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Input:	Graph	G,	demand	pairs	(s1,t1),…,(sk,tk).	
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Goal:	Route	as	many	pairs	as	possible	via	node-
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Solu1on	value:	2	

Edge-disjoint	Paths	(EDP):	
paths	must	be	edge-disjoint	



Node-Disjoint	Paths	(NDP)	

Input:	Graph	G,	demand	pairs	(s1,t1),…,(sk,tk).	
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths	

s1
t1

s2

t2

s3
t3

terminals	

k	–	number	of	
demand	pairs	



Complexity	of	NDP	
	

•  Constant	k:	efficiently	solvable	[Robertson,	Seymour	’90]	
•  Running	1me:		f(k)�n2	[Kawarabayashi,Kobayashi,	Reed]	
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Complexity	of	NDP	
	

•  Constant	k:	efficiently	solvable	[Robertson,	Seymour	’90]	
•  Running	1me:		f(k)�n2	[Kawarabayashi,Kobayashi,	Reed]	
•  NP-hard	when	k	is	part	of	input	[Knuth,	Karp	’72]	
	



Mul1commodity	Flow	Relaxa1on	

•  Send	as	much	flow	as	possible	between	
demand	pairs.	

•  At	most	1	flow	unit	through	a	vertex.	



Approxima1on	Algorithm	[Kolliopoulos,	Stein	‘98]	
While	there	is	a	path	P	with	f(P)>0:	
•  Add	such	shortest	path	P	to	the	solu1on	
•  For	each	path	P’	sharing	ver1ces	with	P,	set	f(P’)	to	0	

						-approxima1on	O(
p
n)

Integrality	gap	of	the	mul1commodity	flow	relaxa1on	
is														,	even	on	grid	graphs.	⌦(

p
n)
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Bad	Example	
s1 s2 sk …

tk t1 t2 …

s3 

t3 

OPTflow=k/3	
OPT=1	
gap:		

							�(k) = �(
p
n)

Integrality	gap	
of	the	flow	
relaxa1on	



Approxima1on	Status	of	NDP	

•  											-approxima1on	algorithm	
– Even	on	planar	graphs	
– Even	on	grid	graphshs	

•  																											-hardness	of	approxima1on	for	any	
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]	

	

O(
p
n)

�(log1/2�� n) ✏

un1l	recently	

Only	NP-hardness	
known	for	planar	
graphs	and	grids	



Approxima1on	Status	of	NDP	

•  											-approxima1on	algorithm	
– Even	on	planar	graphs	
– Even	on	grid	graphshs	

•  																											-hardness	of	approxima1on	for	any	
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]	

•  APX-hardness	in	grids	and	planar	graphs	[C,	Kim	‘15]	
	

O(
p
n)

�(log1/2�� n) ✏

New:																-
approxima1on	[C,	Kim	‘15]	

Õ(n1/4)

New:																		-
approxima1on	[C,	Kim,	Li	‘16]	

Õ(n9/19)



Plan:	
•  get	polylog(n)-approxima1on	on	grids	
•  extend	to	planar	graphs	
•  look	into	general	graphs	

Reality:	
•  												-	approxima1on	for	grids	with	all	sources	
lying	on	top	boundary	

•  															-hardness	of	approxima1on	for	
subgraphs	of	grids	with	all	sources	on	top	
boundary	

2⌦(

p
logn)

2O(

p
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Plan:	
•  get	polylog(n)-approxima1on	on	grids	
•  extend	to	planar	graphs	
•  look	into	general	graphs	

Reality:	
•  												-	approxima1on	for	grids	with	all	sources	
lying	on	top	boundary	[C,	Kim,	Nimavat	‘16]	

•  															-hardness	of	approxima1on	for	
subgraphs	of	grids	with	all	sources	on	top	
boundary	
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p
logn)

2O(

p
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Approxima1on	Status	of	EDP	

