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Problem 1
By definition:
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So in order to write an expression for Vg, we must “pull out” the matrix M from the function g. This may be
accomplished by finding a bilinear form which agrees with g, as follows:

g = the(f: V-V —>Rst.Vo:V.(f(z)(z) =g(x)) AlsBilinear (f))

Inside the “the” expression, forcing f to be bilinear causes it to have the form f (z) (y) = a M’y for some matrix M’,
while the first condition forces M’z = xMx for all x, which implies that M’ = M (because if x (M’ — M)z =0
for all 2, then M’ — M = 0). Hence, we need only define IsBilinear:

IsBilinear = Af:V =V —RVz:VVy:VVz: VVa:R.
((f (ax + 2) (y) = af (2) (y) + [ (2) W) A (f (@) (ay + 2) = af (2) (y) + [ (z) (2)))
And we may now define Vg:

Vg = dx:Vy:V.(¢d (z) +7d (y))

Problem 2

V and V** are equivalent

We wish to find an equivalence f: V — V** and g : V** — V. Since elements of V* act on elements on V' (that is,
they are linear functions from V' to R), while elements of V** act on elements on V*, it would be natural to define
f in such a way that for each « € V| the corresponding f (z) € V** acts on all elements on V* in the same way as
those elements act on x. Symbolically:

i = dx:Voy:Viy(o)
g1 = Az:V*.the(y: Vst fi(y) =)

Note that f; : V — V* — R, and that the function which it returns (of type V* — R) is linear, showing that
in fact f; : V — V**. This function is 1 — 1, since for two distinct z,z’ : V' there must exist a y : V* such that
y (x) # y (') (for example, if we imagine a basis expansion for V', then we could take y to be the dot product of the
basis expansion of x — &’ with the basis expansion the parameter to y). That f; is onto follows from the fact that if
we imagine a basis expansion for V', and the induced basis expansion for V*, we will have that y (z) is simply the
dot product of the basis expansions of y and x. The fact that every linear function V* — R may be written as a dot
product with some vector shows that f; is onto. Note that this (that f is onto) only holds for finite-dimensional V'
(essentially because we are only able to talk about finite sums, so that while we can meaningfully work with basis
expansions of z and y in infinite dimensions, the “dot product” is an infinite sum, which we cannot handle without
some notion of limits, causing this argument to break down).



V and linear VV* — R are equivalent

Since the set of all linear functions V* — R is precisely V**, the same method as the previous part works.

Linear V — V and bilinear V x V* — R are equivalent
The idea here is similar:

fo = X V-oVA(y,2):VxViz(z(y)
g2 = Az:VxV*—=Rthe(y:V — Vst fo(y) =2x)

Essentially what is being shown here is that every linear map from a vector space to itself fixes a coordinate system.
Choosing a basis of V allows us to represent this map as a matrix M (note that, for a single fixed basis, the map
between linear functions of type V' — V, and matrices M, is 1 — 1 and onto), and permits us to map a y : V into
the dual space by taking My, and then map this and a z : V* into the reals by taking the dot product (the one
induced on basis expansions on V* by the choice of basis on V') between My and z, as zMy. Note that while this
reasoning uses bases, the actual value of zMy is basis independent.

Isomorphisms VV — V*, bilinear inner products VV x V' — R and bilinear inner products
V*x V* — R are equivalent

Note the additional restrictions on the problem statement, compared to the problem set.
First, the equivalence between V' — V* and V x V — R:

fa = Xx: VoV "Ay,z2):VxVaz(y)(z)
g3 = Ax:VxV —>Rthe(y:V —V*st. f3(y) =)

Clearly, if the type is isomorphisms V — V* is equivalent to isomorphisms V* — V. Hence, it suffices to show that
V* — V is equivalent to V* x V* — R to complete the equivalence. This is essentially identical to the above:

fao = X V' = VA(y,2): V" xV*.z(z(y))
ges = Ax:V*"xV* > Rithe(y: V" - Vst fu(y) = z)

The idea behind both of these equivalences is the same: all three of these maps may, once we fix a basis, be
represented as nonsingular matrices: if f : V — V*, then we may write f (z) = Maz; if f: V xV — R, then we
may write f (z,y) = My, and likewise if f : V* x V* — R. Furthermore, in all of these cases, there is a 1 — 1
correspondence between matrices, and functions of the desired form. In order to find an equivalence, then, we need
only impose the condition that “the matrices are the same”.

Problem 3

This will be a proof by contradiction. Suppose that V and V* are equivalent. Then there must exist a well
typed bijective f : V — V*. Let ¢ : V — V be an automorphism (an isomorphism between V and itself). By
parametricity, f ~, f, giving that Vo : V.Vy : V.(f (2) (y) = f (¢ (2)) (¢ (y))) (this holds because f (x) (y) : R, and
equivalence for real numbers is just equality).

In particular, if we assume that V is at least two dimensional, and let v; : ¢ € {1,...,d} be a basis for V, then we
may define an automorphism ¢ : V' — V such that if z = Zle «;v; is the basis expansion for z, ¢ will exchange the
coefficients o and a: ¢ () = agvy + v + 2?23 a;v;. By the fact that f (z) (y) = f (¢ (z)) (¢ (v)), we will have
that f (v1) (v1) = f (v2) (v2) and f (v1) (v2) = f (v2) (v1). Since every pair of linearly independent vectors may be
extended into a basis (if V' is at least two dimensional), we see that f (z) (y) = f (y) («) for all linearly independent
z,y: V.

Now consider the automorphism ¢ = Az : V.az for some o : R with a # 0, which, again using the fact that

(@) (@) = fle@)(p(y)), gives that f(x)(y) = f (az) (ay) = af (ax) (y) (the last step by linearity), so that
f(x) = af (ax) for all  : V. Combining this result with the previous symmetry result gives that f(x)(y) =



af (ax) (y) = af (y) (az) = o%f (y) () = o®f (z) (y) for all nonzero « : R, assuming that x and y are linearly
independent. Taking o = 2 gives that f (z) (y) = 4f (z) (y), showing that f = 0, contradicting our assumption that
it is a bijection.

So we have proved that V' and V* are not equivalent for V of dimension 2 and higher. Clearly, if V is zero-
dimensional, then V' and V* are equivalent, since both V and V* consist of a single element (the zero vector).
What about if V' is one-dimensional? In this case, we must still have by the above argument that f (z) = af (az),
from which we may infer that the bijection f:V — V* must look something like the function %, and indeed, if we
choose f = Az : Vithe (y : V*s.t.y () = 1g), then we get a function of precisely this form for all z # 0. With some
added handling for the zero vector, our bijection becomes:

f = Ax:Vithe(y:V*s.t.
((z=0v) = (y=0v-)) A
((z #0v) = (y (z) = 1r)))
Suprisingly, this is a bijection, for one-dimensional V', because any nonzero linear function crosses 1 at a unique

point, and knowledge of this point uniquely determined the function (as the unique line which passes through the
origin, and this point).



