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Problem 1

By de�nition:

(∇g) (x) (y) = lim
ε→0

1
ε

(g (x+ εy)− g (x))

= lim
ε→0

1
ε

((x+ εy)M (x+ εy)− xMx)

= lim
ε→0

(yMx+ xMy + εyMy)

= yMx+ xMy

So in order to write an expression for ∇g, we must �pull out� the matrix M from the function g. This may be
accomplished by �nding a bilinear form which agrees with g, as follows:

g′ = the (f : V → V → R s.t.∀x : V. (f (x) (x) = g (x)) ∧ IsBilinear (f))

Inside the �the� expression, forcing f to be bilinear causes it to have the form f (x) (y) = xM ′y for some matrixM ′,
while the �rst condition forces xM ′x = xMx for all x, which implies that M ′ = M (because if x (M ′ −M)x = 0
for all x, then M ′ −M = 0). Hence, we need only de�ne IsBilinear:

IsBilinear = λf : V → V → R.∀x : V.∀y : V.∀z : V.∀α : R.
((f (αx+ z) (y) = αf (x) (y) + f (z) (y)) ∧ (f (x) (αy + z) = αf (x) (y) + f (x) (z)))

And we may now de�ne ∇g:
∇g = λx : V.λy : V. (g′ (x) + g′ (y))

Problem 2

V and V ∗∗ are equivalent

We wish to �nd an equivalence f : V → V ∗∗ and g : V ∗∗ → V . Since elements of V ∗ act on elements on V (that is,
they are linear functions from V to R), while elements of V ∗∗ act on elements on V ∗, it would be natural to de�ne
f in such a way that for each x ∈ V , the corresponding f (x) ∈ V ∗∗ acts on all elements on V ∗ in the same way as
those elements act on x. Symbolically:

f1 = λx : V.λy : V ∗.y (x)
g1 = λx : V ∗∗.the (y : V s.t. f1 (y) = x)

Note that f1 : V → V ∗ → R, and that the function which it returns (of type V ∗ → R) is linear, showing that
in fact f1 : V → V ∗∗. This function is 1 − 1, since for two distinct x, x′ : V there must exist a y : V ∗ such that
y (x) 6= y (x′) (for example, if we imagine a basis expansion for V , then we could take y to be the dot product of the
basis expansion of x−x′ with the basis expansion the parameter to y). That f1 is onto follows from the fact that if
we imagine a basis expansion for V , and the induced basis expansion for V ∗, we will have that y (x) is simply the
dot product of the basis expansions of y and x. The fact that every linear function V ∗ → R may be written as a dot
product with some vector shows that f1 is onto. Note that this (that f is onto) only holds for �nite-dimensional V
(essentially because we are only able to talk about �nite sums, so that while we can meaningfully work with basis
expansions of x and y in in�nite dimensions, the �dot product� is an in�nite sum, which we cannot handle without
some notion of limits, causing this argument to break down).
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V and linear V ∗ → R are equivalent

Since the set of all linear functions V ∗ → R is precisely V ∗∗, the same method as the previous part works.

Linear V → V and bilinear V × V ∗ → R are equivalent

The idea here is similar:

f2 = λx : V → V.λ (y, z) : V × V ∗.z (x (y))
g2 = λx : V × V ∗ → R.the (y : V → V s.t. f2 (y) = x)

Essentially what is being shown here is that every linear map from a vector space to itself �xes a coordinate system.
Choosing a basis of V allows us to represent this map as a matrix M (note that, for a single �xed basis, the map
between linear functions of type V → V , and matrices M , is 1 − 1 and onto), and permits us to map a y : V into
the dual space by taking My, and then map this and a z : V ∗ into the reals by taking the dot product (the one
induced on basis expansions on V ∗ by the choice of basis on V ) between My and z, as zMy. Note that while this
reasoning uses bases, the actual value of zMy is basis independent.

Isomorphisms V → V ∗, bilinear inner products V × V → R and bilinear inner products

V ∗ × V ∗ → R are equivalent

Note the additional restrictions on the problem statement, compared to the problem set.