•  											-approxima1on	algorithm	[Chekuri,	Khanna,	
Shepherd	‘06]	
– Even	on	planar	graphs	

•  																											-hardness	of	approxima1on	for	any	
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]	

	

O(
p
n)

�(log1/2�� n) ✏



A	Wall	



Approxima1on	Status	of	EDP	

•  											-approxima1on	algorithm	[Chekuri,	Khanna,	
Shepherd	‘06]	
– Even	on	planar	graphs	
– Wall	graphs:														-approxima1on	[C,	Kim	‘15]	

•  																											-hardness	of	approxima1on	for	any	
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]	

•  New:																		-hardness	of	approxima1on	even	for	
subcubic	planar	graphs	with	all	sources	on	boundary	
of	one	face		

	

O(
p
n)

�(log1/2�� n) ✏

Õ(n1/4)

2⌦(

p
logn)



Rou1ng	with	Conges1on	c	
Route	maximum	number	of	demand	pairs,	so	
that	every	edge	is	in	at	most	c	paths.	
	



EDP	with	Conges1on	
•  Conges1on	O(log	n/log	log	n):	constant	
approxima1on	[Raghavan,	Thompson	’87]	

•  Conges1on	c:														-approxima1on	[Azar,	Regev	’01],	
[Baveja,	Srinivasan	’00],	[Kolliopoulos,	Stein	‘04]	

•  Conges1on	poly(log	log	n):	polylog(n)-approx	
[Andrews	‘10]	

•  Conges1on	2:														-approxima1on	[Kawarabayashi,	
Kobayashi	’11]	

•  Conges1on	14:	polylog(k)-approxima1on	[C,	‘11]	
•  Conges1on	2:	polylog(k)-approxima1on	[C,	Li	’12]	
•  polylog(k)-approxima1on	for	NDP	with	conges1on	

2	[Chekuri,	Ene	’12],	[Chekuri,	C	‘16]															

	

O(n1/c)

O(n3/7)



EDP	with	Conges1on	
•  Conges1on	O(log	n/log	log	n):	constant	
approxima1on	[Raghavan,	Thompson	’87]	

•  Conges1on	c:														-approxima1on	[Azar,	Regev	’01],	
[Baveja,	Srinivasan	’00],	[Kolliopoulos,	Stein	‘04]	

•  Conges1on	poly(log	log	n):	polylog(n)-approx	
[Andrews	‘10]	

•  Conges1on	2:														-approxima1on	[Kawarabayashi,	
Kobayashi	’11]	

•  Conges1on	14:	polylog(k)-approxima1on	[C,	‘11]	
•  Conges1on	2:	polylog(k)-approxima1on	[C,	Li	’12]	
•  polylog(k)-approxima1on	for	NDP	with	conges1on	

2	[Chekuri,	Ene	’12],	[Chekuri,	C	‘16]															

	

O(n1/c)

O(n3/7)Big	difference	between	rou1ng	with	
conges1on	1	and	2.	



Hardness	of	Approxima1on	



New	result:	
•  																	-hardness	unless	
•  even	if		

– planar	graphs		
– max	vertex	degree	3		
– all	sources	on	the	boundary	of	the	outer	face.	

	

Hardness	of	Approxima1on	

2⌦(

p
logn) NP ✓ DTIME(nO(logn))

Best	previous:	
•  																							-hardness	for	general	graphs	
•  	APX-hardness	for	planar	graphs	
�(log1/2�� n)
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Best	previous:	
•  																							-hardness	for	general	graphs	
•  	APX-hardness	for	planar	graphs	
�(log1/2�� n)

New	result:	
•  																	-hardness	unless	
•  even	if		

– planar	graphs		
– max	vertex	degree	3		
– all	sources	on	the	boundary	of	the	outer	face.	

