

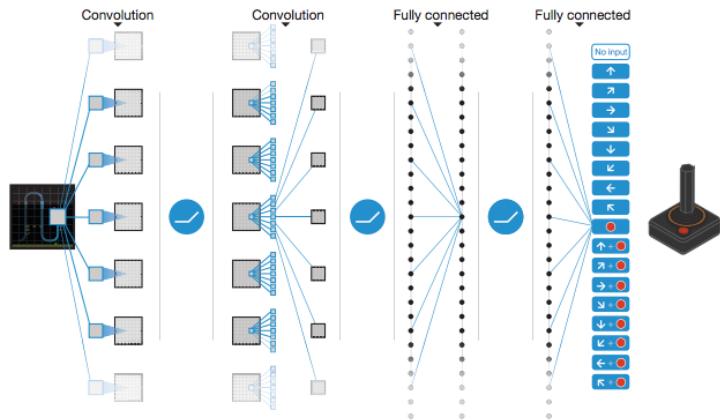
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Deep Graphical Models

Review: Deep Q Networks (DQN)

Q -network $Q_{\Theta}(s, a)$



$$\Theta \leftarrow \eta \nabla_{\Theta} (Q_{\Theta}(s_t, a_t) - R_t)^2$$

$$\pi(s) \leftarrow \operatorname{argmax}_a Q_{\Theta}(s, a)$$

Review: Asynchronous Advantage Actor-Critic (A3C)

Policy network $\pi_\Phi(a|s)$
State value network $V_\Psi(s)$

$$\Phi += \eta (\nabla_\Phi \ln \pi_\Phi(a_t|s_t)) (R_t - V_\Psi(s_t))$$

$$\Psi -= \eta \nabla_\Psi (V_\Psi(s_t) - R_t)^2$$

Deep Graphical Models

Image Segmentation with Superpixels

[Achanta et al.]

We want to assign each superpixel a semantic label. Maybe “face”, “hand”, or “hat”. (More typically “person”, “car”, “road”, “building” or “background”.)

Exponential Softmax

If we have K superpixels and N possible semantic labels we have N^K possible semantic labelings.

We will define a probability distribution over the semantic labelings with an **exponential softmax**.

Segmentation Features

We have K superpixels and N possible semantic labels.

We define KN features $U_{k,n}$ where $U_{k,n} = 1$ if segment k has label n and 0 otherwise.

If each superpixel has D neighbors we define $DK/2$ features $B_{k,k'}$ where $B_{k,k'} = 1$ (with $k < k'$) if neighboring segments k and k' have different labels, and 0 otherwise.

Let $\Phi(y)$ be the feature vector of segmentation y .

Scoring by Weighting Features

We can score a segmentation y by providing a vector of weights for the features.

$$s_w(y) = w \cdot \Phi(y)$$

We can then define an exponential softmax over the semantic assignments.

$$P_w(y) = \underset{y}{\text{softmax}} s_w(y)$$

Weight Networks

We will consider a weight network $W_\Theta(x)$ which assigns weights to the features of y .

$$s_\Theta(y|x) = W_\Theta(x) \cdot \Phi(y)$$

$$P_\Theta(y|x) = \underset{y}{\text{softmax}} \ s_\Theta(y|x)$$

Cross Entropy Training

$$\Theta^* = \operatorname*{argmin}_{\Theta} \mathbb{E}_{(x,y) \sim D} [-\ln P_{\Theta}(y|x)]$$

$$P_{\Theta}(y|x) = \operatorname{softmax}_y s_{\Theta}(y|x)$$

Note that the same equations apply whether y is drawn from a small set or an exponentially large set.

It Suffices to Compute $w.\text{grad}$

$$w = W_\Theta(x)$$

$$P = \text{softmax } s(\cdot | w)$$

$$\ell = -\ln P(y)$$

$$\Theta.\text{grad} = w.\text{grad} \cdot \nabla_\Theta W(x, \Theta)$$

Computing $w.\text{grad}$

$$\ell(y|w) = -\ln P(y|w)$$

$$P(y|w) = \frac{1}{Z(w)} e^{w \cdot \Phi(y)}$$

$$Z(w) = \sum_y e^{w \cdot \Phi(y)}$$

$$\ell(y|w) = \ln Z(w) - w \cdot \Phi(y)$$

$$\nabla_w \ell(y|w) = \nabla_w \ln Z(w) - \Phi(y)$$

Negative Sampling

$$\begin{aligned}-w.\text{grad} &= \Phi(y) - \nabla_w \ln Z(w) \\ &= \Phi(y) - \frac{1}{Z} \sum_{y'} e^{w \cdot \Phi(y')} \Phi(y') \\ &= \Phi(y) - \sum_{y'} \left(\frac{1}{Z} e^{w \cdot \Phi(y')} \right) \Phi(y') \\ &= \Phi(y) - \mathbb{E}_{y' \sim P(\cdot|w)} [\Phi(y')]\end{aligned}$$

We can estimate $\mathbb{E}_{y' \sim P(\cdot|w)} [\Phi(y')]$ by sampling. This is called **negative sampling**.

