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A New Kernel SVM Optimizer

Kernelized SVM optimization

@ Data is accessed exclusively via kernel evaluations

We present the Stochastic Batch Perceptron (SBP):

e Best known learning runtime guarantee (better than previous
methods)
@ Performs well in practice

o Efficient, open-source implementation available



The Method
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The Method - Re-parameterization
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Use re-paramaterization of SVM problem due to Hazan et al. (2011)
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We refer to this as the “slack-constrained” objective
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The Method - Equivalence of Objectives

Varying C or v explores the same Pareto frontier
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The Method - Stochastic Gradient Ascent
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Apply stochastic gradient ascent to this re-parameterization

o Different parameterization than Pegasos — different algorithm
e For minimax-optimal p*, supergradients are Y. ; piyix;

@ Stochastic supergradients can be found by sampling from p*



The Method - Finding a Minimax Optimal p*

Use “water-filling”
@ Requires the responses

e O(n) time using a
divide-and-conquer algorithm

ci+éi=y

£>0

volume nv

Ci




The Method

Putting it together

At each iteration:
@ Find a minimax-optimal p*
@ Sample j ~ p*
© Update w = Z (w +N¢yix;)
Separable Case
@ p* supported on argming;

@ SBP: update using most violating example at each iteration

e “Batch Perceptron”



The Method

Putting it together

At each iteration:
@ Find a minimax-optimal p*
@ Sample j ~ p*
© Update w = Z(w + Neyixi)
Kernelization
Like Pegasos, our algorithm can be kernelized without switching to the
dual
o Substitute w =Y" ; o4yix;
@ Maintain vector of responses ¢; = ):J'-’Zl o;y;yiK(xi,x;) throughout

@ Cost per iteration is O(n) operations for water-filling, n kernel
evaluations for updating ¢



Runtime Analysis

We analyze runtime to ensure generalization error £ (w*)+¢€
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Runtime Analysis

We analyze runtime to ensure generalization error £ (w*)+¢€
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Runtime Analysis

We analyze runtime to ensure generalization error . (w*)+ € when
e=Q(Z(w")
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Experiments
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@ SMO makes little progress until it suddently eners a regime in which
it converges rapidly

@ Non-SMO algorithms converge gradually

e SMO: Platt (1998). SDCA: Hsieh et al. (2008). Pegasos:
Shalev-Shwartz et al. (2007)
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Summary

We presented the Stochastic Batch Perceptron (SBP)

@ Data is accessed via kernel evaluations with an arbitrary kernel
@ Can be extended to include an unregularized bias

@ Best known learning runtime guarantee

@ Performs well in practice

o Efficient, open-source implementation available

ttic.uchicago.edu/"cotter/projects/SBP


ttic.uchicago.edu/~cotter/projects/SBP

Experiments - Perceptron
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@ Perceptron performs similarly to SBP, but does not converge “fully’
in a single pass



Experiments - Perceptron

Adult MNIST 8 vs. Rest
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@ Perceptron performs similarly to SBP, but does not converge “fully’
in a single pass
o If we perform multiple passes, Perceptron may overfit