	

Hardness	of	Approxima1on	

2⌦(

p
logn) NP ✓ DTIME(nO(logn))

4	
•  subgraphs	of	grids	
•  all	sources	on	top	row	



Star1ng	Point:	3SAT(5)	
Input:	3SAT(5)	formula	ϕ	
•  Boolean	variables	x1,…,xn	
•  Clauses	C1,…,Cm	

– A	clause	is	an	OR	of	3	literals	
– A	literal	is	a	variable	or	its	nega1on	

•  Each	variable	par1cipates	in	5	clauses	
Goal:	find	assignment	to	variables	to	maximize	
the	number	of	sa1sfied	clauses.	
	 (x1 _ ¬x5 _ ¬x10) ^ (x2 _ x6 _ ¬x4) ^ · · · ^ (¬x1 _ x2 _ x10)

m=5n/3	



Star1ng	Point:	3SAT(5)	
•  ϕ	is	a	Yes-Instance	if	some	assignment	
sa1sfies	all	clauses	

•  ϕ	is	a	No-Instance	if	no	assignment	sa1sfies	
more	than	(1-ε)m	clauses	

	

PCP	Theorem:	[Arora,	Safra	‘98],	[Arora,	Lund,	Motwani,	
Sudan,	Szegedy	‘98]	
No	efficient	algorithm	can	dis1nguish	between	Yes-	and	No-
Instances	of	3SAT(5)	unless	P=NP,	for	some	fixed	ε.	
	



Reduc1on	Plan	

•  Start	with	3SAT(5)	formula	ϕ	
•  Build	an	instance	of	NDP	of	size	

–  	ϕ	a	YI	è	can	route	CYI	demand	pairs	
– ϕ	a	NI	è	no	solu1on	routes	more	than	CNI	pairs	

Will	ensure:		

n0 = nO(logn)

CY I

CNI
= 2⌦(logn) = 2⌦(

p
logn0

)

Conclusion:	NDP	is																		-hard	to	approximate	
unless		

2⌦(

p
logn)

NP ✓ DTIME(nO(logn))



Reduc1on	Plan	

•  Construc1on	done	in	stages	
•  Stage	1:	constant	gap	between	YI	and	NI	cost	
•  Gap	grows	by	a	constant	in	every	stage	
•  Construc1on	size	grows	by	O(n)x(current-gap)	
•  Arer	O(log	n)	stages	will	achieve	2Ω(log	n)	gap,	
nO(log	n)	size.	
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High-Level	Idea	
Level-1	instance:	
constant	gap	

Want:	increase	gap	
by	a	constant,	so	
that	instance	size	
does	not	grow	too	

much	

Idea:	replace	each	
demand	pair	with	a	
copy	of	the	whole	

instance!	

Need:	“composable”	
instances	



Defining	a	Family	of	Instances	
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Level-1	Construc1on	

•  For	each	variable	x	of	ϕ	will	
define	a	set	M(x)	of	demand	
pairs		

•  For	each	clause	C	of	ϕ	will	
define	a	set	M(C)	of	demand	
pairs	
Ø  Consists	of	3	subsets	

M(C,L),	corresponding	to	
the	literals	L	of	C.	

B(I)



Level-1	Construc1on	

•  For	each	variable	x	of	ϕ	will	
define	a	set	M(x)	of	demand	
pairs		

•  For	each	clause	C	of	ϕ	will	
define	a	set	M(C)	of	demand	
pairs	
Ø  Consists	of	3	subsets	

M(C,L),	corresponding	to	
the	literals	L	of	C.	

