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Sequence to Sequence Models and Attention



Encode-Decode Architectures for Machine Translation

[Figure from Luong et al.]

In Sutskever et al. (2014) the LSTMs are layered 4 deep.

The input is reversed — “DCBA” is translated to “XYZ”.



Encode-Decode Architecture for Machine Translation

H[0,t] = x[t]

H[l+1][t+1] = GRU(H[l+1][t],H[l][t],Theta[l+1])

y[0] = <eos>

S[l,0] = H[l,T]

S[l+1][t+1] = GRU(S[l+1][t],S[l][t],Psi[l+1])

P(y[t+1]) = Softmax W [e(y[t]),S[0,t],...,s[L,t]]



The Translation Probability Distribution

P(y[t+1]) = Softmax W [e(y[t]),S[0,t],...,S[L,t]]

P (XY Z|DCBA) = P (X|DCBA) P (Y |DCBDA;X) P (Z|DCBA;XY )

For the training pair DCBA⇒ XYX the training loss is

log 1/P (XY Z | DCBA)
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Greedy Decoding vs. Beam Search

We would like

y∗ = argmax
y

P (y|x)

A greedy algorithm may do well

yt+1 = argmax
y

P (y | x, y1, . . . , yt)

However a beam search will typically do somewhat better,

Yt+1 = kbest
y

P (y | x, Y1, . . . , Yt)

Each y ∈ Yt is paired with a state vector (Viterbi Algorithm).



Training Details (Sutskever et a. (2014))

We used deep LSTMs with 4 layers, with 1000 cells at each
layer and 1000 dimensional word embeddings, with an input
vocabulary of 160,000 and an output vocabulary of 80,000.

We used a naive softmax over 80,000 words at each output.

We used batches of 128 sequences for the gradient and divided
it by the size of the batch [128].

We used stochastic gradient descent without momentum, with
a fixed learning rate of 0.7.

After 5 epochs, we begun halving the learning rate every half
epoch. We trained our models for a total of 7.5 epochs.



Training Details

[We clipped gradients] by scaling [the gradient] when its norm
exceeded a threshold. For each training batch, we compute
s = ||g||2 and for s > 5 we set g = 5g/s.

Different sentences have different lengths. ... To address this
problem, we made sure that all sentences within a minibatch
were roughly of the same length. [This gave] a 2x speedup.



Training Details

We parallelized our [C++] model using an 8-GPU machine.

Each layer of the LSTM was executed on a different GPU and
communicated its activations to the next GPU (or layer) as
soon as they were computed.

Our models have 4 layers of LSTMs, each of which resides on
a separate GPU.

The remaining 4 GPUs were used to parallelize the softmax,
so each GPU was responsible for multiplying by a 1000 20,000
matrix. [20,000 is 1/4 of the output vocabulary]

Training took about ten days with this implementation [on a
training set of 348M French words and 304M English words].



Attention-Based Translation



BiGRUs

~ht+1 = GRU(~ht, xt,Θ)

~ht−1 = GRU( ~ht, xt,Θ)

↔
h t =

[
~ht, ~ht

]
([x, y] denotes vector concatenation)



Basic Sequence to Sequence Model

s0 = ~hT
y0 = <eos>

P (· |x, y1, . . . , yi) = softmax Wy [si, e(yi)]

si+1 = GRU(si, e(yi), Θs)



Adding Attention

c0 =
↔
hT

s0 = ~hT
y0 = <eos>

P (· |x, y1, . . . , yi) = softmax Wy [si, e(yi), ci]

si+1 = GRU(si, [e(yi), ci], Θs)

ci+1 =
∑
t

αi,t
↔
h t

αi+1,t = softmax
t

tanh(Wa [si,
↔
h t])



Attention

[Bahdanau, Cho, Bengio (2014)]



Attention in Image Captioning

Xu et al. ICML 2015



Attention in Image Captioning
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Attention in Image Captioning

Xu et al. ICML 2015



Phrase Based Statistical Machine Translation (SMT)



Phrased Based SMT

Step I: Learn a phrase table — a set of triples (p, q, s) where

• p is a (short) sequence of source words.

• q is a (short) sequence of target words.

• s is a score.

(“au”, “to the”, .5) (“au banque”, “the the bank”, .01)

For a phrase P we will write P.source for the source phrase,
P.target for the target phrase, and P.score for the score.



Derivations

Consider an input sentence x of length T .

We will write x[s : t] for the substring x[s], . . ., x[t− 1].

A derivation d from x is a sequence (P1, s1, t1, ), . . ., (PK, sK, tK)
where Pk.source = x[sk : tk].

The substrings x[sk : tk] should be disjoint and “cover” x.

For d = [(P1, s1, t1, ), . . ., (PL, sK, tK)] we define

y(d) ≡ P1.target · · ·PK.target

We let D(x) be the set of derivations from x.



Scoring

For d ∈ D(x) we define a score s(d)

s(d) = α lnPLM(y(d)) + β
∑
k

Pk.score + γ distortion(d)

where PLM(y) is the probability assigned to string y under a
language model for the target language

and distortion(d) is a measure of consistency of word ordering
between source and target strings as defined by the indeces
(s1, t1), . . ., (sK, tK).



Translation

y(x) = y(d∗(x))

d∗(x) = argmax
d∈D(x)

s(d)



END


