The Kernelized Stochastic Batch Perceptron Andrew Cotter, Shai Shalev-Shwartz, Nathan Srebro

Overview

The kernelized Stochastic Batch Perceptron (SBP) is a fast kernel SVM optimization algorithm with learning runtime guarantees which are better than those of any other known approach. It also works well in practice, and a fast implementation (with source code) is available.

Preliminaries

Let x_i be a list of *n* training vectors with associated labels y_i , and K(x,x') a kernel function. We seek a set of coefficients α_i which will determine the classification of a previouslyunseen testing example x as:

$$\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i K(x_i, x)\right)$$

For notational simplicity, define: $Q_{ij} = y_i y_j K(x_i, x_j), c = Q\alpha$

We call *c* the vector of "responses".

Three Objective Functions

Primal objective:

 $\underset{\alpha \in \mathbb{R}^{n}, \ b \in \mathbb{R}}{\text{minimize}} : \frac{1}{2} \alpha^{T} Q \alpha + C \sum_{i=1}^{n} \max\left(0, 1 - c_{i}\right)$

Often optimized using stochastic gradient descent (NORMA, Pegasos,)

All three of these objectives are equivalent in that by varying either C or ν one explores the same Pareto optimal frontier (i.e. for every C there exists a ν giving the same solution, and vice-versa).

For suboptimal solutions, exact equivalence breaks down: ε^2 -suboptimal solutions to the dual objective may be only ε -suboptimal in the primal. However, ε -suboptimal solutions to the slack-constrained objective are better than ε -suboptimal in terms of average hinge loss (which is what the primal objective minimizes, plus regularization). Hence, SGD on the slack-constrained objective converges more rapidly than SGD on the primal in terms of what the primal itself seeks to minimize.

This leads to a better bound on generalization performance for SGD on the slack-constrained objective than that achieved by any other known method.

Overall	$\epsilon = \Omega \left(L \left(u \right) \right)$
$\left(\frac{L(u)+\epsilon}{\epsilon}\right)^3 \frac{\ u\ ^4}{\epsilon}$	$\frac{\ u\ ^4}{\epsilon}$
$\left(\frac{L(u)+\epsilon}{\epsilon}\right)^2 \frac{\ u\ ^4}{\epsilon^2}$	$\frac{\ u\ ^4}{\epsilon^2}$
$\left(\frac{L(u)+\epsilon}{\epsilon}\right) \frac{\ u\ ^4}{\epsilon^3}$	$\frac{\ u\ ^4}{\epsilon^3}$

$$\cdot \varepsilon \succ 0 \ \mathbf{1}^T \varepsilon < m$$

