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Kernel setting, we use SGD.

All three of these objectives are equivalent in that by varying either C or v one explores the same Pareto optimal frontier (i.e. for every C
there exists a v giving the same solution, and vice-versa).

For suboptimal solutions, exact equivalence breaks down: g?-suboptimal solutions to the dual objective may be only &-suboptimal in the
primal. However, g-suboptimal solutions to the slack-constrained objective are better than e-suboptimal in terms of average hinge loss
(which is what the primal objective minimizes, plus regularization). Hence, SGD on the slack-constrained objective converges more
rapidly than SGD on the primal in terms of what the primal itself seeks to minimize.

This leads to a better bound on generalization performance for SGD on the slack-constrained objective than that achieved by any other

known method. ttic.uchicago.edu/~cotter/projects/SBP





