PS3 Solutions

February 25, 2010

Problem 1

By definition:

$$(\nabla g) (x) (y) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} (g (x + \epsilon y) - g (x))$$

=
$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} ((x + \epsilon y) M (x + \epsilon y) - xMx)$$

=
$$\lim_{\epsilon \to 0} (yMx + xMy + \epsilon yMy)$$

=
$$yMx + xMy$$

So in order to write an expression for ∇g , we must "pull out" the matrix M from the function g. This may be accomplished by finding a bilinear form which agrees with g, as follows:

$$g' = \text{the} (f: V \to V \to \mathbb{R} \text{ s.t. } \forall x: V. (f(x)(x) = g(x)) \land \text{IsBilinear} (f))$$

Inside the "the" expression, forcing f to be bilinear causes it to have the form f(x)(y) = xM'y for some matrix M', while the first condition forces xM'x = xMx for all x, which implies that M' = M (because if x(M' - M)x = 0 for all x, then M' - M = 0). Hence, we need only define IsBilinear:

IsBilinear =
$$\lambda f : V \to V \to \mathbb{R}. \forall x : V. \forall y : V. \forall z : V. \forall \alpha : \mathbb{R}.$$

 $((f(\alpha x + z)(y) = \alpha f(x)(y) + f(z)(y)) \land (f(x)(\alpha y + z) = \alpha f(x)(y) + f(x)(z)))$

And we may now define ∇g :

$$\nabla g = \lambda x : V \cdot \lambda y : V \cdot (g'(x) + g'(y))$$

Problem 2

V and V^{**} are equivalent

We wish to find an equivalence $f: V \to V^{**}$ and $g: V^{**} \to V$. Since elements of V^* act on elements on V (that is, they are linear functions from V to \mathbb{R}), while elements of V^{**} act on elements on V^* , it would be natural to define f in such a way that for each $x \in V$, the corresponding $f(x) \in V^{**}$ acts on all elements on V^* in the same way as those elements act on x. Symbolically:

$$f_1 = \lambda x : V \cdot \lambda y : V^* \cdot y (x)$$

$$g_1 = \lambda x : V^{**} \cdot \text{the} (y : V \text{ s.t. } f_1 (y) = x)$$

Note that $f_1: V \to V^* \to \mathbb{R}$, and that the function which it returns (of type $V^* \to \mathbb{R}$) is linear, showing that in fact $f_1: V \to V^{**}$. This function is 1-1, since for two distinct x, x': V there must exist a $y: V^*$ such that $y(x) \neq y(x')$ (for example, if we imagine a basis expansion for V, then we could take y to be the dot product of the basis expansion of x - x' with the basis expansion the parameter to y). That f_1 is onto follows from the fact that if we imagine a basis expansion for V, and the induced basis expansion for V^* , we will have that y(x) is simply the dot product of the basis expansions of y and x. The fact that every linear function $V^* \to \mathbb{R}$ may be written as a dot product with some vector shows that f_1 is onto. Note that this (that f is onto) only holds for finite-dimensional V(essentially because we are only able to talk about finite sums, so that while we can meaningfully work with basis expansions of x and y in infinite dimensions, the "dot product" is an infinite sum, which we cannot handle without some notion of limits, causing this argument to break down).

V and linear $V^* \to \mathbb{R}$ are equivalent

Since the set of all linear functions $V^* \to \mathbb{R}$ is precisely V^{**} , the same method as the previous part works.

Linear $V \to V$ and bilinear $V \times V^* \to \mathbb{R}$ are equivalent

The idea here is similar:

$$f_2 = \lambda x : V \to V.\lambda(y, z) : V \times V^*.z(x(y))$$

$$g_2 = \lambda x : V \times V^* \to \mathbb{R}.\text{the}(y : V \to V \text{ s.t. } f_2(y) = x)$$

Essentially what is being shown here is that every linear map from a vector space to itself fixes a coordinate system. Choosing a basis of V allows us to represent this map as a matrix M (note that, for a single fixed basis, the map between linear functions of type $V \to V$, and matrices M, is 1-1 and onto), and permits us to map a y:V into the dual space by taking My, and then map this and a $z:V^*$ into the reals by taking the dot product (the one induced on basis expansions on V^* by the choice of basis on V) between My and z, as zMy. Note that while this reasoning uses bases, the actual value of zMy is basis independent.

Isomorphisms $V \to V^*$, bilinear inner products $V \times V \to \mathbb{R}$ and bilinear inner products $V^* \times V^* \to \mathbb{R}$ are equivalent

Note the additional restrictions on the problem statement, compared to the problem set.