We move toward $\Phi(y)$ and away from $\Phi(y')$.

Monte Carlo Markov Chain (MCMC) Sampling

Metropolis Algorithm

Assume that each y has a set of N “neighbors” where the neighbor relation is symmetric.

Pick an initial y then repeat for the **mixing time**.

1. pick a neighbor y' of y uniformly at random.
2. If $s(y'|w) > s(y|w)$ update $y = y'$
3. If $s(y'|w) \leq s(y|w)$ then update $y = y'$ with probability $e^{-\Delta s}$, $\Delta s = s(y|w) - s(y'|w)$.

Markov Processes and Stationary Distributions

A Markov process is a process defined by a fixed state transition probability $P(y'|y) = M_{y',y}$.

Let P^t the probability distribution for time t .

$$P^{t+1} = MP^t$$

If every state can be reached from every state (ergodic process) then P^t converges to a unique **stationary distribution** P^∞

$$P^\infty = MP^\infty$$

Correctness of Metropolis

To verify that the Metropolis process has the correct stationary distribution we simply verify that $MP = P$ where P is the desired distribution.

This can be done by checking that under the desired distribution the flow from y to y' equals the flow from y' to y (**detailed balance**).

For $s(y) \geq s(y')$

$$\text{flow}(y' \rightarrow y) = \frac{1}{Z} e^{s(y')} \frac{1}{N}$$

$$\text{flow}(y \rightarrow y') = \frac{1}{Z} e^{s(y)} \frac{1}{N} e^{-\Delta s} = \frac{1}{Z} e^{s(y')} \frac{1}{N}$$

Detailed balance is not required in general.

Negative Sampling with MCMC

Sample $y' \sim P(\cdot|w)$ using MCMC.

$$-w.\text{grad} \leftarrow \Phi(y) - \Phi(y')$$

We move toward $\Phi(y)$ and away from $\Phi(y')$.

Gibbs Sampling

The Metropolis algorithm wastes time by rejecting proposed moves.

Gibbs sampling avoids this move rejection.

Gibbs sampling applies when y is a tuple (y_1, \dots, y_K) .

In semantic segmentation y_k is the class of superpixel k .

Gibbs Sampling

Initialize y

Repeat for the **mixing time**:

1. Select a component k

2. Update $y_k = y'_k$ where y'_k is drawn from

$$P(y'_k | y_1, \dots, y_{k-1}, y_{k+1}, \dots, y_K)$$

For the models we are considering $P(y'_k | y_1, \dots, y_{k-1}, y_{k+1}, \dots, y_K)$ is easily computed (the partition function Z cancels).

Correctness Proof

$P(y)$ is a stationary distribution of Gibbs Sampling:

$$\begin{aligned} P^{t+1}(y_1, \dots, y_K) &= \frac{1}{K} \sum_k \frac{P^t(y_k | y_1, \dots, y_{k-1}, y_{k+1}, \dots, y_K)}{P^t(y_1, \dots, y_{k-1}, y_{k+1}, \dots, y_K)} \\ &= \frac{1}{K} \sum_k P^t(y_1, \dots, y_k) \\ &= P^t(y_1, \dots, y_K) \end{aligned}$$

Negative Sampling with Gibbs

Sample $y' \sim P(\cdot|w)$ using MCMC.

$$-w.\text{grad} \leftarrow \Phi(y) - \Phi(y')$$

Pseudolikelihood

In Pseudolikelihood we replace the objective $\ln P(y|w)$ with the objective $\ln \tilde{P}(y|w)$ where

$$\tilde{P}(y|w) = \prod_k P(y'_k | y_1, \dots, y_{k-1}, y_{k+1}, \dots, y_K, w)$$

As in Gibbs sampling, we note that these probabilities are easily computed.

$$-w.\text{grad} \leftarrow \nabla_w \ln \tilde{P}(y|w)$$

Pseudolikelihood

Algorithm:

$$\Theta^* = \operatorname{argmin}_{\Theta} \mathbb{E}_{(x,y) \sim D} [-\ln \tilde{P}(y|W(x; \Theta))]$$

Theorem:

$$\operatorname{argmin}_{Q(y|x)} \mathbb{E}_{(x,y) \sim D} [-\ln \tilde{Q}(y|x)] = D(y|x)$$

This is called **consistency**.

