
General ization

Upper bounds on the runtime (and number of
kernel evaluations) required to guarantee L(u)+ε
generalization error. L(u) is the expected hinge
loss suffered by an arbitrary reference classifier
u .

Dual decomposition approaches include most
popular kernel SVM optimizers. SGD on the
regularized objective (e.g. Pegasos) behaves
similarly to SGD on the average hinge loss with a
norm constraint (e.g. NORMA).

The relevant regime is often that in which the
approximation and estimation errors are of the
same order of magnitude (i.e. ε=Θ(L(u))).

1. Use responses c to find minimax-
optimal ξ* and p*

2. Sample i from p*

3. Let αi=P(αi+ηi), and update the
responses c

One can find minimax-optimal ξ* and p*

using the "water-filling" procedure
illustrated below (see our paper for
details). This can be accomplished in
O(n) time using a divide-and-conquer
algorithm. This cost is negligible, since
we, like every other kernel SVM
optimizer of which we are aware, must
calculate one row of the kernel matrix
per itation while updating the
responses, at a cost of n kernel
evaluations.

SBP Algorithm
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Experiments

Three Objective Functions

Often optimized using stochastic gradient
descent (NORMA, Pegasos, . . . . )

Primal objective:

Coordinate ascent-like algorithms
(SMO, SVM-Light, LIBSVM, . . . . )

Dual objective:

SIMBA (Hazan et al.) in linear setting. In
Kernel setting, we use SGD.

Slack-constrained objective:

All three of these objectives are equivalent in that by varying either C or ν one explores the same Pareto optimal frontier (i.e. for every C
there exists a ν giving the same solution, and vice-versa).

For suboptimal solutions, exact equivalence breaks down: ε2-suboptimal solutions to the dual objective may be only ε-suboptimal in the
primal. However, ε-suboptimal solutions to the slack-constrained objective are better than ε-suboptimal in terms of average hinge loss
(which is what the primal objective minimizes, plus regularization). Hence, SGD on the slack-constrained objective converges more
rapidly than SGD on the primal in terms ofwhat the primal itself seeks to minimize.

This leads to a better bound on generalization performance for SGD on the slack-constrained objective than that achieved by any other
known method.

Overview
The kernelized Stochastic Batch
Perceptron (SBP) is a fast kernel SVM
optimization algorithm with learning
runtime guarantees which are better
than those of any other known
approach. It also works well in
practice, and a fast implementation
(with source code) is available.

Prel iminaries
Let xi be a list of n training vectors
with associated labels yi, and K(x,x') a
kernel function. We seek a set of
coefficients αi which will determine
the classification of a previously-
unseen testing example x as:

For notational simplicity, define:

We call c the vector of "responses".
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