New Hardness Results for
Routing on Disjoint Paths

Julia Chuzhoy David Kim Rachit Nimavat
TTIC U. of Chicago TTIC

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s,,t,),...,(S,t,)-
Goal: Route as many pairs as possible via node-
disjoint paths

i1
S1

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s,,t,),...,(S,t,)-
Goal: Route as many pairs as possible via node-
disjoint paths

i1
S1

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s,,t,),...,(S,t,)-

Goal: Route as many pairs as possible via node-
disjoint paths

i1 .
S1 Solution value: 2
L2 Edge-disjoint Paths (EDP):
S5 paths must be edge-disjoint
S3

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s,,t,),...,(S,t,)-

Goal: Route as many pairs as possibl/ via node-
disjoint paths

terminals
i1
S1
o k - number of
demand pairs
S92
S3

Complexity of NDP

* Constant k: efficiently solvable [Robertson, Seymour ’90]
* Running time: f(k)®n? [Kawarabayashi,Kobayashi, Reed]

k

fk) =27

Complexity of NDP

* Constant k: efficiently solvable [Robertson, Seymour ’90]
* Running time: f(k)®n? [Kawarabayashi,Kobayashi, Reed]
 NP-hard when k is part of input [Knuth, Karp '72]

Multicommodity Flow Relaxation

* Send as much flow as possible between
demand pairs.

* At most 1 flow unit through a vertex.

Approximation Algorithm [Kolliopoulos, Stein ‘98]
While there is a path P with f(P)>O0:

* Add such shortest path P to the solution

* For each path P’ sharing vertices with P, set f(P’) to O

O(4/n)-approximation

Integrality gap of the multicommodity flow relaxation
is QO(y/n), even on grid graphs.

Bad Example

S1 Sy S3 Sk
Q@ @ @ @ @ @ @
Q o, o ¢ @ o, ®
@ @ @ @ @ @ @
@ @ @ @ @ @ @
@ @ @ @ @ @ o
Q@ @ @ @ @ @ o
@ @ @ @ @ @ @

Bad Example
S, S, S, S

Bad Example
S, S, S, S

Bad Example
S, S, S, S

Bad Example

DN

Integrality gap

of the flow

N relaxation p

Approximation Status of NDP

*O(y/n) -approximation algorithm

— Even on planar graphs \
— Even on grid graphs <=

until recently

. Q(logl/2_6 n)-hardness of approximation for any €
[Andrews, Zhang ‘05], [Andrews, C, Guruswami,
Khanna, Talwar, Zhang '10]

KB/nIy\NP-hardness\
known for planar

_ graphs and grids)

Approximation Status of NDP
*O(+/n) -approximation alj{NeW:O(ng/lg)- J

approximation [C, Kim, Li ‘16]
— Even on planar graphs

— Even on grid graphs .
New: O(nt/4)-
approximation [C, Kim ‘15]

. Q(logl/2_6 n)-hardness of approximation for any €
[Andrews, Zhang ‘05], [Andrews, C, Guruswami,
Khanna, Talwar, Zhang '10]

 APX-hardness in grids and planar graphs [C, Kim ‘15]

Plan:

e get polylog(n)-approximation on grids
e extend to planar graphs

* look into general graphs

Reality: 3 {

Plam:

» get polylog(n)-approximatioron grids
* extend to plapa+#graphs

* |gokinto general graphs

Reality:
o 20WVlen)_gnproximation for grids with all sources
lying on top boundary [C, Kim, Nimavat ‘16]

o 28Wlen)_hardness of approximation for
subgraphs of grids with all sources on top
boundary

Approximation Status of EDP

« O(v/n)-approximation algorithm [Chekuri, Khanna,
Shepherd ‘06]

— Even on planar graphs

» Q(log'/?7¢ n)-hardness of approximation for any €
[Andrews, Zhang ‘05], [Andrews, C, Guruswami,
Khanna, Talwar, Zhang '10]

A Wall

Approximation Status of EDP

« O(y/n)-approximation algorithm [Chekuri, Khanna,
Shepherd ‘06]

— Even on planar graphs
— Wall graphs: O(n'/#)-approximation [C, Kim ‘15]

. Q(logl/z_e n)-hardness of approximation for any ¢
[Andrews, Zhang ‘05], [Andrews, C, Guruswami,
Khanna, Talwar, Zhang '10]

e New: 2%(Vlogn) _hardness of approximation even for
subcubic planar graphs with all sources on boundary
of one face

Routing with Congestion c

Route maximum number of demand pairs, so
that every edge is in at most ¢ paths.

