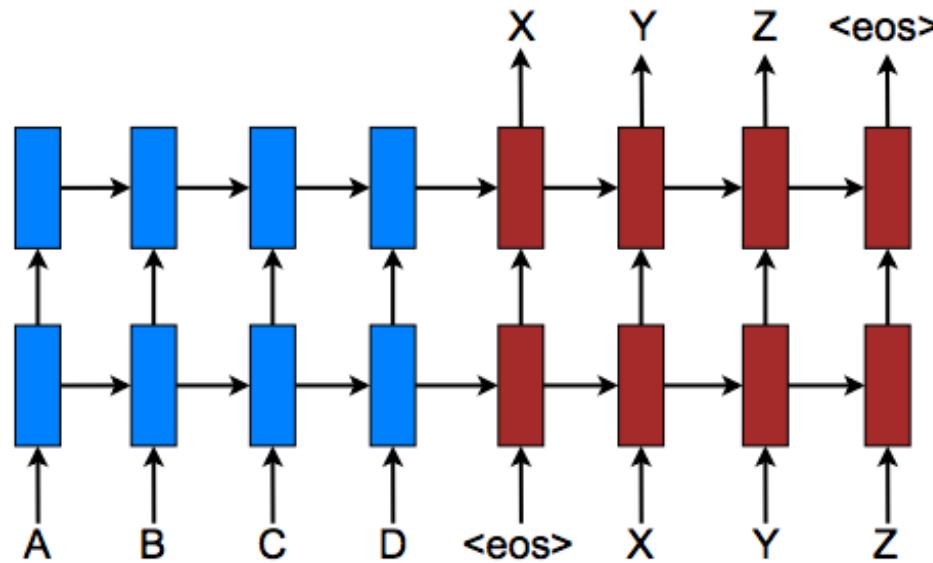


TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Sequence to Sequence Models and Attention

Encode-Decode Architectures for Machine Translation

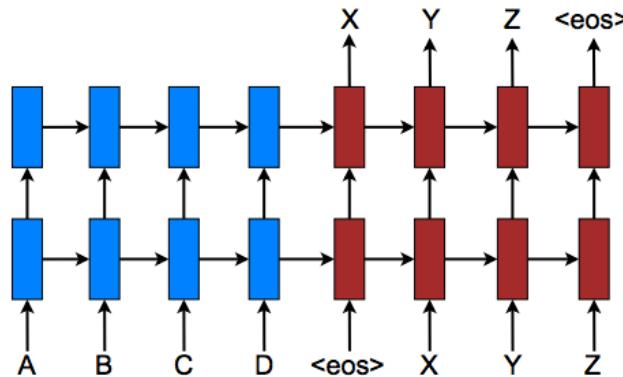


[Figure from Luong et al.]

In Sutskever et al. (2014) the LSTMs are layered 4 deep.

The input is reversed — “DCBA” is translated to “XYZ”.

