
New	Hardness	Results	for	
Rou1ng	on	Disjoint	Paths	

Julia	Chuzhoy	
TTIC	

David	Kim	
U.	of	Chicago	

Rachit	Nimavat	
TTIC	

Node-Disjoint	Paths	(NDP)	

Input:	Graph	G,	demand	pairs	(s1,t1),…,(sk,tk).	
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths	

s1
t1

s2

t2

s3
t3

Node-Disjoint	Paths	(NDP)	

Input:	Graph	G,	demand	pairs	(s1,t1),…,(sk,tk).	
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths	

s1
t1

s2

t2

s3
t3

Node-Disjoint	Paths	(NDP)	

Input:	Graph	G,	demand	pairs	(s1,t1),…,(sk,tk).	
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths	

s1
t1

s2

t2

s3
t3

Solu1on	value:	2	

Edge-disjoint	Paths	(EDP):	
paths	must	be	edge-disjoint	

Node-Disjoint	Paths	(NDP)	

Input:	Graph	G,	demand	pairs	(s1,t1),…,(sk,tk).	
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths	

s1
t1

s2

t2

s3
t3

terminals	

k	–	number	of	
demand	pairs	

Complexity	of	NDP	
	

•  Constant	k:	efficiently	solvable	[Robertson,	Seymour	’90]	
•  Running	1me:		f(k)�n2	[Kawarabayashi,Kobayashi,	Reed]	

f(k) = 22
2

.

.

.

k

Complexity	of	NDP	
	

•  Constant	k:	efficiently	solvable	[Robertson,	Seymour	’90]	
•  Running	1me:		f(k)�n2	[Kawarabayashi,Kobayashi,	Reed]	
•  NP-hard	when	k	is	part	of	input	[Knuth,	Karp	’72]	
	

Mul1commodity	Flow	Relaxa1on	

•  Send	as	much	flow	as	possible	between	
demand	pairs.	

•  At	most	1	flow	unit	through	a	vertex.	

Approxima1on	Algorithm	[Kolliopoulos,	Stein	‘98]	
While	there	is	a	path	P	with	f(P)>0:	
•  Add	such	shortest	path	P	to	the	solu1on	
•  For	each	path	P’	sharing	ver1ces	with	P,	set	f(P’)	to	0	

						-approxima1on	O(
p
n)

Integrality	gap	of	the	mul1commodity	flow	relaxa1on	
is														,	even	on	grid	graphs.	⌦(

p
n)

Bad	Example	
s1 s2 sk …

tk t1 t2 …

s3

t3

Bad	Example	
s1 s2 sk …

tk t1 t2 …

s3

t3

Bad	Example	
s1 s2 sk …

tk t1 t2 …

s3

t3

Bad	Example	
s1 s2 sk …

tk t1 t2 …

s3

t3

Bad	Example	
s1 s2 sk …

tk t1 t2 …

s3

t3

OPTflow=k/3	
OPT=1	
gap:		

							�(k) = �(
p
n)

Integrality	gap	
of	the	flow	
relaxa1on	

Approxima1on	Status	of	NDP	

•  											-approxima1on	algorithm	
– Even	on	planar	graphs	
– Even	on	grid	graphshs	

•  																											-hardness	of	approxima1on	for	any	
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]	

	

O(
p
n)

�(log1/2�� n) ✏

un1l	recently	

Only	NP-hardness	
known	for	planar	
graphs	and	grids	

Approxima1on	Status	of	NDP	

•  											-approxima1on	algorithm	
– Even	on	planar	graphs	
– Even	on	grid	graphshs	

•  																											-hardness	of	approxima1on	for	any	
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]	

•  APX-hardness	in	grids	and	planar	graphs	[C,	Kim	‘15]	
	

O(
p
n)

�(log1/2�� n) ✏

New:																-
approxima1on	[C,	Kim	‘15]	

Õ(n1/4)

New:																		-
approxima1on	[C,	Kim,	Li	‘16]	

Õ(n9/19)

Plan:	
•  get	polylog(n)-approxima1on	on	grids	
•  extend	to	planar	graphs	
•  look	into	general	graphs	

