TTIC 31230, Fundamentals of Deep Learning
David McAllester, April 2017

Sequence to Sequence Models and Attention

Encode-Decode Architectures for Machine Translation

X Y Z <eos>

B C D <eos> X

[Figure from Luong et al.]
[n Sutskever et al. (2014) the LSTMs are layered 4 deep.

The input is reversed — “DCBA” is translated to “XYZ”.

Encode-Decode Architecture for Machine Translation

X Y Z <eos>

H[O,t] = x[t]

H[1+1] [t+1] = GRU(H[1+1] [t],H[1] [t],Thetal[1l+1])
y[0] = <eos>

S[1,0] = H[1,T]

S[1+1] [t+1] = GRU(S[1+1][t],S[1][t],Psi[1+1])
P(y[t+1]) = Softmax W [e(y[t]),S[0,t],...,s[L,t]]

The Translation Probability Distribution

X Y Z <eos>

A B C D <eos> X Y z

P(y[t+1]) = Softmax W [e(y[t]),S[0,t],...,SIL,t]]

P(XY Z|DCBA) = P(X|DCBA) P(Y|DCBDA; X) P(Z|DCBA: XY)

For the training pair DCBA = XY X the training loss is

log 1/P(XYZ | DCBA)

Encode-Decode Architecture for Machine Translation

X Y Z <eos>

H[O,t] = x[t]

H[1+1] [t+1] = GRU(H[1+1] [t],H[1] [t],Thetal[1l+1])
y[0] = <eos>

S[1,0] = H[1,T]

S[1+1] [t+1] = GRU(S[1+1][t],S[1][t],Psi[1+1])
P(y[t+1]) = Softmax W [e(y[t]),S[0,t],...,s[L,t]]

Greedy Decoding vs. Beam Search
We would like

y* = argmax P(y|z)
Y

A greedy algorithm may do well

Yrr1 = argmax Py | X, y1,...,yt)
y

However a beam search will typically do somewhat better,

}/t+1:kb68t P<y‘X7 Y17'°'7Y%)
Y

Each y € Y} is paired with a state vector (Viterbi Algorithm).

Training Details (Sutskever et a. (2014))

We used deep LSTMs with 4 layers, with 1000 cells at each
layer and 1000 dimensional word embeddings, with an input
vocabulary of 160,000 and an output vocabulary of 80,000.

We used a naive softmax over 80,000 words at each output.

We used batches of 128 sequences for the gradient and divided
it by the size of the batch [12§].

We used stochastic gradient descent without momentum, with
a fixed learning rate of 0.7.

After 5 epochs, we begun halving the learning rate every half
epoch. We trained our models for a total of 7.5 epochs.

Training Detalils

|We clipped gradients| by scaling [the gradient] when its norm
exceeded a threshold. For each training batch, we compute

s = ||g||? and for s > 5 we set g = 5g/s.

Different sentences have different lengths. ... To address this
problem, we made sure that all sentences within a minibatch
were roughly of the same length. [This gave| a 2x speedup.

Training Detalils
We parallelized our [C++] model using an 8-GPU machine.

Each layer of the LSTM was executed on a different GPU and
communicated its activations to the next GPU (or layer) as
soon as they were computed.

Our models have 4 layers of LSTMs, each of which resides on
a separate GPU.

The remaining 4 GPUs were used to parallelize the softmax,
so each GPU was responsible for multiplying by a 1000 20,000
matrix. (20,000 is 1/4 of the output vocabulary]

Training took about ten days with this implementation [on a
training set of 348M French words and 304M English words|.

Attention-Based Translation

BiGRUs

hir1 = GRU(hy, 1, ©)
hy—1 = GRU(h¢, xt,)

A -
ht = [ht, ht} (|z, y] denotes vector concatenation)

Basic Sequence to Sequence Model

S0 = fLT
Yo <eos>

P(-|x, y1,...,y;) = softmax Wy [s;, e(y;)]
si+1 = GRU(s;, e(y;), Os)

Adding Attention

Y
co = hr
S) = hT
Yy = <eos>

P(- |x, y1,...,y;) = softmax Wy [s;, e(y;), ¢
GRU(s;, [e(yi), cil, Os)

Si+1

<
Cit1 = Z%t ht
t

o
iyl = soft%rnax tanh(Wy, |8, ht])

Attention

Y1 W

hy e hy hs <hy
- -

Bahdanau, Cho, Bengio (2014)]

Attention in Image Captioning

A little girl sitting on a bed with
a teddy bear.

Xu et al. ICML 2015

Attention in Image Captioning

A dog is standing on a hardwood floor.

A group of people sitting on a boat
in the water.

Xu et al. ICML 2015

Attention in Image Captioning

A stop sign is on a road with a
mountain in the background.

1

A giraffe standing in a forest with
trees in the background.

Xu et al. ICML 2015

Phrase Based Statistical Machine Translation (SMT)

Phrased Based SMT

Step I: Learn a phrase table — a set of triples (p, g, s) where

e p is a (short) sequence of source words.
e ¢ is a (short) sequence of target words.

® S IS a score.

(“au”, “to the”, .5) (“au banque”, “the the bank”, .01)

For a phrase P we will write P.source for the source phrase,
P.target for the target phrase, and P.score for the score.

Derivations
Consider an input sentence x of length 7"
We will write x|s : t] for the substring x[s], ..., [t — 1].

A derivation d from x is a sequence (Py, s1,t1,), - - - (Pr, Sio, L)
where Pp.source = x|s;. : t1].

The substrings z|s;. : t.] should be disjoint and “cover” .
For d = (P, s1,t1,), - -+ (Pr, Sk, tx)] we define
y(d) = Pj.target --- Pg.target

We let D(z) be the set of derivations from x.

Scoring

For d € D(x) we define a score s(d)

s(d) = aln P y\(y(d)) + 5 Z Py,.score + 7 distortion(d)
k

where Ppnj(y) is the probability assigned to string y under a
language model for the target language

and distortion(d) is a measure of consistency of word ordering
between source and target strings as defined by the indeces

(s1,t1), - -+, (SE, TR)

Translation

d*(z) = argmax s(d)
deD(x)

END

