

In inexpensive cancer screening we want high recall of can-
cers but can tolerate low precision.

In other words, the cost of a false negative is generally
considered higher than the cost of a false positive.



Intersection over Union

In visual detection problems one is typically evaluated by in-
tersection over union.

IOU =
|true positives ∩ false positives|
|true positives ∪ false positives|

=
P − FN
P + FP

∂IOU

∂FP
=
−(P − FN)

(P + FP )2
=
−IOU

P + FP

∂IOU

∂FN
=

−1

P + FP



Generic Task Loss

We can consider an arbitrary loss function L(y, ŷ) assigning a
loss when the true label is y and the system guesses ŷ.

For example, If y and ŷ are segmentations then ŷ typically has
many errors.

We can then assign a cost Ci,j for labeling a pixel i when the
true label is j.



Label Adjustment

sΘ(y|x) = WΘ(x) · Φ(y)

ŷΘ(x) = argmax
y

sΘ(y|x)

ỹΘ,ε(x, y) = argmax
ỹ

sΘ(y|x)− εL(y, ỹ) (adjusted label)

−w.grad ← Φ(ỹε)− Φ(ŷ)

Theorem: For a continuous and smooth data distribution D

−∇w E(x,y)∼D [L(y, ŷw)] = lim
ε→0

1

ε
E(x,y)∼D

[
Φ(ỹw,ε)− Φ(ŷw)

]



END