Encode-Decode Architecture for Machine Translation



$$H[0, t] = x[t]$$

$$H[1+1][t+1] = \text{GRU}(H[1+1][t], H[1][t], \Theta[1+1])$$

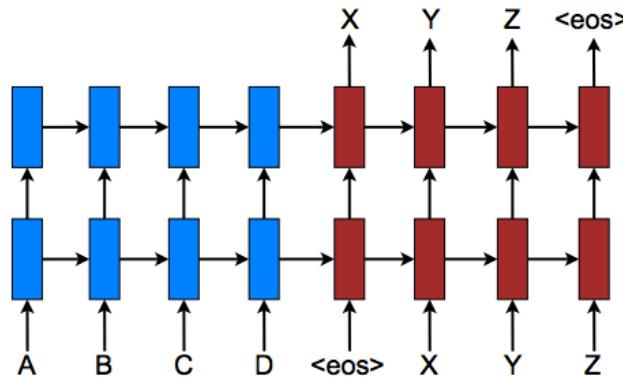
$$y[0] = \text{<eos>}$$

$$S[1, 0] = H[1, T]$$

$$S[1+1][t+1] = \text{GRU}(S[1+1][t], S[1][t], \Psi[1+1])$$

$$P(y[t+1]) = \text{Softmax } W [e(y[t]), S[0, t], \dots, S[L, t]]$$

The Translation Probability Distribution



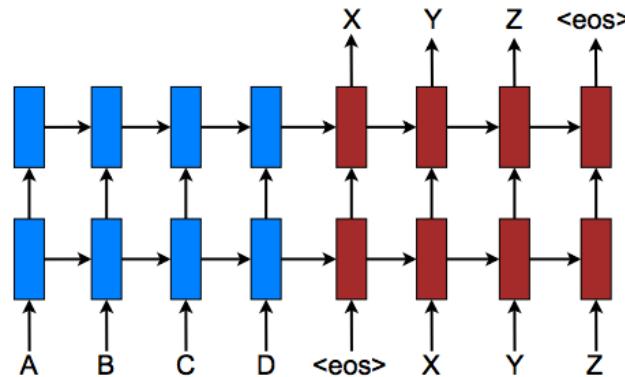
$$P(y[t+1]) = \text{Softmax } W [e(y[t]), s[0, t], \dots, s[L, t]]$$

$$P(XYZ|DCBA) = P(X|DCBA) P(Y|DCBDA; X) P(Z|DCBA; XY)$$

For the training pair $DCBA \Rightarrow XYZ$ the training loss is

$$\log 1/P(XYZ | DCBA)$$

Encode-Decode Architecture for Machine Translation



$$H[0, t] = x[t]$$

$$H[1+1][t+1] = GRU(H[1+1][t], H[1][t], \Theta[1+1])$$

y[0] = <eos>

$$S[1,0] = H[1,T]$$

$$S[1+1][t+1] = \text{GRU}(S[1+1][t], S[1][t], P_{\text{Si}}[1+1])$$

$$P(y[t+1]) = \text{Softmax } W [e(y[t]), s[0, t], \dots, s[L, t]]$$

Greedy Decoding vs. Beam Search

We would like

$$y^* = \operatorname{argmax}_y P(y|x)$$

A **greedy algorithm** may do well

$$y_{t+1} = \operatorname{argmax}_y P(y \mid \mathbf{x}, y_1, \dots, y_t)$$

However a **beam search** will typically do somewhat better,

$$Y_{t+1} = \operatorname{kbest}_y P(y \mid \mathbf{x}, Y_1, \dots, Y_t)$$

Each $y \in Y_t$ is paired with a state vector (Viterbi Algorithm).

Training Details (Sutskever et a. (2014))

We used deep LSTMs with 4 layers, with 1000 cells at each layer and 1000 dimensional word embeddings, with an input vocabulary of 160,000 and an output vocabulary of 80,000.

We used a naive softmax over 80,000 words at each output.

We used batches of 128 sequences for the gradient and divided it by the size of the batch [128].

We used stochastic gradient descent without momentum, with a fixed learning rate of 0.7.

After 5 epochs, we began halving the learning rate every half epoch. We trained our models for a total of 7.5 epochs.

Training Details

[We clipped gradients] by scaling [the gradient] when its norm exceeded a threshold. For each training batch, we compute $s = \|g\|^2$ and for $s > 5$ we set $g = 5g/s$.

Different sentences have different lengths. ... To address this problem, we made sure that all sentences within a minibatch were roughly of the same length. [This gave] a 2x speedup.

Training Details

We parallelized our [C++] model using an 8-GPU machine.

Each layer of the LSTM was executed on a different GPU and communicated its activations to the next GPU (or layer) as soon as they were computed.

Our models have 4 layers of LSTMs, each of which resides on a separate GPU.

The remaining 4 GPUs were used to parallelize the softmax, so each GPU was responsible for multiplying by a $1000 \times 20,000$ matrix. [20,000 is 1/4 of the output vocabulary]

Training took about ten days with this implementation [on a training set of 348M French words and 304M English words].

Attention-Based Translation

BiGRUs

$$\vec{h}_{t+1} = \text{GRU}(\vec{h}_t, x_t, \Theta)$$

$$\overleftarrow{h}_{t-1} = \text{GRU}(\overleftarrow{h}_t, x_t, \Theta)$$

$$\overleftrightarrow{h}_t = [\vec{h}_t, \overleftarrow{h}_t] \quad ([x, y] \text{ denotes vector concatenation})$$

Basic Sequence to Sequence Model

$$\begin{aligned}s_0 &= \vec{h}_T \\y_0 &= \text{<eos>}\end{aligned}$$

$$\begin{aligned}P(\cdot \mid \mathbf{x}, y_1, \dots, y_i) &= \text{softmax } W_y [s_i, e(y_i)] \\s_{i+1} &= \text{GRU}(s_i, e(y_i), \Theta_s)\end{aligned}$$

