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Delaunay Triangulations, 2D Examples

No small angles Skinny triangles
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Well-Spaced Point Set Problem

Compute a ρ-well-spaced superset of a given input

⇒

Maintain a ρ-well-spaced superset as input changes

Objectives: Efficiency and Size-Optimality



Related Work

• Chew ’89 (First non-heuristic construction algorithm)

• Ruppert ’95 (Size-optimal algorithm in 2D)

• Spielman, Teng, Üngör ’02 (Parallel algorithm in 2D & 3D)

• Har-Peled, Üngör ’05 (Efficient algorithm in 2D)

• Hudson, Miller, Phillips ’06 (Efficient in arbitrary D)

• Hudson, T ’08 (Precursor of this work, arbitrary D)

Existing Approaches for the Dynamic Problem

1) Update is efficient but updated output is not size-optimal

2) Worst case update time is as bad as running from scratch



Our Results

Construction Algorithm

• Given N and ρ > 1, output M ⊃ N is ρ-well-spaced

• Output is size-optimal w.r.t. N , i.e. |M | = O(|MOPT |)

• Runs in O(n log ∆) time, ∆ = diameter
smallest distance

Dynamic Update Algorithm

• Given an insertion/deletion (N → N ′), modifies the output

• Modified output M ′ is size-optimal w.r.t. N ′

• Update in O(log ∆) time ⇒ |M ′ 	M | = O(log ∆)

• Worst case lower bound requires |M ′ 	M | = Ω(log ∆)
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N
ε-modification−→ N ′
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Stable Algorithm: Executions

with similar inputs should produce

similar outputs/intermediate data

N
ε-modification−→ N ′

⇓ −→ ⇓
M

ε-change−→ M ′

Offline Algorithm ⇒ Quality

+

Stability ⇒

 Executions are similar

M ′ 	M is small

+

Dynamizing Stable Algorithm ⇒ Efficiency
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Key Ideas for Stability

Expansion

Steiner points have ρ times

larger empty balls

Locality

Steiner point selection depends

on a bounded neighborhood

Independence

At each rank, filling distant

points are guaranteed not

to affect each other

For ensuring independence

partition space using O(1) colors

and process points in color order



Proof of Stability — Dependency Path
Schedule using Ranks and Colors

Algorithm processes points in stages by

ordering them first by rank then by color

Dependency Paths

Expansion and independence guarantee

that filling a point does not affect points

processed in earlier stages and the points

being processed at the current stage

There are O(log ∆) stages in total



Proof of Stability — Spacing and Packing

Assume inserting (or deleting) a point p

Path: Given a point u at rank r

if there is a dependency path from

p to u, then |pu| < O(ρr)

Spacing: There is an empty

ball around u of radius Ω(ρr)

which consequently is Ω(|pu|)

Packing: There can be only

O(1) such points at each rank

O(log ∆) in total

Ω  pu (      ) |    |

p

u



Thank You!

Questions?