Reality:	
•  												-	approxima1on	for	grids	with	all	sources	
lying	on	top	boundary	

•  															-hardness	of	approxima1on	for	
subgraphs	of	grids	with	all	sources	on	top	
boundary	

2⌦(

p
logn)

2O(

p
logn)

Plan:	
•  get	polylog(n)-approxima1on	on	grids	
•  extend	to	planar	graphs	
•  look	into	general	graphs	

Reality:	
•  												-	approxima1on	for	grids	with	all	sources	
lying	on	top	boundary	[C,	Kim,	Nimavat	‘16]	

•  															-hardness	of	approxima1on	for	
subgraphs	of	grids	with	all	sources	on	top	
boundary	

2⌦(

p
logn)

2O(

p
logn)

Approxima1on	Status	of	EDP	

•  											-approxima1on	algorithm	[Chekuri,	Khanna,	
Shepherd	‘06]	
– Even	on	planar	graphs	

•  																											-hardness	of	approxima1on	for	any	
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]	

	

O(
p
n)

�(log1/2�� n) ✏

A	Wall	

Approxima1on	Status	of	EDP	

•  											-approxima1on	algorithm	[Chekuri,	Khanna,	
Shepherd	‘06]	
– Even	on	planar	graphs	
– Wall	graphs:														-approxima1on	[C,	Kim	‘15]	

•  																											-hardness	of	approxima1on	for	any	
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]	

•  New:																		-hardness	of	approxima1on	even	for	
subcubic	planar	graphs	with	all	sources	on	boundary	
of	one	face		

	

O(
p
n)

�(log1/2�� n) ✏

Õ(n1/4)

2⌦(

p
logn)

Rou1ng	with	Conges1on	c	
Route	maximum	number	of	demand	pairs,	so	
that	every	edge	is	in	at	most	c	paths.	
	

EDP	with	Conges1on	
•  Conges1on	O(log	n/log	log	n):	constant	
approxima1on	[Raghavan,	Thompson	’87]	

•  Conges1on	c:														-approxima1on	[Azar,	Regev	’01],	
[Baveja,	Srinivasan	’00],	[Kolliopoulos,	Stein	‘04]	

•  Conges1on	poly(log	log	n):	polylog(n)-approx	
[Andrews	‘10]	

•  Conges1on	2:														-approxima1on	[Kawarabayashi,	
Kobayashi	’11]	

•  Conges1on	14:	polylog(k)-approxima1on	[C,	‘11]	
•  Conges1on	2:	polylog(k)-approxima1on	[C,	Li	’12]	
•  polylog(k)-approxima1on	for	NDP	with	conges1on	

2	[Chekuri,	Ene	’12],	[Chekuri,	C	‘16]															

	

O(n1/c)

O(n3/7)

EDP	with	Conges1on	
•  Conges1on	O(log	n/log	log	n):	constant	
approxima1on	[Raghavan,	Thompson	’87]	

•  Conges1on	c:														-approxima1on	[Azar,	Regev	’01],	
[Baveja,	Srinivasan	’00],	[Kolliopoulos,	Stein	‘04]	

•  Conges1on	poly(log	log	n):	polylog(n)-approx	
[Andrews	‘10]	

•  Conges1on	2:														-approxima1on	[Kawarabayashi,	
Kobayashi	’11]	

•  Conges1on	14:	polylog(k)-approxima1on	[C,	‘11]	
•  Conges1on	2:	polylog(k)-approxima1on	[C,	Li	’12]	
•  polylog(k)-approxima1on	for	NDP	with	conges1on	

2	[Chekuri,	Ene	’12],	[Chekuri,	C	‘16]															

	

O(n1/c)

O(n3/7)Big	difference	between	rou1ng	with	
conges1on	1	and	2.	

Hardness	of	Approxima1on	

New	result:	
•  																	-hardness	unless	
•  even	if		

– planar	graphs		
– max	vertex	degree	3		
– all	sources	on	the	boundary	of	the	outer	face.	