Variable-pairs	

Clause-pairs	

B(I)



Level-1	Construc1on:	the	Box	

B(I)

20n3x20n3	
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Level-1	Construc1on:	the	Box	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

>n2	

>n2	
>n2	

P(x1)	 P(x2)	 …	 …	 P(xn)	
Some	
sources	

Clause	
Gadget	
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Variable	Gadget	
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Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	
Parameters:	

•  h=1000/ε	
•  100h	EXTRA	pairs	
•  6h	TRUE/FALSE	pairs	
•  h	pairs	for	each	

clause/literal	pair	
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Rou1ng	if	x=TRUE	
P(x)	

B(x)	

h=1000/ε	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	



Level-1	Construc1on:	the	Box	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

P(x1)	 P(x2)	 …	 …	 P(xn)	



Rou1ng	if	x=TRUE	
P(x)	

B(x)	

TRUE	 FALSE	

TRUE	 FALSE	 EXTRA	

h=1000/ε	

EXTRA	



Rou1ng	if	x=FALSE	
P(x)	

B(x)	

TRUE	 FALSE	

TRUE	 FALSE	 EXTRA	

h=1000/ε	

EXTRA	



Rou1ng	if	x=FALSE	
P(x)	

h=1000/ε	



Can’t	Simultaneously	Route	Pairs	in	All	
Three	Sets!	

B(x)	

h=1000/ε	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	



a1 a2 a3

a03 a02a01

a2 a3

a03 a02
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Can’t	Simultaneously	Route	Pairs	in	All	
Three	Sets!	

B(x)	 TRUE	 FALSE	 EXTRA	



a1 a2 a3

a03 a02a01



Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	
•  Can’t	route	pairs	

from	all	3	sets	
•  Always	bexer	to	

route	EXTRA	pairs	
•  Can	interpret	any	

rou1ng	as	truth	
assignment	to	
variables!	



Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	

M(C,¬x5)

M(C, x7)
C = ¬x _ ¬x5 _ x7

M(C,¬x)



Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	

h	pairs	

6h	black	
ver1ces	

M(C,¬x)

At	most	5	clauses	
containing	x	

Sources	for	each	clause	
consecu1ve,	in	right	order	

C = ¬x _ ¬x5 _ x7



Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	
M(C,¬x)

C = ¬x _ ¬x5 _ x7



Rou1ng	if	x=FALSE	
P(x)	

M(C,¬x)

C = ¬x _ ¬x5 _ x7



Variable	Gadget	
P(x)	

h=1000/ε	

TRUE	 FALSE	EXTRA	

B(x)	 TRUE	 FALSE	 EXTRA	

C = x _ ¬x5 _ x7

M(C, x)



Whole	Construc1on	

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

>n2	

>n2	
>n2	

P(x1)	 P(x2)	 …	 …	 P(xn)	
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Clause	Gadget	
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3h
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Clause	Gadget	

B(C)	

C = (`1 _ `2 _ `3)

M(C, `1)

M(C, `2)

M(C, `3)

3h

h=1000/ε	



Clause	Gadget	

B(C)	

C = (`1 _ `2 _ `3)

M(C, `1)

M(C, `2)

M(C, `3)

3h

h=1000/ε	

Copies	C1,…,Ch	of	C	
•  mh	new	clauses	
•  in	NI:	can	sa1sfy	at	

most	(1-ε)-frac1on	



Clause	Gadget	

B(C)	 3h

h=1000/ε	

•  mh	new	clauses	
•  in	NI:	can	sa1sfy	at	

most	(1-ε)-frac1on	

•  Clause	copy	is	bad	if	
routes	more	than	1	
demand	pair	

•  At	most	3	copies	of	
each	clause	can	be	
bad	



Yes-Instance	Solu1on	

•  Fix	assignment	to	variables	that	sa1sfies	all	
clauses	

•  If	x	is	assigned	TRUE,	route	its	TRUE	and	
EXTRA	pairs,	otherwise	route	its	FALSE	and	
EXTRA	pairs	

•  For	each	clause	C,	choose	a	literal	L	that	is	
sa1sfied	and	route	all	pairs	in	M(C,L)	



Yes-Instance	Rou1ng	

BC

B(I)



B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .