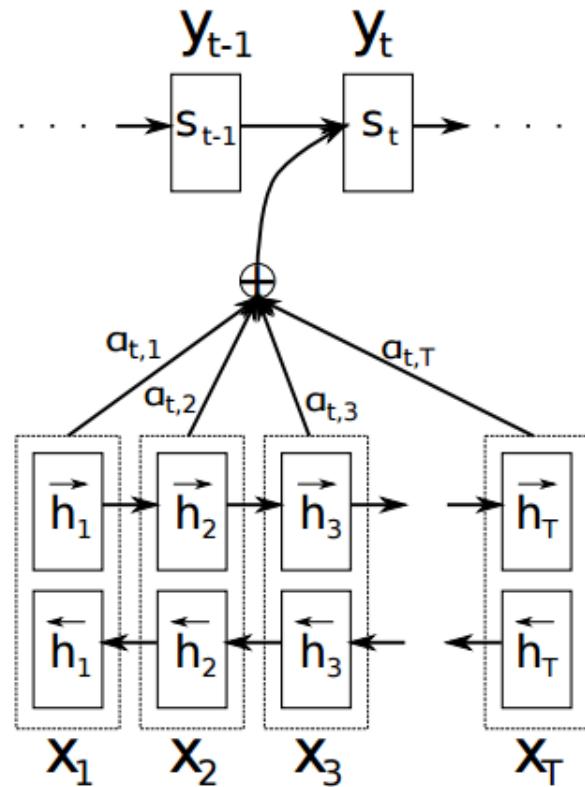
Adding Attention

$$\begin{aligned} \textcolor{red}{c}_0 &= \overset{\leftrightarrow}{h}_T \\ s_0 &= \vec{h}_T \\ y_0 &= \langle \text{eos} \rangle \end{aligned}$$

$$\begin{aligned} P(\cdot \mid \mathbf{x}, y_1, \dots, y_i) &= \text{softmax } W_y [s_i, e(y_i), \textcolor{red}{c}_i] \\ s_{i+1} &= \text{GRU}(s_i, [e(y_i), \textcolor{red}{c}_i], \Theta_s) \end{aligned}$$

$$\begin{aligned} \textcolor{red}{c}_{i+1} &= \sum_t \textcolor{red}{\alpha}_{i,t} \overset{\leftrightarrow}{h}_t \\ \textcolor{red}{\alpha}_{i+1,t} &= \text{softmax}_t \tanh(W_a [s_i, \overset{\leftrightarrow}{h}_t]) \end{aligned}$$

Attention



[Bahdanau, Cho, Bengio (2014)]

Attention in Image Captioning

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear.

Xu et al. ICML 2015

Attention in Image Captioning

A dog is standing on a hardwood floor.

A group of people sitting on a boat in the water.

Xu et al. ICML 2015

Attention in Image Captioning

A stop sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.

Xu et al. ICML 2015

Phrase Based Statistical Machine Translation (SMT)

Phrased Based SMT

Step I: Learn a phrase table — a set of triples (p, q, s) where

- p is a (short) sequence of source words.
- q is a (short) sequence of target words.
- s is a score.

(“au”, “to the”, .5) (“au banque”, “the the bank”, .01)

For a phrase P we will write $P.\text{source}$ for the source phrase, $P.\text{target}$ for the target phrase, and $P.\text{score}$ for the score.

Derivations

Consider an input sentence x of length T .

We will write $x[s : t]$ for the substring $x[s], \dots, x[t - 1]$.

A derivation d from x is a sequence $(P_1, s_1, t_1,), \dots, (P_K, s_K, t_K)$ where $P_k.\text{source} = x[s_k : t_k]$.

The substrings $x[s_k : t_k]$ should be disjoint and “cover” x .

For $d = [(P_1, s_1, t_1,), \dots, (P_L, s_K, t_K)]$ we define

$$y(d) \equiv P_1.\text{target} \cdots P_K.\text{target}$$

We let $D(x)$ be the set of derivations from x .

Scoring

For $d \in D(x)$ we define a score $s(d)$

$$s(d) = \alpha \ln P_{\text{LM}}(y(d)) + \beta \sum_k P_k \cdot \text{score} + \gamma \text{ distortion}(d)$$

where $P_{\text{LM}}(y)$ is the probability assigned to string y under a language model for the target language

and $\text{distortion}(d)$ is a measure of consistency of word ordering between source and target strings as defined by the indeces $(s_1, t_1), \dots, (s_K, t_K)$.

Translation

$$y(x) = y(d^*(x))$$

$$d^*(x) = \operatorname*{argmax}_{d \in D(x)} s(d)$$

END