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Deep Graphical Models



Review: Deep () Networks (DQN)

Q-network Qg (s, a)

Convolution Convoluton  Fulyconnected  Fully connected
- - - -

ceseressssresessenens
CCEEEEREE A
LLEEEELE UG ARRE:

0 -=1Ve (Qolss,ar) — Ry)’

m(s) < argznax Qo(s,a)



Review: Asynchronous Advantage Actor-Critic (A3C)
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Deep Graphical Models



Image Segmentation with Superpixels

|Achanta et al.|
We want to assign each superpixel a semantic label. Maybe

“face”, “hand”, or “hat”. (More typically “person”, “car”,
“road”, “building” or “background”.)



Exponential Softmax

If we have K superpixels and N possible semantic labels we
have N4 possible semantic labelings.

We will define a probability distribution over the semantic la-
belings with an exponential softmax.



Segmentation Features
We have K superpixels and N possible semantic labels.

We define K'N teatures Uy, ,, where Uy, , = 1 if segment k has
label n and 0 otherwise.

[f each superpixel has D neightbors we define DK /2 features
By, j» where By jy =1 (with k& < k") if neighboring segments
k and k' have different labels, and 0 otherwise.

Let ®(y) be the feature vector of segmentation y.



Scoring by Weighting Features

We can score a segmentation y by providing a vector of weights
for the features.

sw(y) =w - P(y)

We can then define an exponential softmax over the semantic
assignments.

Py(y) = Softénax Sw(y)



Weight Networks

We will consider a weight network Wig(z) which assigns weights
to the features of y.

solylr) = Wo(z) - D(y)

Po(y|x) = softmax sg(y|z)
Y



Cross Entropy Training

O* = argénin Bz y)~p |~ In Po(yl|z)]

Po(y|x) = softmax sg(y|r)
Y

Note that the same equations apply whether y is drawn from
a small set or an exponentially large set.



It Suffices to Compute w.grad

w = Wg(x)

P

softmax s(-|w)

¢ = —1In P(y)

O.grad = w.grad VoW (x,O)



Computing w.grad

l(ylw) = —1In P(y|w)

Plylw) = e

Z(w)
Z(w) = Z e )
Yy

(yhw) = In Z(w) —w - D(y)

Vuw l(ylw) = VyIn Z(w) — O(y)



Negative Sampling
—w.grad = ®(y) — Vy In Z(w)

1 /
= oy) — -y e ()
y/

= a() - Y (5o 0) oty

— CI)(y) — Ey/NP(-\w) [(D(y/)}

We can estimate E 1. p(. | |D(y')| by sampling. This is called
negative sampling.

We move toward ®(y) and away from ®(y/).



Monte Carlo Markov Chain (MCMC) Sampling
Metropolis Algorithm

Assume that each y has a set of NV “neighbors” where the
neighbor relation is symmetric.

Pick an initial y then repeat for the mixing time.

1. pick a neighbor 4/ of y uniformly at random.
2.1f s(y/|w) > s(y|lw) update y = o/

3.If s(y|w) < s(y|w) then update y = 3" with probability
e 25, As = s(y|lw) — s(y/|w).



Markov Processes and Stationary Distributions

A Markov process is a process defined by a fixed state transi-
tion probability P(y'|y) = My,

Let P! the probability distribution for time ¢.

[f every state can be reached form every state (ergodic process)
then P! converges to a unique stationary distribution P>

P> = M P



Correctness of Metropolis

To verity that the Metropolis process has the correct stationary
distribution we simply verity that M P = P where P is the
desired distribution.

This can be done by checking that under the desired distribu-
tion the flow from y to 3’ equals the flow from 3/’ to y (detailed
balance).

For s(y) > s(y/)

1 1
flow(y — y) = EGS@,)N

1 1 1 1
fowly = yf) = e Ve = 25

Detailed balance is not required in general.



Negative Sampling with MCMC

Sample ' ~ P(-|w) using MCMC.

—w.grad < ®(y) — ()

We move toward ®(y) and away from @(y/).



Gibbs Sampling

The Metropolis algorithm wastes time by rejecting proposed
moves.