•  Red	paths:	variable-pairs	
•  Blue	paths:	clause-pairs	

Claim:	
•  For	each	variable,	its	paths	
arrive	consecu1vely.	

•  Same	for	each	clause.	



Rou1ng	if	x=TRUE	
P(x)	

B(x)	

TRUE	 FALSE	

TRUE	 FALSE	 EXTRA	

EXTRA	

M(C, x)

C = x _ ¬x5 _ x7



B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .

•  Paths	corresponding	to	
each	variable	arrive	
consecu1vely	

•  Paths	corresponding	to	
each	clause	arrive	
consecu1vely	

•  Ordering	between	
different	variables	is	
correct	



B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .



B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .



B(x1) B(xn)

BC
BV

B(I)
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•  Paths	corresponding	to	
each	clause	arrive	
consecu1vely	

•  But	the	ordering	of	the	
clauses	may	be	wrong	
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Des1na1ons	must	be	at	distance	at	
least	CYI	from	the	boxom	of	B(I)!	



No-Instance	Analysis	

•  Most	variables	will	route	most	EXTRA	pairs	
and	TRUE	or	FALSE	pairs	è	assignment	to	
variable	

•  Most	copies	of	clauses	will	route	1	demand	
pair.	That	literal	must	sa1sfy	the	clause.	



No-Instance	Analysis	

•  Most	variables	will	route	most	EXTRA	pairs	
and	TRUE	or	FALSE	pairs	è	assignment	to	
variable	

•  Most	copies	of	clauses	will	route	1	demand	
pair.	That	literal	must	sa1sfy	the	clause.	

•  If	many	pairs	are	routed,	many	clauses	are	
sa1sfied.	



Higher-Level	Construc1on	

To	construct	a	level-i	instance:	
•  Take	level-1	instance		
•  replace	each	demand	pair	with	a	copy	of	a	
level-(i-1)	instance	



B(I)

Level-i	construc1on	

BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

P (I)

P(x1)	 P(x2)	 …	 …	 P(xn)	
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Yes-Instance	Analysis	

•  For	a	level-(i-1)	instance	I’,	let	M’(I’)	be	the	set	
of	the	demand	pairs	routed	in	YI	

•  If	level-1	instance	would	route	demand	pair	
(s,t),	route	all	pairs	in	set	M’(I’),	where	I’	
corresponds	to	(s,t)	



B(x1) B(xn)

BC
BV

B(I)

B(C1) B(Cm). . .



BC

Exploit	the	level-(i-1)	rou1ng!	



No-Instance	Analysis	

•  A	level-(i-1)	instance	is	interes1ng	if	we	route	
many	of	its	demand	pairs	

•  Rela1vely	few	interes1ng	instances	
•  In	each	interes1ng	instance	can	only	route	
few	demand	pairs	

•  Gap	grows	by	a	constant	



No-Instance	Analysis	

•  A	level-(i-1)	instance	is	interes1ng	if	we	route	
many	of	its	demand	pairs	

•  Rela1vely	few	interes1ng	instances	
•  In	each	interes1ng	instance	can	only	route	
few	demand	pairs	

•  Gap	grows	by	a	constant	

Level-1	
analysis	

Level-(i-1)	
analysis	



Can’t	Simultaneously	Route	Pairs	in	All	
Three	Sets!	

B(x)	

h=1000/ε	

TRUE	 FALSE	

TRUE	 FALSE	EXTRA	

EXTRA	



Variable	Gadget	
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TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	
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•  Can	get	up	to	CYI	
chea1ng	paths	per	
gadget.	

•  In	NI	will	only	try	to	
route	CNI	pairs	per	
instance	

•  Want	the	gap	to	grow	
by	a	constant	
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Variable	Gadget	

B(x)	

P(x)	

TRUE	 FALSE	EXTRA	

EXTRA	FALSE	TRUE	

CYI	for	level-(i-1)	
instances	

•  Can	get	up	to	CYI	
chea1ng	paths	per	
gadget.	