EDP with Congestion

Congestion O(log n/log log n): constant
approximation [Raghavan, Thompson ’87]

Congestion c: O(n!/¢)-approximation [Azar, Regev '01],
[Baveja, Srinivasan '00], [Kolliopoulos, Stein ‘04]

Congestion poly(log log n): polylog(n)-approx
[Andrews ‘10]

Congestion 2: O(n* 7)-approximation [Kawarabayashi,
Kobayashi '11]

Congestion 14: polylog(k)-approximation [c, ‘11]
Congestion 2: polylog(k)-approximation [c, Li’12]

polylog(k)-approximation for NDP with congestion
2 [Chekuri, Ene "12], [Chekuri, C ‘16]

EDP with Congestion

Congestion O(log n/log log n): constant
approximation [Raghavan, Thompson ’87]

Congestion c: O(n!/¢)-approximation [Azar, Regev '01],
[Baveja, Srinivasan '00], [Kolliopoulos, Stein ‘04]

Congestion poly(log log n): polylog(n)-approx
[Andrews “1(
Big difference between routing with

Congestic congestion 1 and 2.

Kobayashi 1

awarabayashi,

Congestion 14: polylog(k)-approximation [c, ‘11]
Congestion 2: polylog(k)-approximation [c, Li’12]

polylog(k)-approximation for NDP with congestion
2 [Chekuri, Ene "12], [Chekuri, C “16]

Hardness of Approximation

Hardness of Approximation

Best previous:
* Q(log'/?7¢n)-hardness for general graphs
 APX-hardness for planar graphs

New result:
e 292(vIogn) _hardness unless NP C DTIME (n®°g ™))

* even if
— planar graphs
— max vertex degree 3
— all sources on the boundary of the outer face.

Hardness of Approximation

Best previous:
* Q(log'/?7¢n)-hardness for general graphs

e APX-hardness f~-* Bl
unless NP C ZPTIME(pOPolylogn)y = —

New result:
e 92(vIogn) _hardness unless NP C DTIME(n©°s ™))

* even if
— planar graphs
— max vertex degree 3
— all sources on the boundary of the outer face.

Hardness of Approximation

Best previous:
* Q(log'/?7¢n)-hardness for general graphs
 APX-hardness for planar graphs

New result:
e 22(VIogn)_hardness unless NP C DTIME(n©Ucs™)

e even if L

e subgraphs of grids
e all sources on top row

— planar graphs

4
— max vertex degreeX
— all sources on the boundary of the outer face.

Starting Point: 3SAT(5)

Input: 3SAT(5) formula ¢
* Boolean variables x,,...,x,

* ClausesC,,...,C_
— A clause is an OR of 3 literals
— A literal is a variable or its negation

* Each variable participates in 5 clauses

Goal: find assignment to variables to maximize
the number of satisfied clauses.

m=5n/3

(2131 V Iy V —|$10) N\ (2132 V g V —IZE4) JANKIEIVAN (—l.CCl V i) V 21310)

Starting Point: 3SAT(5)

* s aYes-Instance if some assignment
satisfies all clauses

* ¢ is a No-Instance if no assighment satisfies
more than (1-€)m clauses

PCP Theorem: [Arora, Safra ‘98], [Arora, Lund, Motwani,
Sudan, Szegedy ‘98]

No efficient algorithm can distinguish between Yes- and No-
Instances of 3SAT(5) unless P=NP, for some fixed «.