Proof of Consistency I

We have

$$\min_{Q(y|x)} \mathbb{E}_{(x,y) \sim D} [-\ln \tilde{Q}(y|x)] \leq \mathbb{E}_{(x,y) \sim D} [-\ln \tilde{D}(y|x)]$$

If we can show

$$\min_{Q(y|x)} \mathbb{E}_{(x,y) \sim D} [-\ln \tilde{Q}(y|x)] \geq \mathbb{E}_{(x,y) \sim D} [-\ln \tilde{D}(y|x)]$$

Then the minimizer (the argmin) is D as desired.

Proof of Consistency II

We will prove the case of $K = 2$.

Consider **unrelated** distributions $Q_1(y_1|y_2, x)$ and $Q_2(y_2|y_1, x)$.

$$\begin{aligned} & \min_{Q(y|x)} \mathbb{E}_{(x,y) \sim D} [-\ln Q(y_1|y_2, x) Q(y_2|y_1, x)] \\ & \geq \min_{Q_1, Q_2} \mathbb{E}_{(x,y) \sim D} [-\ln Q_1(y_1|y_2, x) Q_2(y_2|y_1, x)] \\ & = \min_{Q_1} \mathbb{E}_{(x,y) \sim D} [-\ln Q_1(y_1|y_2, x)] + \min_{Q_2} \mathbb{E}_{(x,y) \sim D} [-\ln Q_2(y_2|y_1, x)] \\ & = \mathbb{E}_{(x,y) \sim D} [-\ln D(y_1|y_2, x)] + \mathbb{E}_{(x,y) \sim D} [-\ln D(y_2|y_1, x)] \\ & = \mathbb{E}_{(x,y) \sim D} [-\ln \tilde{D}(y|x)] \end{aligned}$$

Contrastive Divergence

Algorithm (CDk): Run k steps of MCMC for $P_\Theta(y|x)$ starting from y to get y' .

$$-w.\text{grad} \leftarrow \Phi(y) - \Phi(y')$$

Theorem: If $P_\Theta(y|x) = D(y|x)$ then

$$\mathbb{E}_{(x,y) \sim D} [\Phi(y) - \Phi(y')] = 0$$

Here we can take $k = 1$ — no mixing time required.

Handling Task Loss

Different Costs for Different Errors

In inexpensive cancer screening we want **high recall** of cancers but can tolerate **low precision**.

In other words, the cost of a **false negative** is generally considered higher than the cost of a **false positive**.

Intersection over Union

In visual detection problems one is typically evaluated by **intersection over union**.

$$\text{IOU} = \frac{|\text{true positives} \cap \text{false positives}|}{|\text{true positives} \cup \text{false positives}|} = \frac{P - FN}{P + FP}$$

$$\frac{\partial IOU}{\partial FP} = \frac{-(P - FN)}{(P + FP)^2} = \frac{-\text{IOU}}{P + FP}$$

$$\frac{\partial IOU}{\partial FN} = \frac{-1}{P + FP}$$

Generic Task Loss

We can consider an arbitrary loss function $L(y, \hat{y})$ assigning a loss when the true label is y and the system guesses \hat{y} .

For example, If y and \hat{y} are segmentations then \hat{y} typically has many errors.

We can then assign a cost $C_{i,j}$ for labeling a pixel i when the true label is j .

Label Adjustment

$$s_{\Theta}(y|x) = W_{\Theta}(x) \cdot \Phi(y)$$

$$\hat{y}_{\Theta}(x) = \operatorname{argmax}_y s_{\Theta}(y|x)$$

$$\tilde{y}_{\Theta,\epsilon}(x, y) = \operatorname{argmax}_{\tilde{y}} s_{\Theta}(y|x) - \epsilon L(y, \tilde{y}) \quad (\text{adjusted label})$$

$$-w.\text{grad} \leftarrow \Phi(\tilde{y}_{\epsilon}) - \Phi(\hat{y})$$

Theorem: For a continuous and smooth data distribution D

$$-\nabla_w \operatorname{E}_{(x,y) \sim D} [L(y, \hat{y}_w)] = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \operatorname{E}_{(x,y) \sim D} [\Phi(\tilde{y}_{w,\epsilon}) - \Phi(\hat{y}_w)]$$

END