•  In	NI	will	only	try	to	
route	CNI	pairs	per	
instance	

•  Want	the	gap	to	grow	
by	a	constant	

•  Replace	each	demand	pair	by	
many	level-(i-1)	instances	

•  How	many?	More	than	CYI/CNI	

Instance	size	will	grow	by	current	
gap	1mes	n	in	each	itera1on.	



Reduc1on	Plan	

•  Gap	grows	by	a	constant	in	every	stage	
•  Construc1on	size	grows	by	O(n)x(current-gap)	
•  Arer	O(log	n)	stages	will	achieve	2Ω(log	n)	gap,	
nO(log	n)	size.	



Reduc1on	Plan	

•  Start	with	3SAT(5)	formula	ϕ	
•  Build	an	instance	I(ϕ)	of	NDP	of	size	

–  	ϕ	a	YI	è	can	route	CYI	demand	pairs	
– ϕ	a	NI	è	no	solu1on	routes	more	than	CNI	pairs	

Will	ensure:		

n0 = nO(logn)

CY I

CNI
= 2⌦(logn) = 2⌦(

p
logn0

)

Conclusion:	NDP	is																		-hard	to	approximate	
unless		

2⌦(

p
logn)

NP ✓ DTIME(nO(logn))
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•  Start	with	3SAT(5)	formula	ϕ	
•  Build	an	instance	I(ϕ)	of	NDP	of	size	

–  	ϕ	a	YI	è	can	route	CYI	demand	pairs	
– ϕ	a	NI	è	no	solu1on	routes	more	than	CNI	pairs	

Will	ensure:		

n0 = nO(logn)

CY I

CNI
= 2⌦(logn) = 2⌦(

p
logn0

)

Conclusion:	NDP	is																		-hard	to	approximate	
unless		

2⌦(

p
logn)

NP ✓ DTIME(nO(logn))

Can	extend	to	subcubic	graphs,	
EDP	by	using	walls	instead	of	

grids	



Summary	for	NDP	so	Far	
Grids	

•  														-approxima1on	algorithm	
•  															-approxima1on	if	sources	on	grid	boundary	
•  APX-hardness	

Planar	Graphs	
•  														-approxima1on	algorithm	
•  															-hardness	

General	Graphs	
•  												-approxima1on	
•  															-hardness	

Õ(n1/4)

Õ(n9/19)
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p
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p
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p
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New:	NDP	on	grids	is	very	hard	to	approximate	[C,	
Kim,	Nimavat	‘17]	
•  														-hardness	for	any	constant	
•  																		-hardness	
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unless	all	problems	in	NP	
have	randomized	quasi-
poly-1me	algorithms	

		

	
under	randomized	ETH		

(need	almost	exponen1al	1me	to	
solve	SAT	by	randomized	alg)	

		

✏
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New:	NDP	on	grids	is	very	hard	to	approximate	[C,	
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Disclaimer	
This	result	is	a	work	in	progress.	It	was	not	
carefully	verified	yet	and	may	turn	out	to	
be	incorrect!	



Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	i,	subset																									of	edges,	with	|Ei|≤	h	

•  Goal:	maximize	
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Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	subgraph	Gi,	select	a	subset	Ei	of	at	most	h	
edges	

– Goal:	maximize	
X

i

|Ei|

Weird	Graph	
Par11oning	problem	

(WGP)	

NDP	in	grids	is	at	least	
as	hard	as	WGP	



Rou1ng	in	
Grids	

Drawing/Layout	of	
Graphs	

Graph	Par11oning	
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Graph	Cut	Problem	
•  Input:	bipar1te	graph	G=(V,E),	integers	r,h.	
•  Output:		

– par11on	G	into	r	vertex-induced	subgraphs.	
–  for	each	subgraph	Gi,	select	a	subset	Ei	of	at	most	h	
edges	

