TTIC 106: Problem Set 1 Due Wednesday, January 27

1. Give a derivation of the following sequent using the axioms in the first installment of the notes (A1 through A21).

 \emptyset ; even = $(\lambda(x : int) \exists y : int x = y + y) \vdash even : int \rightarrow Boole$

Your derivation should be a numbered sequence of lines where each line is justified by an axiom and a specification of which preceding lines are used as antecedents.

2. Define a function if : **Boole** × int × int \rightarrow int with the property that if(Φ , n, m) equals n if Φ is true and m otherwise. Your definition should be well formed under axioms A1 through A21. More specifically, it should be given as if = e and the axioms should allow you to derive \emptyset ; if = e \vdash if : **Boole** × int × int \rightarrow int. You do not have to give the derivation.

3. Give a definition of the factorial function of the form fact = e which is well formed under the axioms A1 through A21. We adopt the convention that fact(n) = 1 for $n \leq 0$. For your definition e give a derivation of the following sequent.

$$\emptyset$$
; fact = $e \vdash$ fact : **int** \rightarrow **int**

4. Recursive definitions are usually phrased formally in terms of a fixed point operator as in the following definition of factorial.

fact = fix((
$$\lambda$$
 (f : int \rightarrow int) (λ (x : int) if($x \le 1, 1, x * f(x-1)$))))

Give a well-formed definition of the function fix such that this definition of fact is both well formed and correct and also works for other "recursive definitions". More specifically, let F be the argument to fix in the above expression. Note that F(fact) = fact. The function fact is the unique fixed point of F. The function fix should return the fixed point of its argument F whenever F has a unique fixed point. You do not have to give the well-formedness derivation of your definition.