Reduction Plan

e Start with 3SAT(5) formula ¢

e Build an instance of NDP of size n’ = n©Ucem™)
— @ a Yl =» can route C,, demand pairs
— @ a NI =>» no solution routes more than C,, pairs

Will ensure:

Cy1 _ g000gn) _ o0(viogm)
Cnr

Conclusion: NDP is 22(v1°8™)_hard to approximate
unless NP C DTIME(n©U0sn))

Reduction Plan

Construction done in stages

Stage 1: constant gap between Yl and NI cost
Gap grows by a constant in every stage
Construction size grows by O(n)x(current-gap)

After O(log n) stages will achieve 22logn) ggp,
nOllogn) sjze,

High-Level Idea

High-Level Idea

High-Level Idea

High-Level Idea

Need: “composable”
Instances

Level-1 instance:
constant gap

Want: increase gap
by a constant, so
that instance size
does not grow too

much

ldea: replace each

demand pair with a

copy of the whole
instance!

Defining a Family of Instances

Defining a Family of Instances

Defining a Family of Instances

Defining a Family of Instances

909

Level-1 Construction

Level-1 Construction

* For each variable x of ¢ will
define a set M(x) of demand
pairs

* For each clause C of ¢ will
define a set M(C) of demand

pairs
» Consists of 3 subsets
M(C,L), corresponding to
the literals L of C.

Level-1 Construction

* For each variable x of ¢ will
define a set M(x) of demand
pairs

* For each clause C of ¢ will
define a set M(C) of demand
pairs

> Consist: Clause-pairs
M(C,L), corresponding to
the literals L of C.

Variable-pairs

B(I)

Level-1 Construction: the Box

20n3x20n3

Level-1 Construction: the Box

Level-1 Construction: the Box

(Far from each W
other and box

I>n2 % boundaries J I

Level-1 Construction: the Box

(Far from each W
other and box

I>n2 k boundariesﬁ) I

BY W B¢

Level-1 Construction: the Box

?GGG’\GGG?\GGGGGGGG’\GGGG
B ! ! B !

P(x,) P(x,) P(x.)

B |

Level-1 Construction: the Box

‘Q0.0’\GGG?\GGGGGGGG’\GGGG
I i I I !

P(xy) P(X(Variablew P(X,)
"~ Gadget

M(x,)

Level-1 Construction: the Box

e Y S, G i, B i B

v v v
P) Fumy, - {UW% b
I>n2 Some Gadgelt y

Sources
.] e

B(z1) B(x2) -+ B(xp) B(Cy) B(Cs3) @ --- | B(Cn)

Variable Gadget

P(x)

F—O0— 00— 00— 00— 00— 00— 00— 00— 00— 00— 00— 0—0—0—00—90

B(x)

Variable Gadget

P(x)

?GGGGGGIGGGGGGGG‘GGGGGGG’
i J

Y Y Y
TRUE EXTRA FALSE

B(x
) TRUE FALSE EXTRA
| |

J
I M| 1 |

O O S S S S O S O S S S S S S S A S O O)

Variable Gadget

P(x)

?GGGGGG’GGGGGGGG‘GGGGGGG’
i J

Y ' Y
TRUE EXTRA FALSE
Parameters:
* h=1000/e = FALSE EXTRA
* 100h EXTRA pairs | |

« 6h TRUE/FALSE pairs | \ \
—O—-0—-O0—-O0—-C0—C0-00-C0—-C0—C—C0—0—C0—C0—0—0

* h pairs for each
clause/literal pair

Variable Gadget
h=1000/¢
P(x)
GGGGGGGO\Q......GGGGGGG
| T A, | v ’
TRUE O\ EXTRA FALSE
\\\ \\ AN \\ 100h \\\
BX \ \\ \‘ \‘ \
X TRUE FAL§E SN EXTRA AN
| : \f \j X \’\ — \\!
0-0—0-0-0—0—0—0—0-0—0-0-0-0-'0—6—0—0—0—0—0—0

Variable Gadget
h=1000/¢
P(x)
?\GQ\GQ\GQ........?GGGGG?

