
TTIC 106: Second Midterm Exam
Friday February 26

Recall that two types τ and σ are equivalent in context Σ if there exist expres-
sions f and g such that we have the following.

Σ ` f : τ → σ

Σ ` g : σ → τ

Σ |= ∀x : τ g(f(x)) = x

Σ |= ∀y : σ f(g(y)) = y

1. Show that the structure type {first : int ; second : real} is equivalent to the
structure type {first : real ; second : int}. You can assume that we have the
following simple rule for typing structure expressions.

Structure Term Formation (Simple Form):

Σ ` e1 : τ1

...
Σ ` en : τn

Σ ` {s1 ← e1; · · · ; sn ← en} : {s1 : τ1; · · · ; sn : τn}

2. Let vectors x1, . . . xd be a basis for a vector space V and let f1, . . . fd be
a basis for the dual space V ∗. We say that the dual basis corresponds to the
primal basis if we have the following.

(f1(xi), . . . , fi−1(xi), fi(xi), fi+1(xi), . . . , fd(xi)) = (0, . . . , 0, 1, 0, . . . , 0)

or equivalently

fj(xi) =
{

1 if j = i
0 otherwise

It is a true fact that for any primal basis there is exactly one corresponding
dual basis and for any dual basis there is exactly one corresponding primal
basis. You do not have to prove this fact. However, given this fact argue that
the type “basis for V” is equivalent to the type “basis for V ∗”.

1



3. Suppose that in the context Σ we can show that the types τ and σ are
equivalent. Show that for any third type γ with Σ ` γ : typei we have that
the type σ → γ is equivalent to the type τ → γ and that the type γ → σ is
equivalent to the type γ → τ (this is a kind of substitution of equivalents for
equivalents in type expressions).

4. For which of the following triples of a context and two types is the first type
equivalent to the second type in the given context.

context type 1 type 2 equivalent not equivalent

α : type1 α→ (α→ Boole) α× α→ Boole
α : type1 (α→ α)→ Boole α× α→ Boole
α : type1 Boole→ α {first : α ; second : α}
α : type1 {first : α ; second : α} → Boole α× α→ Boole

5. For which of the following pairs of a context Σ and a type τ does there exists
an expression e such that we have σ ` e : τ

context type exists expression not exists expression

α : type1 α
α : type1 ; P : α→ Boole α
α : type1 ; f : α× α→ α α→ (α→ α)
α : type1 ; f : α→ int α
α : type1 ; f : α→ int α→ Boole

2


