The Kernelized Stochastic Batch Perceptron

Andrew Cotter! Shai Shalev-Shwartz2 Nathan Srebro?!

1Toyota Technological Institute at Chicago

2Hebrew University of Jerusalem

June 29, 2012

A New Kernel SVM Optimizer

Kernelized SVM optimization

@ Data is accessed exclusively via kernel evaluations

We present the Stochastic Batch Perceptron (SBP):

e Best known learning runtime guarantee (better than previous
methods)
@ Performs well in practice

o Efficient, open-source implementation available

The Method

1

1 5 4
minimize:= ||w|[54+ C) max | 0,1—y;{w,x;
5w+ C) (< >)

Ci

The Method - Re-parameterization

1 5 4
minimize:= ||w|[54+ C) max | 0,1—y;{w,x;
5w+ C) (w,x)

1
Ci

Use re-paramaterization of SVM problem due to Hazan et al. (2011)

maximize :max min (& +¢)
EeRnie{1,....n}

subject to:||w| <1
E-0,1TE <nv

We refer to this as the “slack-constrained” objective

The Method - Re-parameterization

1 5 4
minimize:= ||w|[54+ C) max | 0,1—y;{w,x;
5w+ C) (w,x)

1
Ci

Use re-paramaterization of SVM problem due to Hazan et al. (2011)

.. . T
maximize : max min Cc
EcRn peA"p (é +)

subject to:||w| <1
E-0,1TE <nv

We refer to this as the “slack-constrained” objective

The Method - Equivalence of Objectives

Varying C or v explores the same Pareto frontier

1 . n
minimize:5 HwH; + CZ max (0,1 — y; (w, x;))
i=1

\—»

o

maximize : max min p? (€ + ¢)
£ER™ pe A

Training Hinge Loss

2
subject to : [|wl] <1 [l

£ -0, 1T£ <nv

The Method - Stochastic Gradient Ascent

.. . T
maximize : max min C
max min p (S+¢)

subject to:||w| <1
E-0,1TE <nv

Apply stochastic gradient ascent to this re-parameterization

o Different parameterization than Pegasos — different algorithm
e For minimax-optimal p*, supergradients are Y. ; piyix;

@ Stochastic supergradients can be found by sampling from p*

The Method - Finding a Minimax Optimal p*

Use “water-filling”
@ Requires the responses

e O(n) time using a
divide-and-conquer algorithm

ci+éi=y

£>0

volume nv

Ci

The Method

Putting it together

At each iteration:
@ Find a minimax-optimal p*
@ Sample j ~ p*
© Update w = Z (w +N¢yix;)
Separable Case
@ p* supported on argming;

@ SBP: update using most violating example at each iteration

e “Batch Perceptron”

The Method

Putting it together

At each iteration:
@ Find a minimax-optimal p*
@ Sample j ~ p*
© Update w = Z(w + Neyixi)
Kernelization
Like Pegasos, our algorithm can be kernelized without switching to the
dual
o Substitute w =Y" ; o4yix;
@ Maintain vector of responses ¢; =):J'-’Zl o;y;yiK(xi,x;) throughout

@ Cost per iteration is O(n) operations for water-filling, n kernel
evaluations for updating ¢

Runtime Analysis

We analyze runtime to ensure generalization error £ (w*)+¢€

. 2
@ SBP needs O ((’W) HW*H2) iterations

G * %112
@ Need n=0 ((M) @) training elements for generalization

Runtime Analysis

We analyze runtime to ensure generalization error £ (w*)+¢€

. 2
@ SBP needs O ((’W) HW*H2) iterations

€

G * %112
@ Need n=0 ((M) M) training elements for generalization

‘ Overall Runtime & =Q(Z(w"))
SBP (z(we*)+s>3 w1

€
Dual Decomp.
Pegasos

Runtime Analysis

We analyze runtime to ensure generalization error £ (w*)+¢€

@ SBP needs O ((’W

@ Need nzO((M

€

2 2
) [|w™|) iterations

%12
) LWSH) training elements for generalization

Overall Runtime

e=Q(Z(w"))

SBP

Dual Decomp.

Pegasos

(f(w*)+e>3 Jw][*

€ €

€

<$(w*)+£) Jw*)|*

(z(w*)+e>2 w14

€

Runtime Analysis

We analyze runtime to ensure generalization error £ (w*)+¢€
. 2
@ SBP needs O ((’W) HW*H2) iterations

G * %112
@ Need n=0 ((M) M) training elements for generalization

Overall Runtime & =Q(Z(w"))
|

SBP (f(vf)+e>3 v wl’
G * 2 * |4 v
Dual Decomp. (j("‘;)“) ”"22” Hvzzl\

€

Pegasos | (L)) e e

Runtime Analysis

We analyze runtime to ensure generalization error . (w*)+ € when
e=Q(Z(w")

Kernel Algo. | lterations Time per Iteration | Runtime
ssp | wP n=Df [LT
Dual Decomp. HW£H2 n— I\ng\2 HV;;H4
Pegasos HM;ZIV n— HW;H2 HV;’;H4

Linear Algo. | Iterations Time per Iteration | Runtime
SBP lw*)? dn=dv® | dwlt
Dual Decomp. ”Wg”z dn= d”%*”z d”}';";”ll
Pegasos ”V‘;”Z d %

Experiments

MNIST 8 vs. Rest

0.15

0.1¢

Test Error
Test Error

0.051

10

10° 10’ 10° 10° 10° 10° 10’ 10° 10°
Kernel Evaluations Kernel Evaluations

@ SMO makes little progress until it suddently eners a regime in which
it converges rapidly

@ Non-SMO algorithms converge gradually

e SMO: Platt (1998). SDCA: Hsieh et al. (2008). Pegasos:
Shalev-Shwartz et al. (2007)

10

Summary

We presented the Stochastic Batch Perceptron (SBP)

@ Data is accessed via kernel evaluations with an arbitrary kernel
@ Can be extended to include an unregularized bias

@ Best known learning runtime guarantee

@ Performs well in practice

o Efficient, open-source implementation available

ttic.uchicago.edu/"cotter/projects/SBP

ttic.uchicago.edu/~cotter/projects/SBP

Experiments - Perceptron

Adult MNIST 8 vs. Rest
03 . . 015, :
v SBP
A Perceptron
0.25 ok
8 8
fin}]
B i
02|
005t
0.15 001} ‘ -
10° 10° 10 10° 10° 10"

Kernel Evaluations Kernel Evaluations

@ Perceptron performs similarly to SBP, but does not converge “fully’
in a single pass

Experiments - Perceptron

Adult MNIST 8 vs. Rest

0.15

v SBP
A Perceptron
A Multi-Pass Perceptr

o
N
a

0.1f

Test Error
Test Error

0.2r
0.05-

10

10° 10° 10
Kernel Evaluations

Kernel Evaluations

@ Perceptron performs similarly to SBP, but does not converge “fully’
in a single pass
o If we perform multiple passes, Perceptron may overfit