N\ A | ‘\‘ \‘ i
\ TRUEY, EXTRA FALSE

\\ ‘ﬁ ‘\‘ 6h ‘\‘ — ‘\“

(x) \\\ \ TRUE } FALSE EXTRA

\\‘\ 3 l\\ \“ \| X \ [) ‘

h=1000/¢

Variable Gadget

P(x)

?G.G.G.’........
i

Y ¥
TRUE EXTRA . . _FALSFEF

B(x)

’
,/ /,,6 h ,/ ,/,
U4 Vs P2 4
0/ ¢ Ve > PRe
,,,<— ,,— ,,v ,’/
,, ,/ ,/ ‘/
p2 4 ,/ PR
s’ ,’ P2 ’/

TRUE FALSE” . EXTRA

i o e i
{ H—"—J, g AL |

4

Variable Gadget

P(x)

?G.G.G.’........‘OGOG.G.’
i J

h=1000/¢

Y Y Y
TRUE EXTRA FALSE

B(x
) TRUE FALSE EXTRA
| |

J
I M| 1 |

0000000000000 0000 0000

Routing if x=TRUE

P(x)

KG’?.\G ‘.\‘\..'\..\‘.G.T.G.’
UE EXTRA FALSE
B
(X) RVE FALSE TRA
i i
|]

| 3O BUBA

h=1000/¢

Level-1 Construction: the Box

—?..O’\GGO?\GOGGGGOG’\OGOG
| ! | I |

P(x,) P(x,) P(x.)

Routing if x=TRUE

P(x)

KG’?.\G ‘.\‘\..'\..\‘.G.T.G.’
UE EXTRA FALSE
B
(X) RUE FALSE TRA
i i
l 1l

3O BUBA

h=1000/¢

Routing if x=FALSE

P(x)

?G.G'.G.".\.\. '..\."G ?rﬁ
TRUE L\\\D&:“-\ EB

B(x
X rruE FALSE EXTRA
| |

J
{ M| 1 k

h=1000/¢

Routing if x=FALSE

P(x)

=

h=1000/¢

Can’t Simultaneously Route Pairs in All

B Three Sets!
?G.G'.\G."..\..'....“OG/.TOGO’
TRUE FALSE

B(x)

TRVE
I

——
—
—_—

an

Can’t Simultaneously Route Pairs in All

Three Sets!
TRUE EXTRA FALSE
I . i f l } I . 0

B(x) TRUE FALSE EXTRA
| |

[| 1 1
0000900000000 00—0090000 0

Can’t Simultaneously Route Pairs in All

Three Sets!
TRUE EXTRA FALSE

B{x) TRUE FALSE EXTRA

00000000000 000—00000 0

Can’t Simultaneously Route Pairs in All
Three Sets!

B{x) TRUE FALSE EXTRA

Variable Gadget

P(x)

?0.0.0.’........‘OOO0.0.’
i J

h=1000/¢

i i 1
TRUE EXTRA FALSE
e Can’t route pairs
B(X) TRUE FALSE EXTRA from all 3 sets
[' \(' \ [d \ * Always better to
Povvvvvvvves route EXTRA pairs

* Caninterpret any
routing as truth
assignment to
variables!

Variable Gadget
h=1000/¢
P(x)
—C—0—C—0—C=0—0—0—0—0—0—0—0—0—0—C0—0—0C—090
e T ,) ;
TRUE T B R AT FALSE
T TSR
B(X) TRUE FALSE EXTRA ——
[: \(: \ [‘ } M(C, —|aj)
NN
_Y_I
M(C, _l$5)
Qe
_Y_I

C =—-xV x5V 27

h:lOOO/E

t
Variable Gadge

P(x)

h-hhh-
~-~~~--

1--&-- - -
s
6h black J
vertices

FALSE
B(x) TRUE

\/CE7
\/—l.fljf’)
CZ—.:E

-

h--

e
A hge
......................... o

At most 5 clauses
containing x

ause
rcesforeaqhﬁiorder
conse

Variable Gadget

P(x)

h=1000/¢

'\‘f‘*“?n\‘\"/’ A S G‘?‘G';
FALSE
XY
B(x) FALSE XTRA e
M (C,—x)

C =—-xV x5V 27

Routing if x=FALSE

P(x)

C =—-xV x5V 27

N Variable Gadget
B P(x

?G.G.G.’........O
i J

|

Y f
TRUE EXTRA

B(X) TRUE FALSE EXTRA
i i i

—0-0-0-00-0-0000-0-00-00000009°

C =xV x5V,

Whole Construction

?GGG’\GGG?\GGGGGGGG’\GGGG
B ! ! B !