Gibbs sampling avoids this move rejection.

Gibbs sampling applies when y is a tuple (y1,...,yx)-

In semantic segmentation ;. is the class of superpixel £.



Gibbs Sampling
Initialize y
Repeat for the mixing time:

1. Select a component k

2. Update y;. = y]/{ where y]’C is drawn from
Py [y1 - k=1, Ykt 15 -+ YK

For the models we are considering P(y]; Y1 Y1y Yt 1y - - - YK
is easily computed (the partition function Z cancels).



Correctness Proof

P(y) is a stationary distribution of Gibbs Sampling:

P yp [Y1, -+ Yr—1s Ybt 1 -+ 5 UK
pt+lo, _ AL TR Tl e TR
(1, YK) Zpt (Yl s Y1y Ykt 1s - > UE)

— _Zpt yl?"‘?:qk

= P'(y1, -, yK)



Negative Sampling with (Gibbs

Sample ' ~ P(-|w) using MCMC.

—w.grad < ®(y) — d(y)



Pseudolikelihood

[n Pseudolikelihood we replace the objective In P(y|w) with
the objective In P(y|w) where

y‘w H Pyk ’ylv'°°7yk—17yk—|—17“°7yK7w)

As in Gibbs sampling, we note that these probabilities are
easily computed.

—w.grad < Vy, In P(y|w)



Pseudolikelihood
Algorithm:

OF — argénin Bz y)~D —In Py|W (x; 0))]

Theorem:

argmin B¢,y p [—InQ(y|z)] = D(y|z)
Q(ylz)

This is called consistency.



Proof of Consistency 1

We have

Q%&) E(gy)y)ND [_ mQ(y‘xﬂ < E(aj,y)ND [_ hl[)(y‘aj‘)}

[t we can show

QIEJI‘I;) E(x7y>wD [_ mQN(y‘xﬂ > E(aj,y)ND [_ 1HD<y‘ZE>}

Then the minimizer (the argmin) is D as desired.



Proof of Consistency 11
We will prove the case of K = 2.
Consider unrelated distributions Q1(y1|y2, ) and Qo(ys|y1, x).

@I@f} ) E(zy)~p [- I Qy1ly2, x) Qy2ly1, )]

> nin By y)np [ Qi ly2, ¥) Qavalyr, )

= %1? E(zy)~p [0 Q1(y1]y2, 2)] + %121’1 E(z.)~D [— I Q2(y2|y1, @)

= B y)~p [ DWily2, 2)] + Egp ) p [0 D(y2|y1, @),

E(:C,y)ND [_ In D(?/‘x)}



Contrastive Divergence

Algorithm (CDk): Run k steps of MCMC for Pg(y|z)
starting from vy to get v/'.

—w.grad < ®(y) — O(y/)
Theorem: If Pg(y|x) = D(y|x) then
E(:U,y)ND [q)@) — CI)(y/)] =0

Here we can take £ = 1 — no mixing time required.



Handling Task Loss



Different Costs for Different Errors

In inexpensive cancer screening we want high recall of can-
cers but can tolerate low precision.

In other words, the cost of a false negative is generally
considered higher than the cost of a false positive.



Intersection over Union

In visual detection problems one is typically evaluated by in-
tersection over union.

10U — true positives N false positives| P — FN

[true positives U false positives| P + FP

0IOU —(P—FN) -IOU
OFP  (P+FP)? P+FP

oo -1
OFN P+ FP




Generic Task Loss

We can consider an arbitrary loss function L(y,y) assigning a
loss when the true label is y and the system guesses 7.

For example, If y and ¢ are segmentations then y typically has
many errors.

We can then assign a cost C; ; tor labeling a pixel ¢ when the
true label is 7.



Label Adjustment

solylr) = We(z) - @(y)

argmax Ssg(y|x)
Y

S

2

=
|

Jo.e(z,y) = argmax sg(y|lr) —eL(y,y) (adjusted label)
y

AN

—w.grad < ®(ge) — O(y)

Theorem: For a continuous and smooth data distribution D

1
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