
PS2, Solutions

February 7, 2010

Problem 1

The �rst rule simply takes a production which gives a terminal symbol, and an edge which is labeled with the
corresponding symbol. It then �labels� the edge with the producing nonterminal:

X → α

n
α→ m

n
X→ m

The next rule �builds up� paths from components of nonterminals:

X → Y Z

n
Y→ p

p
Z→ m

n
X→ m

Let |V | and |E| be the number of vertices and edges in the graph, respectively. Also let n be the number of
nonterminals in the grammar, and |G| the number of productions. In the �rst inference rule, the �rst intecedent
may be instantiated in at most n ways, while the second may in instantiated in at most |E|. In the second inference
rule, the �rst antecedant may be instantiated in a most |G| ways, and the second and third (together) in at most

|V |3. Hence, there will be a total of at most n |E| + |G| |V |3 rule �rings over the course of a run of the algorithm,
which gives the running time.

Problem 2

We will �rst de�ne a cut:

R = (S : setof (Q) s.t.
∃ (x : Q) . (x ∈Q S)
∃ (x : Q) .∀ (y : Q) . ((y ∈Q S)⇒ (x <Q y))
∀ (x : Q) .∀ (y : Q) . ((x ∈Q S) ∧ (x <Q y)⇒ (y ∈ S))
¬∃ (x : Q) .∀ (y : Q) . ((x ∈Q S) ∧ (y ∈ S)⇒ (x ≤Q y)))

The four claims above assert that a cut is nonempty, bounded below, contains all elements of Q past a certain point,
and has no minimal element, respectively. To de�ne 0 and 1, we'll de�ne a MakeReal function:

MakeReal = λ (q : Q) .the (x : R (∀y : Q. (((y >Q q)⇒ (y ∈Q x)) ∧ ((y ≤Q q)⇒ ¬ (y ∈Q x)))))

the de�nitions of 0 and 1 are then just applications of MakeReal on the corresponding de�nitions on the rationals:

0R = MakeReal 0Q

1R = MakeReal 1Q

1

It will also be useful to de�ne a comparison operator, which we note by the de�nition of a Dedekind cut may be
de�ned such that ≤ is exactly the superset relation ⊇:

≤R = λ (X : R) .λ (Y : R) . (∀ (z : Q) . ((z ∈Q X)⇒ (z ∈Q Y)))

From this de�nition, we may easily de�ne <R, ≥R and >R, which I won't write out. We will de�ne + as the cut
which contains all sums of all elements of the parameters, but no sums of rationals less than the parameters:

+R = λ (X : R) .λ (Y : R) .the (Z : R
(∀ (x : Q) .∀ (y : Q) . ((x ∈Q X) ∧ (y ∈Q Y)⇒ (x+Q y ∈Q Z)))
∧ (∀ (x : Q) .∀ (y : Q) . (¬ (x ∈Q X) ∧ ¬ (y ∈Q Y)⇒ ¬ (x+Q y ∈Q Z))))

If we de�ne subtypes for the nonnegative rationals and reals:

Q+ = (x : Q s.t. 0Q ≤Q x)
R+ = (x : R s.t. 0R ≤R x)

then we may de�ne multiplication on the positive reals in the same was as addition was de�ned:

×R+ = λ
(
X : R+

)
.λ

(
Y : R+

)
.the

(
Z : R+(

∀
(
x : Q+

)
.∀

(
y : Q+

)
. ((x ∈Q X) ∧ (y ∈Q Y)⇒ (x×Q y ∈Q Z))

)
∧

(
∀

(
x : Q+

)
.∀

(
y : Q+

)
. (¬ (x ∈Q X) ∧ ¬ (y ∈Q Y)⇒ ¬ (x×Q y ∈Q Z))

))
The �nal ingredient which we need is negation. Note that this de�nition is di�erent than the one which was given
in class, since we must ensure that the resulting cut is left-open. This is the reason for using MakReal and the
comparison operators, rather than ∈:

−R = λ (X : R) .the (Y : R
∀ (x : Q) . ((MakeRealx >R X)⇒ (−Qx /∈Q Y))
∀ (x : Q) . ((MakeRealx <R X)⇒ (−Qx ∈Q Y))

We now de�ne multiplication on the reals as:

×R = λ (X : R) .λ (Y : R) .the (Z : R
(X ≥R 0) ∧ (Y ≥R 0)⇒ (Z = X ×R+ Y)
(X ≥R 0) ∧ (Y <R 0)⇒ (Z = −R (X ×R+ (−RY)))
(X <R 0) ∧ (Y <R 0)⇒ (Z = ((−RX)×R+ (−RY)))
(X <R 0) ∧ (Y ≥R 0)⇒ (Z = −R ((−RX)×R+ Y)))

Problem 3

We will de�ne a predicate on structure types of the form MaybeNat = {N : type, zero : N, successor : N → N},
which asserts that a well order exists on this type, which honors the zero and successor de�nitions:

WellOrdered = λ (T : MaybeNat) .λ ≤: (T.N × T.N → boole) .
∀ (x : T.N) . (T.zero ≤ x)
∧∀ (x : T.N) . (¬ (x = T.successor (x)) ∧ (x ≤ T.successor (x)))
∧∀ (x : T.N) .∀ (y : T.N) . ((x ≤ y) ∧ (y ≤ x)⇒ (x = y))
∧∀ (x : T.N) .∀ (y : T.N) .∀ (z : T.N) . ((x ≤ y) ∧ (y ≤ z)⇒ (x ≤ z))
∧∀ (x : T.N) .∀ (y : T.N) .∀ (z : T.N) . ((x ≤ y) ∨ (y ≤ x))

The �rst two portions of the above claim that zero is a minimal element, and that every element less than than its
successor. The remainder claim that the order is a total order (http://en.wikipedia.org/wiki/Total_order):
antisymmetric, transitive, and total.

2

A MaybeNat which satis�es the WellOrdered predicate will not necessarily be isomorphic to the natural numbers:
we also need to claim that there are an in�nite number of natural numbers, and that all of them can be reached by
performing a �nite number of successor operations from zero. The �rst claim, that there are an in�nite number, is
in fact implied by the WellOrdered predicate, but there is no harm in stating it anyway�the following asserts that
there is no largest element:

In�nite = λ (T : MaybeNat) .λ ≤: (T.N × T.N → boole) . (¬∃ (x : T.N) . (∀ (y : T.N) . (y ≤ x)))

The last claim will be asserted somewhat more subtly. We will claim that there exists a unique predicate P such
that P (zero) = true, and P (successor x) = P (x). Essentially, this predicate will inductively mark all of the
natural numbers (zero, and those numbers which can be reached via a �nite number of successor opertions) true,
but can take on di�erent values on elements which are �left over�. Claiming that there is a unique such predicate
ensures that there are no left-over elements, so that all we have are the naturals:

Countable = λ (T : MaybeNat) . (∃ (P : T.N → boole) .
P (T.zero) ∧ ∀ (x : T.N) . (P (T.successor x) = P (x))∧
∀ (Q : T.N → boole) .
Q (T.zero) ∧ ∀ (x : T.N) . (Q (T.successor x) = Q (x))⇒ P = Q)

We may now de�ne a predicate which asserts that an element of the MaybeNat type follows the axioms of the
natural numbers:

IsNatural = λ (T : MaybeNat) .∃ (≤: T.N × T.N → boole) .
WellOrdered (T,≤)
∧In�nite (T,≤)
∧Countable (T)

Proving that there is an isomorphism between any two types which satisfy the IsNatural predicate is now straight-
forward. Since we know that, by starting from zero, and performing the successor operation a �nite number of
times, we will always visit distinct elements, and will eventually visit all elements, we may identify successor zero
with 1, successor successor zero with 2, and so on. The isomorphism is to, for each n ∈ N, identify the n in one
type with the corresponding n in the other.

3