P(x,) P(x,) P(x,)

B |

Clause Gadget

h=1000/¢

C = (61 V oV £3)

B(C) 3h

Clause Gadget

h=1000/¢

C = (61 V oV £3)

B(C) 3h

h=1000/¢

Clause Gadget

C = (61 VsV f3)

B(C)

h=1000/¢

Clause Gadget

C = (61 VsV f3)

B(C)

Clause Gadget

?...’\GGO?\....GGG

i Y Y i
P(x,) P(x,)

B(C)

h=1000/¢

Clause Gadget

C = (61 VsV f3)

B(C)

Clause Gadget

h=1000/ [M(C, l)}
C = (6 VsV ls) M(C.f)
M(C,/l3)

B(C) 3h

mh new clauses
in NI: can satisfy at
most (1-g)-fraction

Copies C1,...,C" of C

Clause Gadget

h=1000/¢

* Clause copy is bad if
routes more than 1
demand pair

* At most 3 copies of
each clause can be

bad

B(C) 3h

000000009000 00000 0090

* mh new clauses
* in NI: can satisfy at
most (1-g)-fraction

Yes-Instance Solution

* Fix assignment to variables that satisfies all
clauses

* |f xis assigned TRUE, route its TRUE and
EXTRA pairs, otherwise route its FALSE and
EXTRA pairs

 For each clause C, choose a literal L that is
satisfied and route all pairs in M(C,L)

Yes-lnstance Routing

© ® —0— 00— — 00— =@ OGGGJ

!é / { B(I)

) L (- Red paths: variable-pairs
/ B(I) L° Blue paths: clause-pairs

" Claim:

* For each variable, its paths
arrive consecutively.
. * Same for each clause.

Routing if x=TRUE

P(x)
y ' \Sj\\ ' \’«\\ \:\,\
UE EXTRA FATSE ™. ™.
B(x) ROE FALSE EXTRA \\G‘ \é\é'
{ . 1 l) = N
M(C,x)

CZCC\/_ICI?5\/337

KPaths corresponding to N\

each variable arrive
consecutively

e Paths corresponding to
each clause arrive
consecutively

""""""" e Ordering between

BY different variables is

correct

L FT R F
| B(I)
e Paths corresponding to
each clause arrive
consecutively
 Butthe ordering of the

clauses may be wrong

(XXX 6bo4 535/1

BV

IS

&SI

BC

. ™
Destinations must be at distance at

least C,, from the bottom of B(l)!

-

No-Instance Analysis

* Most variables will route most EXTRA pairs
and TRUE or FALSE pairs =» assignment to
variable

* Most copies of clauses will route 1 demand
pair. That literal must satisfy the clause.

No-Instance Analysis

* Most variables will route most EXTRA pairs
and TRUE or FALSE pairs =» assignment to

variable

* Most copies of clauses will route 1 demand
pair. That literal must satisfy the clause.

* |f many pairs are routed, many clauses are
satisfied.

Higher-Level Construction

To construct a level-i instance:
e Take level-1 instance

* replace each demand pair with a copy of a
level-(i-1) instance

7

Level-i construction
P(I)
i I i O i, B .

O
©
©
©

i i ¥ i i
P(x,) P(x,) P(x.)

Variable Gadget

P(x)

|\ I\

i B i
TRUE EXTRA FALSE

B(x) I

——

>

Variable Gadget

P(x)

|\ I\

i B i
TRUE EXTRA FALSE

B(x) TRUE FALSE EXTRA

Variable Gadget

P(x)

. . * .
. ™ . . .
" . o . . ’ .
*
. .

- .
— . 3
" P 1 4 . . '
. . * L .
* ¢ * t .
. L4 .
. 4 . t
& L 4 . 3
[. " .
', o * . .
= . o L .
o * o ’. . &
” * o & * *
s . . 3

.

3 :, '. . .

L ; * o v * 1
. - 37 . =~ .
. DN " " .
. LIS ~ .
. * . ~
. 7 . .
X . ’e :
. L . ~
¢ .: . * .

