
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Sequence to Sequence Models and Attention



Encode-Decode Architectures for Machine Translation

[Figure from Luong et al.]

In Sutskever et al. (2014) the LSTMs are layered 4 deep.

The input is reversed — “DCBA” is translated to “XYZ”.



Encode-Decode Architecture for Machine Translation

H[0,t] = x[t]

H[l+1][t+1] = GRU(H[l+1][t],H[l][t],Theta[l+1])

y[0] = <eos>

S[l,0] = H[l,T]

S[l+1][t+1] = GRU(S[l+1][t],S[l][t],Psi[l+1])

P(y[t+1]) = Softmax W [e(y[t]),S[0,t],...,s[L,t]]



The Translation Probability Distribution

P(y[t+1]) = Softmax W [e(y[t]),S[0,t],...,S[L,t]]

P (XY Z|DCBA) = P (X|DCBA) P (Y |DCBDA;X) P (Z|DCBA;XY )

For the training pair DCBA⇒ XYX the training loss is

log 1/P (XY Z | DCBA)



Encode-Decode Architecture for Machine Translation

H[0,t] = x[t]

H[l+1][t+1] = GRU(H[l+1][t],H[l][t],Theta[l+1])

y[0] = <eos>

S[l,0] = H[l,T]

S[l+1][t+1] = GRU(S[l+1][t],S[l][t],Psi[l+1])

P(y[t+1]) = Softmax W [e(y[t]),S[0,t],...,s[L,t]]



Greedy Decoding vs. Beam Search

We would like

y∗ = argmax
y

P (y|x)

A greedy algorithm may do well

yt+1 = argmax
y

P (y | x, y1, . . . , yt)

However a beam search will typically do somewhat better,

Yt+1 = kbest
y

P (y | x, Y1, . . . , Yt)

Each y ∈ Yt is paired with a state vector (Viterbi Algorithm).



Training Details (Sutskever et a. (2014))

We used deep LSTMs with 4 layers, with 1000 cells at each
layer and 1000 dimensional word embeddings, with an input
vocabulary of 160,000 and an output vocabulary of 80,000.

We used a naive softmax over 80,000 words at each output.

We used batches of 128 sequences for the gradient and divided
it by the size of the batch [128].

We used stochastic gradient descent without momentum, with
a fixed learning rate of 0.7.

After 5 epochs, we begun halving the learning rate every half
epoch. We trained our models for a total of 7.5 epochs.



Training Details

[We clipped gradients] by scaling [the gradient] when its norm
exceeded a threshold. For each training batch, we compute
s = ||g||2 and for s > 5 we set g = 5g/s.

Different sentences have different lengths. ... To address this
problem, we made sure that all sentences within a minibatch
were roughly of the same length. [This gave] a 2x speedup.



Training Details

We parallelized our [C++] model using an 8-GPU machine.

Each layer of the LSTM was executed on a different GPU and
communicated its activations to the next GPU (or layer) as
soon as they were computed.

Our models have 4 layers of LSTMs, each of which resides on
a separate GPU.

The remaining 4 GPUs were used to parallelize the softmax,
so each GPU was responsible for multiplying by a 1000 20,000
matrix. [20,000 is 1/4 of the output vocabulary]

Training took about ten days with this implementation [on a
training set of 348M French words and 304M English words].



Attention-Based Translation



BiGRUs

~ht+1 = GRU(~ht, xt,Θ)

~ht−1 = GRU( ~ht, xt,Θ)

↔
h t =

[
~ht, ~ht

]
([x, y] denotes vector concatenation)



Basic Sequence to Sequence Model

s0 = ~hT
y0 = <eos>

P (· |x, y1, . . . , yi) = softmax Wy [si, e(yi)]

si+1 = GRU(si, e(yi), Θs)



Adding Attention

c0 =
↔
hT

s0 = ~hT
y0 = <eos>

P (· |x, y1, . . . , yi) = softmax Wy [si, e(yi), ci]

si+1 = GRU(si, [e(yi), ci], Θs)

ci+1 =
∑
t

αi,t
↔
h t

αi+1,t = softmax
t

tanh(Wa [si,
↔
h t])



Attention

[Bahdanau, Cho, Bengio (2014)]



Attention in Image Captioning

Xu et al. ICML 2015



Attention in Image Captioning

Xu et al. ICML 2015



Attention in Image Captioning

Xu et al. ICML 2015



Phrase Based Statistical Machine Translation (SMT)



Phrased Based SMT

Step I: Learn a phrase table — a set of triples (p, q, s) where

• p is a (short) sequence of source words.

• q is a (short) sequence of target words.

• s is a score.

(“au”, “to the”, .5) (“au banque”, “the the bank”, .01)

For a phrase P we will write P.source for the source phrase,
P.target for the target phrase, and P.score for the score.



Derivations

Consider an input sentence x of length T .

We will write x[s : t] for the substring x[s], . . ., x[t− 1].

A derivation d from x is a sequence (P1, s1, t1, ), . . ., (PK, sK, tK)
where Pk.source = x[sk : tk].

The substrings x[sk : tk] should be disjoint and “cover” x.

For d = [(P1, s1, t1, ), . . ., (PL, sK, tK)] we define

y(d) ≡ P1.target · · ·PK.target

We let D(x) be the set of derivations from x.



Scoring

For d ∈ D(x) we define a score s(d)

s(d) = α lnPLM(y(d)) + β
∑
k

Pk.score + γ distortion(d)

where PLM(y) is the probability assigned to string y under a
language model for the target language

and distortion(d) is a measure of consistency of word ordering
between source and target strings as defined by the indeces
(s1, t1), . . ., (sK, tK).



Translation

y(x) = y(d∗(x))

d∗(x) = argmax
d∈D(x)

s(d)



END