	

Hardness	of	Approxima1on	

2⌦(

p
logn) NP ✓ DTIME(nO(logn))

Best	previous:	
•  																							-hardness	for	general	graphs	
•  	APX-hardness	for	planar	graphs	
�(log1/2�� n)

New	result:	
•  																	-hardness	unless	
•  even	if		

– planar	graphs		
– max	vertex	degree	3		
– all	sources	on	the	boundary	of	the	outer	face.	

	

Hardness	of	Approxima1on	

2⌦(

p
logn) NP ✓ DTIME(nO(logn))

Best	previous:	
•  																							-hardness	for	general	graphs	
•  	APX-hardness	for	planar	graphs	
�(log1/2�� n)

unless																																																		.	NP ✓ ZPTIME(nO(poly logn))

Best	previous:	
•  																							-hardness	for	general	graphs	
•  	APX-hardness	for	planar	graphs	
�(log1/2�� n)

New	result:	
•  																	-hardness	unless	
•  even	if		

– planar	graphs		
– max	vertex	degree	3		
– all	sources	on	the	boundary	of	the	outer	face.	

	

Hardness	of	Approxima1on	

2⌦(

p
logn) NP ✓ DTIME(nO(logn))

4	
•  subgraphs	of	grids	
•  all	sources	on	top	row	

Star1ng	Point:	3SAT(5)	
Input:	3SAT(5)	formula	ϕ	
•  Boolean	variables	x1,…,xn	
•  Clauses	C1,…,Cm	

– A	clause	is	an	OR	of	3	literals	
– A	literal	is	a	variable	or	its	nega1on	

•  Each	variable	par1cipates	in	5	clauses	
Goal:	find	assignment	to	variables	to	maximize	
the	number	of	sa1sfied	clauses.	
	 (x1 _ ¬x5 _ ¬x10) ^ (x2 _ x6 _ ¬x4) ^ · · · ^ (¬x1 _ x2 _ x10)

m=5n/3	

Star1ng	Point:	3SAT(5)	
•  ϕ	is	a	Yes-Instance	if	some	assignment	
sa1sfies	all	clauses	

•  ϕ	is	a	No-Instance	if	no	assignment	sa1sfies	
more	than	(1-ε)m	clauses	

	

PCP	Theorem:	[Arora,	Safra	‘98],	[Arora,	Lund,	Motwani,	
Sudan,	Szegedy	‘98]	
No	efficient	algorithm	can	dis1nguish	between	Yes-	and	No-
Instances	of	3SAT(5)	unless	P=NP,	for	some	fixed	ε.	
	

Reduc1on	Plan	

•  Start	with	3SAT(5)	formula	ϕ	
•  Build	an	instance	of	NDP	of	size	

–  	ϕ	a	YI	è	can	route	CYI	demand	pairs	
– ϕ	a	NI	è	no	solu1on	routes	more	than	CNI	pairs	

Will	ensure:		

n0 = nO(logn)

CY I

CNI
= 2⌦(logn) = 2⌦(

p
logn0

)

Conclusion:	NDP	is																		-hard	to	approximate	
unless		

2⌦(

p
logn)

NP ✓ DTIME(nO(logn))

Reduc1on	Plan	

•  Construc1on	done	in	stages	
•  Stage	1:	constant	gap	between	YI	and	NI	cost	
•  Gap	grows	by	a	constant	in	every	stage	
•  Construc1on	size	grows	by	O(n)x(current-gap)	
•  Arer	O(log	n)	stages	will	achieve	2Ω(log	n)	gap,	
nO(log	n)	size.	

High-Level	Idea	

High-Level	Idea	

High-Level	Idea	

High-Level	Idea	
Level-1	instance:	
constant	gap	

Want:	increase	gap	
by	a	constant,	so	
that	instance	size	
does	not	grow	too	

much	

Idea:	replace	each	
demand	pair	with	a	
copy	of	the	whole	

instance!	

Need:	“composable”	
instances	

Defining	a	Family	of	Instances	

Defining	a	Family	of	Instances	

Defining	a	Family	of	Instances	

Defining	a	Family	of	Instances	

Level-1	Construc1on	

Level-1	Construc1on	

•  For	each	variable	x	of	ϕ	will	
define	a	set	M(x)	of	demand	
pairs		

•  For	each	clause	C	of	ϕ	will	
define	a	set	M(C)	of	demand	
pairs	
Ø  Consists	of	3	subsets	

M(C,L),	corresponding	to	
the	literals	L	of	C.	