. » . ~

. . . . ¢

Variable Gadget

P(x)

Bl I

U B ! !
-« TRUE. @ EXTRA FALSE

B(X) “TRUE: FALSE EXTRA

Variable Gadget

P(x)

|\ I\

i I i
TRUE EXTRA FALSE

B(x) TRUE FALSE EXTRA

Yes-Instance Analysis

* For alevel-(i-1) instance I, let M’(l’) be the set
of the demand pairs routed in Yl

* |f level-1 instance would route demand pair
(s,t), route all pairs in set M’(I’), where I’
corresponds to (s,t)

&SI

4 N

Exploit the level-(i-1) routing!
N Y,

No-Instance Analysis

A level-(i-1) instance is interesting if we route
many of its demand pairs

Relatively few interesting instances

In each interesting instance can only route
few demand pairs

Gap grows by a constant

No-Instance Analysis

A level-(i-1) instance is interesting if w

many of its demand pairs

Level-1
analysis

Relatively few interesting instances

In each interesting instance can only route

few demand pairs

Gap grows by a constant

Level-(i-1)
analysis

Can’t Simultaneously Route Pairs in All

B Three Sets!
?G.G'.\G."..\..'....“OG/.TOGO’
TRUE FALSE

B(x)

TRVE
I

——
—
—_—

Variable Gadget

P(x)

I\ "

1 i 1
TRUE EXTRA FALSE

B(x) TRUE FALSE EXTRA

&SI

Variable Gadget

P(x)
1 Y \ Y J y]
TRUE EXTRA FALSE
B(x) TRUE K FALSE\ 3/\ EXTRA

C,, for level-(i-1) J
Instances

Variable Gadget

P(x)
L ; Ji ’
i i
TRUE EXTRA

B(x) TRUE FALSE

C,, for level-(i-1)
Instances

|

* CangetuptoC,,
cheating paths per
gadget.

* In NI will only try to
route C,, pairs per
instance

* Want the gap to grow

by a constant

Variable Gadget

P(x) * Cangetupto C,,
! !
TRUE EXTRA | 8adset

* In NI will only try to
route C,, pairs per

instance
B(X) TRUE FALSE * Want the gap to grow

by a constant

* Replace each demand pair by
C,, for levd many level-(i-1) instances
instand ¢ How many? More than C,,/C,,

Variable Gadget

P(x) * Canget up to C,,
" _ cheating paths per

gadget.
* In NI will only try to
Instance size will grow by current route C,, pairs per

gap times n in each iteration. instance
 Want the gap to grow

by a constant

* Replace each demand pair by
CYI for levd many level-(i-1) instances
instand © How many? More than C,,/Cy,

Reduction Plan

* Gap grows by a constant in every stage
e Construction size grows by O(n)x(current-gap)

« After O(log n) stages will achieve 29ogn) ggp,
nOllogn) sjze.

Reduction Plan

e Start with 3SAT(5) formula ¢

e Build an instance I(¢) of NDP of size n/ = n©{c&n)
— @ a Yl =» can route C,, demand pairs
— @ a NI =>» no solution routes more than C,, pairs

Will ensure:

Cy1 _ g000gn) _ o0(viogm)
Cnr

Conclusion: NDP is 22(v1°8™)_hard to approximate
unless NP C DTIME(n©U0sn))

Reduction Plan

e Start with 3SAT(5) formula ¢

e Build an instance I(¢) of NDP of size n’ = n®Uoe™)
— @ a Yl =» can route C,, demand pairs

— @ a NI = no solu*’
Can extend to subcubic graphs,

Cy 7 EDP by using walls instead of

Cni grids

Will ensure:

Conclusion: NDP is 22(v1°8™)_hard to approximate
unless NP C DTIME(n©U0sn))

Summary for NDP so Far

Grids
« O(n'/*)-approximation algorithm
e 20(Vlogn)_gpproximation if sources on grid boundary
 APX-hardness

) Planar Graphs
« O(n”')-approximation algorithm
o 29(Vloen) _hardness

General Graphs

« O(y/n) -approximation
o 292(VIog ") _hardness

Summary for NDP so Far

Grids
« O(n'/*)-approximation algorithm
e 20(Vlogn)_gpproximation if sources on grid boundary
 APX-hardness

New: NDP on grids is very hard to approximate [c,
Kim, Nimavat ‘17]

e 9(ogn)' ™ _hardness for any constant e
2
o pl/Uoglogm)”_hardness

Summary for NDP so Far

Gridl-
« O(n'/*)-approximation al unless all problems in NP

« 20Wlesn)gpproximation if have randomized quasi-
* APX-hardness ~ poly-time algorithms

New: NDP on grids is very hi o approximate [c,
Kim, Nimavat ‘17]

o 9(ogn)' ™ _hardness for any constant e
2
o pl/losloen)”_hardness

under randomized ETH
(need almost exponential time to
solve SAT by randomized alg)

Summary for NDP so Far

Ne
Kin

O(n
This result is a work in progress. It was not

carefully verified yet and may turn out to
be incorrect!