First, the equivalence between $V \to V^*$ and $V \times V \to \mathbb{R}$:

$$f_{3} = \lambda x : V \to V^{*} . \lambda (y, z) : V \times V . x (y) (z)$$

$$g_{3} = \lambda x : V \times V \to \mathbb{R}. \text{the} (y : V \to V^{*} \text{ s.t. } f_{3} (y) = x)$$

Clearly, if the type is isomorphisms $V \to V^*$ is equivalent to isomorphisms $V^* \to V$. Hence, it suffices to show that $V^* \to V$ is equivalent to $V^* \times V^* \to \mathbb{R}$ to complete the equivalence. This is essentially identical to the above:

$$f_4 = \lambda x : V^* \to V.\lambda(y, z) : V^* \times V^*.z(x(y))$$

$$g_4 = \lambda x : V^* \times V^* \to \mathbb{R}.\text{the}(y : V^* \to V \text{ s.t. } f_4(y) = x)$$

The idea behind both of these equivalences is the same: all three of these maps may, once we fix a basis, be represented as nonsingular matrices: if $f: V \to V^*$, then we may write f(x) = Mx; if $f: V \times V \to \mathbb{R}$, then we may write f(x,y) = xMy, and likewise if $f: V^* \times V^* \to \mathbb{R}$. Furthermore, in all of these cases, there is a 1-1 correspondence between matrices, and functions of the desired form. In order to find an equivalence, then, we need only impose the condition that "the matrices are the same".

Problem 3

This will be a proof by contradiction. Suppose that V and V^* are equivalent. Then there must exist a well typed bijective $f: V \to V^*$. Let $\varphi: V \to V$ be an automorphism (an isomorphism between V and itself). By parametricity, $f \sim_{\varphi} f$, giving that $\forall x: V.\forall y: V. (f(x)(y) = f(\varphi(x))(\varphi(y)))$ (this holds because $f(x)(y): \mathbb{R}$, and equivalence for real numbers is just equality).

In particular, if we assume that V is at least two dimensional, and let $v_i : i \in \{1, \ldots, d\}$ be a basis for V, then we may define an automorphism $\varphi : V \to V$ such that if $x = \sum_{i=1}^{d} \alpha_i v_i$ is the basis expansion for x, φ will exchange the coefficients α_1 and α_2 : $\varphi(x) = \alpha_2 v_1 + \alpha_1 v_2 + \sum_{i=3}^{d} \alpha_i v_i$. By the fact that $f(x)(y) = f(\varphi(x))(\varphi(y))$, we will have that $f(v_1)(v_1) = f(v_2)(v_2)$ and $f(v_1)(v_2) = f(v_2)(v_1)$. Since every pair of linearly independent vectors may be extended into a basis (if V is at least two dimensional), we see that f(x)(y) = f(y)(x) for all linearly independent x, y : V.

Now consider the automorphism $\varphi = \lambda x : V \cdot \alpha x$ for some $\alpha : \mathbb{R}$ with $\alpha \neq 0$, which, again using the fact that $f(x)(y) = f(\varphi(x))(\varphi(y))$, gives that $f(x)(y) = f(\alpha x)(\alpha y) = \alpha f(\alpha x)(y)$ (the last step by linearity), so that $f(x) = \alpha f(\alpha x)$ for all x : V. Combining this result with the previous symmetry result gives that $f(x)(y) = f(\alpha x)(\alpha y) = \alpha f(\alpha x)(y)$.

 $\alpha f(\alpha x)(y) = \alpha f(y)(\alpha x) = \alpha^2 f(y)(x) = \alpha^2 f(x)(y)$ for all nonzero $\alpha : \mathbb{R}$, assuming that x and y are linearly independent. Taking $\alpha = 2$ gives that f(x)(y) = 4f(x)(y), showing that f = 0, contradicting our assumption that it is a bijection.

So we have proved that V and V^{*} are not equivalent for V of dimension 2 and higher. Clearly, if V is zerodimensional, then V and V^{*} are equivalent, since both V and V^{*} consist of a single element (the zero vector). What about if V is one-dimensional? In this case, we must still have by the above argument that $f(x) = \alpha f(\alpha x)$, from which we may infer that the bijection $f: V \to V^*$ must look something like the function $\frac{1}{x}$, and indeed, if we choose $f = \lambda x : V$.the $(y: V^* \text{ s.t. } y(x) = 1_{\mathbb{R}})$, then we get a function of precisely this form for all $x \neq 0$. With some added handling for the zero vector, our bijection becomes:

$$f = \lambda x : V.\text{the}(y : V^* \text{ s.t.} \\ ((x = 0_V) \Rightarrow (y = 0_{V^*})) \land \\ ((x \neq 0_V) \Rightarrow (y(x) = 1_{\mathbb{R}})))$$

Suprisingly, this is a bijection, for one-dimensional V, because any nonzero linear function crosses 1 at a unique point, and knowledge of this point uniquely determined the function (as the unique line which passes through the origin, and this point).