First, the equivalence between V → V ∗ and V × V → R:

f3 = λx : V → V ∗.λ (y, z) : V × V.x (y) (z)
g3 = λx : V × V → R.the (y : V → V ∗ s.t. f3 (y) = x)

Clearly, if the type is isomorphisms V → V ∗ is equivalent to isomorphisms V ∗ → V . Hence, it su�ces to show that
V ∗ → V is equivalent to V ∗ × V ∗ → R to complete the equivalence. This is essentially identical to the above:

f4 = λx : V ∗ → V.λ (y, z) : V ∗ × V ∗.z (x (y))
g4 = λx : V ∗ × V ∗ → R.the (y : V ∗ → V s.t. f4 (y) = x)

The idea behind both of these equivalences is the same: all three of these maps may, once we �x a basis, be
represented as nonsingular matrices: if f : V → V ∗, then we may write f (x) = Mx; if f : V × V → R, then we
may write f (x, y) = xMy, and likewise if f : V ∗ × V ∗ → R. Furthermore, in all of these cases, there is a 1 − 1
correspondence between matrices, and functions of the desired form. In order to �nd an equivalence, then, we need
only impose the condition that �the matrices are the same�.

Problem 3

This will be a proof by contradiction. Suppose that V and V ∗ are equivalent. Then there must exist a well
typed bijective f : V → V ∗. Let ϕ : V → V be an automorphism (an isomorphism between V and itself). By
parametricity, f ∼ϕ f , giving that ∀x : V.∀y : V. (f (x) (y) = f (ϕ (x)) (ϕ (y))) (this holds because f (x) (y) : R, and
equivalence for real numbers is just equality).

In particular, if we assume that V is at least two dimensional, and let vi : i ∈ {1, . . . , d} be a basis for V , then we

may de�ne an automorphism ϕ : V → V such that if x =
∑d
i=1 αivi is the basis expansion for x, ϕ will exchange the

coe�cients α1 and α2: ϕ (x) = α2v1 +α1v2 +
∑d
i=3 αivi. By the fact that f (x) (y) = f (ϕ (x)) (ϕ (y)), we will have

that f (v1) (v1) = f (v2) (v2) and f (v1) (v2) = f (v2) (v1). Since every pair of linearly independent vectors may be
extended into a basis (if V is at least two dimensional), we see that f (x) (y) = f (y) (x) for all linearly independent
x, y : V .
Now consider the automorphism ϕ = λx : V.αx for some α : R with α 6= 0, which, again using the fact that
f (x) (y) = f (ϕ (x)) (ϕ (y)), gives that f (x) (y) = f (αx) (αy) = αf (αx) (y) (the last step by linearity), so that
f (x) = αf (αx) for all x : V . Combining this result with the previous symmetry result gives that f (x) (y) =
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αf (αx) (y) = αf (y) (αx) = α2f (y) (x) = α2f (x) (y) for all nonzero α : R, assuming that x and y are linearly
independent. Taking α = 2 gives that f (x) (y) = 4f (x) (y), showing that f = 0, contradicting our assumption that
it is a bijection.

So we have proved that V and V ∗ are not equivalent for V of dimension 2 and higher. Clearly, if V is zero-
dimensional, then V and V ∗ are equivalent, since both V and V ∗ consist of a single element (the zero vector).
What about if V is one-dimensional? In this case, we must still have by the above argument that f (x) = αf (αx),
from which we may infer that the bijection f : V → V ∗ must look something like the function 1

x , and indeed, if we
choose f = λx : V.the (y : V ∗ s.t. y (x) = 1R), then we get a function of precisely this form for all x 6= 0. With some
added handling for the zero vector, our bijection becomes:

f = λx : V.the (y : V ∗ s.t.
((x = 0V )⇒ (y = 0V ∗))∧
((x 6= 0V )⇒ (y (x) = 1R)))

Suprisingly, this is a bijection, for one-dimensional V , because any nonzero linear function crosses 1 at a unique
point, and knowledge of this point uniquely determined the function (as the unique line which passes through the
origin, and this point).

3