B(I)

Level-1	Construc1on	

•  For	each	variable	x	of	ϕ	will	
define	a	set	M(x)	of	demand	
pairs		

•  For	each	clause	C	of	ϕ	will	
define	a	set	M(C)	of	demand	
pairs	
Ø  Consists	of	3	subsets	

M(C,L),	corresponding	to	
the	literals	L	of	C.	

Variable-pairs	

Clause-pairs	

B(I)

Level-1	Construc1on:	the	Box	

B(I)

20n3x20n3	

Level-1	Construc1on:	the	Box	

BCBV

B(I)

>n2	

>n2	
>n2	

Level-1	Construc1on:	the	Box	

BV
BCBV

B(x1) B(x2) · · · B(xn)

B(I)

>n2	

>n2	
>n2	

Far	from	each	
other	and	box	
boundaries	

Level-1	Construc1on:	the	Box	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

B(I)

>n2	

>n2	
>n2	

Far	from	each	
other	and	box	
boundaries	

Level-1	Construc1on:	the	Box	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

>n2	

>n2	
>n2	

P(x1)	 P(x2)	 …	 …	 P(xn)	

Level-1	Construc1on:	the	Box	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

>n2	

>n2	
>n2	

P(x1)	 P(x2)	 …	 …	 P(xn)	

M(x1)	

Variable	
Gadget	

Level-1	Construc1on:	the	Box	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

>n2	

>n2	
>n2	

P(x1)	 P(x2)	 …	 …	 P(xn)	
Some	
sources	

Clause	
Gadget	

Variable	Gadget	

B(x)	

P(x)	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	
Parameters:	

•  h=1000/ε	
•  100h	EXTRA	pairs	
•  6h	TRUE/FALSE	pairs	
•  h	pairs	for	each	

clause/literal	pair	

Variable	Gadget	
P(x)	

B(x)	

h=1000/ε	

100h	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	

Variable	Gadget	
P(x)	

B(x)	

h=1000/ε	

6h	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	

Variable	Gadget	
P(x)	

B(x)	

h=1000/ε	

6h	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	

Variable	Gadget	
P(x)	

B(x)	

h=1000/ε	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	

Rou1ng	if	x=TRUE	
P(x)	

B(x)	

h=1000/ε	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	

Level-1	Construc1on:	the	Box	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

P(x1)	 P(x2)	 …	 …	 P(xn)	

Rou1ng	if	x=TRUE	
P(x)	

B(x)	

TRUE	 FALSE	

TRUE	 FALSE	 EXTRA	

h=1000/ε	

EXTRA	

Rou1ng	if	x=FALSE	
P(x)	

B(x)	

TRUE	 FALSE	

TRUE	 FALSE	 EXTRA	

h=1000/ε	

EXTRA	

Rou1ng	if	x=FALSE	
P(x)	

h=1000/ε	

Can’t	Simultaneously	Route	Pairs	in	All	
Three	Sets!	

B(x)	

h=1000/ε	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	

a1 a2 a3

a03 a02a01

a2 a3

a03 a02

Can’t	Simultaneously	Route	Pairs	in	All	
Three	Sets!	

B(x)	 TRUE	 FALSE	 EXTRA	

TRUE	 FALSE	EXTRA	

Can’t	Simultaneously	Route	Pairs	in	All	
Three	Sets!	

B(x)	 TRUE	 FALSE	 EXTRA	

TRUE	 FALSE	EXTRA	

Can’t	Simultaneously	Route	Pairs	in	All	
Three	Sets!	

B(x)	 TRUE	 FALSE	 EXTRA	

a1 a2 a3

a03 a02a01

Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	
•  Can’t	route	pairs	

from	all	3	sets	
•  Always	bexer	to	

route	EXTRA	pairs	
•  Can	interpret	any	

rou1ng	as	truth	
assignment	to	
variables!	

Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	

M(C,¬x5)

M(C, x7)
C = ¬x _ ¬x5 _ x7

M(C,¬x)

Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	

h	pairs	

6h	black	
ver1ces	

M(C,¬x)

At	most	5	clauses	
containing	x	

Sources	for	each	clause	
consecu1ve,	in	right	order	

C = ¬x _ ¬x5 _ x7

Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	
M(C,¬x)

C = ¬x _ ¬x5 _ x7

Rou1ng	if	x=FALSE	
P(x)	

M(C,¬x)

C = ¬x _ ¬x5 _ x7

Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	

C = x _ ¬x5 _ x7

M(C, x)

Whole	Construc1on	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

>n2	

>n2	
>n2	

P(x1)	 P(x2)	 …	 …	 P(xn)	

Clause	Gadget	

B(C)	

C = (`1 _ `2 _ `3)

h=1000/ε	

3h

Clause	Gadget	

B(C)	

C = (`1 _ `2 _ `3)

h=1000/ε	

3h

Clause	Gadget	

B(C)	

C = (`1 _ `2 _ `3)

h=1000/ε	

3h

M(C, `1)

M(C, `2)

M(C, `3)

Clause	Gadget	

B(C)	

C = (`1 _ `2 _ `3)

M(C, `1)

M(C, `2)

M(C, `3)

3h

h=1000/ε	

Clause	Gadget	

B(C)	

P(x1)	 P(x2)	 …	 …	 P(xn)	

Clause	Gadget	

B(C)	

C = (`1 _ `2 _ `3)

M(C, `1)

M(C, `2)

M(C, `3)

3h

h=1000/ε	

Clause	Gadget	

B(C)	

C = (`1 _ `2 _ `3)

M(C, `1)

M(C, `2)

M(C, `3)

3h

h=1000/ε	

Copies	C1,…,Ch	of	C	
•  mh	new	clauses	
•  in	NI:	can	sa1sfy	at	

most	(1-ε)-frac1on	

Clause	Gadget	

B(C)	 3h

h=1000/ε	

•  mh	new	clauses	
•  in	NI:	can	sa1sfy	at	

most	(1-ε)-frac1on	

•  Clause	copy	is	bad	if	
routes	more	than	1	
demand	pair	

•  At	most	3	copies	of	
each	clause	can	be	
bad	

Yes-Instance	Solu1on	

•  Fix	assignment	to	variables	that	sa1sfies	all	
clauses	

•  If	x	is	assigned	TRUE,	route	its	TRUE	and	
EXTRA	pairs,	otherwise	route	its	FALSE	and	
EXTRA	pairs	

•  For	each	clause	C,	choose	a	literal	L	that	is	
sa1sfied	and	route	all	pairs	in	M(C,L)	

Yes-Instance	Rou1ng	

BC

B(I)

B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .

•  Red	paths:	variable-pairs	
•  Blue	paths:	clause-pairs	

Claim:	
•  For	each	variable,	its	paths	
arrive	consecu1vely.	

•  Same	for	each	clause.	

Rou1ng	if	x=TRUE	
P(x)	

B(x)	

TRUE	 FALSE	

TRUE	 FALSE	 EXTRA	

EXTRA	

M(C, x)

C = x _ ¬x5 _ x7

B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .

•  Paths	corresponding	to	
each	variable	arrive	
consecu1vely	

•  Paths	corresponding	to	
each	clause	arrive	
consecu1vely	

•  Ordering	between	
different	variables	is	
correct	

B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .

B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .

B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .

•  Paths	corresponding	to	
each	clause	arrive	
consecu1vely	

•  But	the	ordering	of	the	
clauses	may	be	wrong	

BC

BC

Des1na1ons	must	be	at	distance	at	
least	CYI	from	the	boxom	of	B(I)!	

No-Instance	Analysis	

•  Most	variables	will	route	most	EXTRA	pairs	
and	TRUE	or	FALSE	pairs	è	assignment	to	
variable	

•  Most	copies	of	clauses	will	route	1	demand	
pair.	That	literal	must	sa1sfy	the	clause.	

