
26th Symposium on Computational Geometry

Dynamic Well-Spaced Point Sets

Umut A. Acara

Andrew Cotterb

Benôıt Hudsonb

Duru Türkoğluc

June 4, 2011

aMax Planck Institute (SWS)
bToyota Technological Institute at Chicago
cUniversity of Chicago

Delaunay Triangulations, 2D Examples

No small angles Skinny triangles

Mesh Refinement

Input set of points

does not have a

good triangulation

Mesh Refinement

Input set of points

does not have a

good triangulation

Mesh Refinement

Input set of points

does not have a

good triangulation

We need to insert

Steiner points

Mesh Refinement

Input set of points

does not have a

good triangulation

We need to insert

Steiner points

The output has a

quality Delaunay

triangulation, i.e.,

no small angles

Dynamic Mesh Refinement

Assume somebody

wants to change

the input set

Dynamic Mesh Refinement

Assume somebody

wants to change

the input set

Dynamic Mesh Refinement

Assume somebody

wants to change

the input set

Update the set of

Steiner points

efficiently, without

too many changes

Dynamic Mesh Refinement

Assume somebody

wants to change

the input set

Update the set of

Steiner points

efficiently, without

too many changes

Sustain output

size to be small

Dynamic Mesh Refinement

Assume somebody

wants to change

the input set

Update the set of

Steiner points

efficiently, without

too many changes

Sustain output

size to be small

Well-Spaced Point Set Problem

Compute a ρ-well-spaced superset of a given input

⇒

Maintain a ρ-well-spaced superset as input changes

Objectives: Efficiency and Size-Optimality

Related Work

• Chew ’89 (First non-heuristic construction algorithm)

• Ruppert ’95 (Size-optimal algorithm in 2D)

• Spielman, Teng, Üngör ’02 (Parallel algorithm in 2D & 3D)

• Har-Peled, Üngör ’05 (Efficient algorithm in 2D)

• Hudson, Miller, Phillips ’06 (Efficient in arbitrary D)

• Hudson, T ’08 (Precursor of this work, arbitrary D)

Existing Approaches for the Dynamic Problem

1) Update is efficient but updated output is not size-optimal

2) Worst case update time is as bad as running from scratch

Our Results

Construction Algorithm

• Given N and ρ > 1, output M ⊃ N is ρ-well-spaced

• Output is size-optimal w.r.t. N , i.e. |M | = O(|MOPT |)

• Runs in O(n log ∆) time, ∆ = diameter
smallest distance

Dynamic Update Algorithm

• Given an insertion/deletion (N → N ′), modifies the output

• Modified output M ′ is size-optimal w.r.t. N ′

• Update in O(log ∆) time ⇒ |M ′ 	M | = O(log ∆)

• Worst case lower bound requires |M ′ 	M | = Ω(log ∆)

Our Solution — Change Propagation

Stable Algorithm: Executions

with similar inputs should produce

similar outputs/intermediate data

N
ε-modification−→ N ′

⇓ −→ ⇓
M

ε-change−→ M ′

Our Solution — Change Propagation

Stable Algorithm: Executions

with similar inputs should produce

similar outputs/intermediate data

N
ε-modification−→ N ′

⇓ −→ ⇓
M

ε-change−→ M ′

Offline Algorithm ⇒ Quality

Our Solution — Change Propagation

Stable Algorithm: Executions

with similar inputs should produce

similar outputs/intermediate data

N
ε-modification−→ N ′

⇓ −→ ⇓
M

ε-change−→ M ′

Offline Algorithm ⇒ Quality

+

Stability ⇒

 Executions are similar

M ′ 	M is small

Our Solution — Change Propagation

Stable Algorithm: Executions

with similar inputs should produce

similar outputs/intermediate data

N
ε-modification−→ N ′

⇓ −→ ⇓
M

ε-change−→ M ′

Offline Algorithm ⇒ Quality

+

Stability ⇒

 Executions are similar

M ′ 	M is small

+

Dynamizing Stable Algorithm ⇒ Efficiency

Stable Refinement Algorithm

Basic operation of

the construction

algorithm is fill

Stable Refinement Algorithm

Basic operation of

the construction

algorithm is fill

Pick a point that

is not well-spaced

and fill (insert

Steiner points)

Stable Refinement Algorithm

Basic operation of

the construction

algorithm is fill

Pick a point that

is not well-spaced

and fill (insert

Steiner points)

Stable Refinement Algorithm

Basic operation of

the construction

algorithm is fill

Pick a point that

is not well-spaced

and fill (insert

Steiner points)

Stable Refinement Algorithm

Basic operation of

the construction

algorithm is fill

Pick a point that

is not well-spaced

and fill (insert

Steiner points)

Idea: Fill points

in a single pass

Stable Refinement Algorithm

Basic operation of

the construction

algorithm is fill

Pick a point that

is not well-spaced

and fill (insert

Steiner points)

Idea: Fill points

in a single pass

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��
��
��
��

��
��
��
��

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

Fill Operation and Picking Region

Goal: Ensure that filling points

in a single pass is sufficient

Approach: Expansion

Insert Steiner points that have

ρ times larger empty balls

Goal: Efficiency, Independence

Approach: Clipped Voronoi

Location of Steiner points depend

only on close Voronoi neighbors

Key Ideas for Stability

Expansion

Steiner points have ρ times

larger empty balls

Locality

Steiner point selection depends

on a bounded neighborhood

Independence

At each rank, filling distant

points are guaranteed not

to affect each other

Key Ideas for Stability

Expansion

Steiner points have ρ times

larger empty balls

Locality

Steiner point selection depends

on a bounded neighborhood

Independence

At each rank, filling distant

points are guaranteed not

to affect each other

Rank = logarithm base ρ

of nearest neighbor distance

In total O(log ∆) ranks

Key Ideas for Stability

Expansion

Steiner points have ρ times

larger empty balls

Locality

Steiner point selection depends

on a bounded neighborhood

Independence

At each rank, filling distant

points are guaranteed not

to affect each other

r
O(r)

Points outside the big ball

do not influence how we pick

Steiner points

Key Ideas for Stability

Expansion

Steiner points have ρ times

larger empty balls

Locality

Steiner point selection depends

on a bounded neighborhood

Independence

At each rank, filling distant

points are guaranteed not

to affect each other

Process points in rank order

Two points at a given rank

may not depend on each other

Key Ideas for Stability

Expansion

Steiner points have ρ times

larger empty balls

Locality

Steiner point selection depends

on a bounded neighborhood

Independence

At each rank, filling distant

points are guaranteed not

to affect each other

For ensuring independence

partition space using O(1) colors

and process points in color order

Proof of Stability — Dependency Path
Schedule using Ranks and Colors

Algorithm processes points in stages by

ordering them first by rank then by color

Dependency Paths

Expansion and independence guarantee

that filling a point does not affect points

processed in earlier stages and the points

being processed at the current stage

There are O(log ∆) stages in total

Proof of Stability — Spacing and Packing

Assume inserting (or deleting) a point p

Path: Given a point u at rank r

if there is a dependency path from

p to u, then |pu| < O(ρr)

Spacing: There is an empty

ball around u of radius Ω(ρr)

which consequently is Ω(|pu|)

Packing: There can be only

O(1) such points at each rank

O(log ∆) in total

Ω pu () | |

p

u

Thank You!

Questions?