– Goal:	maximize	
X

i

|Ei|

Intui1on:	
•  Balanced	par11on	into	many	clusters	
•  Want	the	clusters	to	be	very	dense	

Somewhat	similar	to	densest	k-subgraph		



On	Densest	k-Subgraph	
Find	a	subgraph	of	G	on	k	ver1ces	with	largest	
number	of	edges.	
•  O(n1/4)-approxima1on	[Bhaskara,	Charikar,	Chlamtac,	Feige,	

Vijayaraghavan	‘10]	

•  Notoriously	hard	to	prove	hardness	of	approxima1on	
– APX-hardness	[Khot,	‘06]	
–  Constant	hardness	assuming	small-set-expansion	
conjecture	[Raghavendra,	Steurer	’10]	

– Hardness	results	based	on	average-case	complexity	
assump1on	of	SAT	of	Feige	[Alon,	Arora,	Manokaran,	
Moshkovitz,	Weinstein	‘11]	

– Almost	polynomial	hardness	using	Exponen1al	Time	
Hypothesis	[Manurangsi	‘16]	



Main	Ideas:	
•  Work	with	a	more	general	problem	
•  Prove	that	NDP	in	grids	is	at	least	as	hard	as	this	
problem	

•  Mul1-stage	reduc1on	
•  Edges	are	par11oned	into	
“bundles”	

•  At	most	one	edge	per	
bundle	can	be	used	in	a	
solu1on;	the	rest	must	be	
deleted.	



Main	Ideas:	
•  Work	with	a	more	general	problem	
•  Prove	that	NDP	in	grids	is	at	least	as	hard	as	this	
problem	

•  Mul1-stage	reduc1on	(Cook	not	Karp	reduc1on)	



Standard	One-Shot	Reduc1on	

3-Coloring	
Graph	

Par11oning	
problem	

NDP	on	
Grids	

•  If	3-Coloring	is	a	Yes-Instance,	can	route	many	
pairs	

•  Otherwise,	can	only	route	few	pairs	
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Graph	
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problem	

NDP	on	
Grids	

3-Coloring	
•  If	the	3-Coloring	instance	is	a	Yes-Instance,	all	NDP	
instances	have	good	solu1ons	

•  Otherwise,	one	of	the	instances	has	a	very	bad	solu1on	
•  We	apply	algorithm	A	to	each	NDP	instance,	and	
establish	whether	the	3-Coloring	instance	is	a	Yes	or		No	
instance.	
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Single-Shot	vs	Mul1-shot	Reduc1ons	

•  Intui1vely,	it	feels	like	mul1-shot	reduc1ons	
should	be	more	powerful	

•  But	in	almost	all	cases,	single-shot	reduc1ons	
are	sufficient	

•  It	is	possible	that	one	can	construct	a	single-
shot	reduc1on	from	3-Coloring	to	NDP	

a	bug,	not	a	
feature?	



Single-Shot	vs	Mul1-shot	Reduc1ons	

•  Intui1vely,	it	feels	like	mul1-shot	reduc1ons	
should	be	more	powerful	

•  But	in	almost	all	cases,	single-shot	reduc1ons	
are	sufficient	

•  It	is	possible	that	one	can	construct	a	single-
shot	reduc1on	from	3-Coloring	to	NDP	

Excep1on:	NP-hardness	
of	embedding		metrics	
into	L1	[Karzanov]	



Conclusions	

•  We	showed:	NDP	is																		-hard	to	
approximate	even	on	sub-graphs	of	grids/
walls	with	all	sources	on	top	boundary	

•  Looks	like	we	can	show	almost	polynomial	
hardness	in	grids	(also	for	EDP	on	walls)	

•  Conges1on	minimiza1on:	
– O(log	n/log	log	n)-approxima1on	algorithm	
– Ω(log	log	n)-hardness	of	approxima1on	

2⌦(

p
logn)

Thank	you!	