No-Instance	Analysis	

•  Most	variables	will	route	most	EXTRA	pairs	
and	TRUE	or	FALSE	pairs	è	assignment	to	
variable	

•  Most	copies	of	clauses	will	route	1	demand	
pair.	That	literal	must	sa1sfy	the	clause.	

•  If	many	pairs	are	routed,	many	clauses	are	
sa1sfied.	

Higher-Level	Construc1on	

To	construct	a	level-i	instance:	
•  Take	level-1	instance		
•  replace	each	demand	pair	with	a	copy	of	a	
level-(i-1)	instance	

B(I)

Level-i	construc1on	

BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

P (I)

P(x1)	 P(x2)	 …	 …	 P(xn)	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

Yes-Instance	Analysis	

•  For	a	level-(i-1)	instance	I’,	let	M’(I’)	be	the	set	
of	the	demand	pairs	routed	in	YI	

•  If	level-1	instance	would	route	demand	pair	
(s,t),	route	all	pairs	in	set	M’(I’),	where	I’	
corresponds	to	(s,t)	

B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .

BC

Exploit	the	level-(i-1)	rou1ng!	

No-Instance	Analysis	

•  A	level-(i-1)	instance	is	interes1ng	if	we	route	
many	of	its	demand	pairs	

•  Rela1vely	few	interes1ng	instances	
•  In	each	interes1ng	instance	can	only	route	
few	demand	pairs	

•  Gap	grows	by	a	constant	

No-Instance	Analysis	

•  A	level-(i-1)	instance	is	interes1ng	if	we	route	
many	of	its	demand	pairs	

•  Rela1vely	few	interes1ng	instances	
•  In	each	interes1ng	instance	can	only	route	
few	demand	pairs	

•  Gap	grows	by	a	constant	

Level-1	
analysis	

Level-(i-1)	
analysis	

Can’t	Simultaneously	Route	Pairs	in	All	
Three	Sets!	

B(x)	

h=1000/ε	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

BC

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

CYI	for	level-(i-1)	
instances	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

CYI	for	level-(i-1)	
instances	

•  Can	get	up	to	CYI	
chea1ng	paths	per	
gadget.	

•  In	NI	will	only	try	to	
route	CNI	pairs	per	
instance	

•  Want	the	gap	to	grow	
by	a	constant	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

CYI	for	level-(i-1)	
instances	

•  Can	get	up	to	CYI	
chea1ng	paths	per	
gadget.	

•  In	NI	will	only	try	to	
route	CNI	pairs	per	
instance	

•  Want	the	gap	to	grow	
by	a	constant	

•  Replace	each	demand	pair	by	
many	level-(i-1)	instances	

•  How	many?	More	than	CYI/CNI	

Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

CYI	for	level-(i-1)	
instances	

•  Can	get	up	to	CYI	
chea1ng	paths	per	
gadget.	

•  In	NI	will	only	try	to	
route	CNI	pairs	per	
instance	

•  Want	the	gap	to	grow	
by	a	constant	

•  Replace	each	demand	pair	by	
many	level-(i-1)	instances	

•  How	many?	More	than	CYI/CNI	

Instance	size	will	grow	by	current	
gap	1mes	n	in	each	itera1on.	

Reduc1on	Plan	

•  Gap	grows	by	a	constant	in	every	stage	
•  Construc1on	size	grows	by	O(n)x(current-gap)	
•  Arer	O(log	n)	stages	will	achieve	2Ω(log	n)	gap,	
nO(log	n)	size.	

Reduc1on	Plan	

•  Start	with	3SAT(5)	formula	ϕ	
•  Build	an	instance	I(ϕ)	of	NDP	of	size	

–  	ϕ	a	YI	è	can	route	CYI	demand	pairs	
– ϕ	a	NI	è	no	solu1on	routes	more	than	CNI	pairs	

Will	ensure:		

n0 = nO(logn)

CY I

CNI
= 2⌦(logn) = 2⌦(

p
logn0

)

Conclusion:	NDP	is																		-hard	to	approximate	
unless		

2⌦(

p
logn)

NP ✓ DTIME(nO(logn))

Reduc1on	Plan	

•  Start	with	3SAT(5)	formula	ϕ	
•  Build	an	instance	I(ϕ)	of	NDP	of	size	

–  	ϕ	a	YI	è	can	route	CYI	demand	pairs	
– ϕ	a	NI	è	no	solu1on	routes	more	than	CNI	pairs	

Will	ensure:		

n0 = nO(logn)

CY I

CNI
= 2⌦(logn) = 2⌦(

p
logn0

)

Conclusion:	NDP	is																		-hard	to	approximate	
unless		

2⌦(

p
logn)

NP ✓ DTIME(nO(logn))

Can	extend	to	subcubic	graphs,	
EDP	by	using	walls	instead	of	

grids	

Summary	for	NDP	so	Far	
Grids	

•  														-approxima1on	algorithm	
•  															-approxima1on	if	sources	on	grid	boundary	
•  APX-hardness	

Planar	Graphs	
•  														-approxima1on	algorithm	
•  															-hardness	

General	Graphs	
•  												-approxima1on	
•  															-hardness	

Õ(n1/4)

Õ(n9/19)

2⌦(

p
logn)

2O(

p
logn)

2⌦(

p
logn)

O(
p
n)

Summary	for	NDP	so	Far	
Grids	

•  														-approxima1on	algorithm	
•  															-approxima1on	if	sources	on	grid	boundary	
•  APX-hardness	

Õ(n1/4)

2O(

p
logn)

New:	NDP	on	grids	is	very	hard	to	approximate	[C,	
Kim,	Nimavat	‘17]	
•  														-hardness	for	any	constant	
•  																		-hardness	

2(logn)1�✏

n1/(log logn)2
✏

Summary	for	NDP	so	Far	
Grids	

•  														-approxima1on	algorithm	
•  															-approxima1on	if	sources	on	grid	boundary	
•  APX-hardness	

Õ(n1/4)

2O(

p
logn)

New:	NDP	on	grids	is	very	hard	to	approximate	[C,	
Kim,	Nimavat	‘17]	
•  														-hardness	for	any	constant	
•  																		-hardness	

2(logn)1�✏

n1/(log logn)2

	
unless	all	problems	in	NP	
have	randomized	quasi-
poly-1me	algorithms	

		

	
under	randomized	ETH		

(need	almost	exponen1al	1me	to	
solve	SAT	by	randomized	alg)	

		

✏

Summary	for	NDP	so	Far	
Grids	

•  														-approxima1on	algorithm	
•  															-approxima1on	if	sources	on	grid	boundary	
•  APX-hardness	

Õ(n1/4)

2O(

p
logn)

New:	NDP	on	grids	is	very	hard	to	approximate	[C,	
Kim,	Nimavat	‘17]	
•  														-hardness	for	any	constant	
•  																		-hardness	

2(logn)1�✏

n1/(log logn)2
✏

Disclaimer	
This	result	is	a	work	in	progress.	It	was	not	
carefully	verified	yet	and	may	turn	out	to	
be	incorrect!	

Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	i,	subset																									of	edges,	with	|Ei|≤	h	

•  Goal:	maximize	

Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	i,	subset																									of	edges,	with	|Ei|≤	h	

•  Goal:	maximize	

Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	subgraph	Gi,	select	a	subset	Ei	of	at	most	h	
edges	

– Goal:	maximize	
X

i

|Ei|

Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	subgraph	Gi,	select	a	subset	Ei	of	at	most	h	
edges	

– Goal:	maximize	
X

i

|Ei|

Weird	Graph	
Par11oning	problem	

(WGP)	

NDP	in	grids	is	at	least	
as	hard	as	WGP	

Rou1ng	in	
Grids	

Drawing/Layout	of	
Graphs	

Graph	Par11oning	

Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	subgraph	Gi,	select	a	subset	Ei	of	at	most	h	
edges	

– Goal:	maximize	
X

i

|Ei|

Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	subgraph	Gi,	select	a	subset	Ei	of	at	most	h	
edges	

– Goal:	maximize	
X

i

|Ei|

Intui1on:	
•  Balanced	par11on	into	many	clusters	
•  Want	the	clusters	to	be	very	dense	

Somewhat	similar	to	densest	k-subgraph		

On	Densest	k-Subgraph	
Find	a	subgraph	of	G	on	k	ver1ces	with	largest	
number	of	edges.	
•  O(n1/4)-approxima1on	[Bhaskara,	Charikar,	Chlamtac,	Feige,	

Vijayaraghavan	‘10]	

•  Notoriously	hard	to	prove	hardness	of	approxima1on	
– APX-hardness	[Khot,	‘06]	
–  Constant	hardness	assuming	small-set-expansion	
conjecture	[Raghavendra,	Steurer	’10]	

– Hardness	results	based	on	average-case	complexity	
assump1on	of	SAT	of	Feige	[Alon,	Arora,	Manokaran,	
Moshkovitz,	Weinstein	‘11]	

– Almost	polynomial	hardness	using	Exponen1al	Time	
Hypothesis	[Manurangsi	‘16]	

Main	Ideas:	
•  Work	with	a	more	general	problem	
•  Prove	that	NDP	in	grids	is	at	least	as	hard	as	this	
problem	

•  Mul1-stage	reduc1on	
•  Edges	are	par11oned	into	
“bundles”	

•  At	most	one	edge	per	
bundle	can	be	used	in	a	
solu1on;	the	rest	must	be	
deleted.	

Main	Ideas:	
•  Work	with	a	more	general	problem	
•  Prove	that	NDP	in	grids	is	at	least	as	hard	as	this	
problem	

•  Mul1-stage	reduc1on	(Cook	not	Karp	reduc1on)	

Standard	One-Shot	Reduc1on	

3-Coloring	
Graph	

Par11oning	
problem	

NDP	on	
Grids	

•  If	3-Coloring	is	a	Yes-Instance,	can	route	many	
pairs	

•  Otherwise,	can	only	route	few	pairs	

Our	Reduc1on	
Assume	for	contradic1on	that	there	is	an	α-
approxima1on	algorithm	A	for	NDP.	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

3-Coloring	

Our	Reduc1on	
Assume	for	contradic1on	that	there	is	an	α-
approxima1on	algorithm	A	for	NDP.	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

3-Coloring	
•  If	the	3-Coloring	instance	is	a	Yes-Instance,	all	NDP	
instances	have	good	solu1ons	

•  Otherwise,	one	of	the	instances	has	a	very	bad	solu1on	
•  We	apply	algorithm	A	to	each	NDP	instance,	and	
establish	whether	the	3-Coloring	instance	is	a	Yes	or		No	
instance.	

Our	Reduc1on	
Assume	for	contradic1on	that	there	is	an	α-
approxima1on	algorithm	A	for	NDP.	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

Graph	
Par11oning	
problem	

NDP	on	
Grids	

3-Coloring	

Single-Shot	vs	Mul1-shot	Reduc1ons	

•  Intui1vely,	it	feels	like	mul1-shot	reduc1ons	
should	be	more	powerful	

•  But	in	almost	all	cases,	single-shot	reduc1ons	
are	sufficient	

•  It	is	possible	that	one	can	construct	a	single-
shot	reduc1on	from	3-Coloring	to	NDP	

a	bug,	not	a	
feature?	

Single-Shot	vs	Mul1-shot	Reduc1ons	

•  Intui1vely,	it	feels	like	mul1-shot	reduc1ons	
should	be	more	powerful	

•  But	in	almost	all	cases,	single-shot	reduc1ons	
are	sufficient	

•  It	is	possible	that	one	can	construct	a	single-
shot	reduc1on	from	3-Coloring	to	NDP	

Excep1on:	NP-hardness	
of	embedding		metrics	
into	L1	[Karzanov]	

Conclusions	

•  We	showed:	NDP	is																		-hard	to	
approximate	even	on	sub-graphs	of	grids/
walls	with	all	sources	on	top	boundary	

•  Looks	like	we	can	show	almost	polynomial	
hardness	in	grids	(also	for	EDP	on	walls)	

•  Conges1on	minimiza1on:	
– O(log	n/log	log	n)-approxima1on	algorithm	
– Ω(log	log	n)-hardness	of	approxima1on	

2⌦(

p
logn)

Thank	you!	