Grids

) -approximation algorithm

Disclaimer

o

0

)

o pl/loglogn)” hardness

Graph Cut Problem

* |nput: bipartite graph G=(V,E), integers r,h.
* Output:
— partition G into r vertex-induced subgraphs.

=

Graph Cut Problem

* |nput: bipartite graph G=(V,E), integers r,h.
* Output:
— partition G into r vertex-induced subgraphs.

g—=-

Graph Cut Problem

* |nput: bipartite graph G=(V,E), integers r,h.
* Output:
— partition G into r vertex-induced subgraphs.

— for each subgraph G, select a subset E, of at most h
edges

— Goal: maximize Y _ |Ei

=

Graph Cut Problem

* |nput: bipartite graph G=(V,E), integers r,h.

* Output:

— partitic/

— for eac

edges

Weird Graph
Partitioning problem
(WGP)

graphs.
E. of at most h

_Goal: Moo= 7 T T

2

NDP in grids is at least
as hard as WGP

~

@’@

- ™
Routing in

Grids

!

-

~

Drawing/Layout of

Graphs

|

-

o

Graph Partitioning

~

J

Graph Cut Problem

* |nput: bipartite graph G=(V,E), integers r,h.
* Output:
— partition G into r vertex-induced subgraphs.

— for each subgraph G, select a subset E, of at most h
edges

— Goal: maximize Y _ |Ei

=

Graph Cut Problem

* Inpu Intuition: !
e Outr * Balanced partition into many clusters
 Want the clusters to be very dense

A e e g e

i o P P P e P Y T P B sl SR TS T S

Somewhat similar to densest k-subgraph

=

On Densest k-Subgraph

Find a subgraph of G on k vertices with largest
number of edges.
e O(nl/*)-approximation [Bhaskara, Charikar, Chlamtac, Feige,
Vijayaraghavan ‘10]
* Notoriously hard to prove hardness of approximation
— APX-hardness [Khot, ‘06]

— Constant hardness assuming small-set-expansion
conjecture [Raghavendra, Steurer '10]

— Hardness results based on average-case complexity
assumption of SAT of Feige [Alon, Arora, Manokaran,
Moshkovitz, Weinstein ‘11]

— Almost polynomial hardness using Exponential Time
Hypothesis [Manurangsi ‘16]

Main ldeas:
 Work with a more general problem

* Edges are partitioned into
“bundles”

* At most one edge per
bundle can be used in a
solution; the rest must be
deleted.

—
o

Main ldeas:
 Work with a more general problem

* Prove that NDP in grids is at least as hard as this
problem

* Multi-stage reduction (Cook not Karp reduction)

§-z-

Standard One-Shot Reduction

Graph
: NDP
problem

* If 3-Coloring is a Yes-Instance, can route many
pairs
* Otherwise, can only route few pairs

Our Reduction

Assume for contradiction that there is an a-
approximation algorithm A for NDP.

3-Coloring
Graph Graph Graph G.rz.;\ph.
Partitioning Partitioning Partitioning Partitioning
problem probim proim proim
NDP on NDP on NDP on NDP on

Grids Grids Grids Grids

Our Reduction

Assume for contradiction that there is an a-
approximation algorithm A for NDP.

If the 3-Coloring instance is a Yes-Instance, all NDP

instances have good solutions

Otherwise, one of the instances has a very bad solution

We apply algorithm A to each NDP instance, and

establish whether the 3-Coloring instance is a Yes or No

instance.
NDP on NDP on NDP on NDP on
Grids

Grids Grids Grids

Our Reduction

Assume for contradiction that there is an a-
approximation algorithm A for NDP.

3-Coloring

] NS

Graph Graph Graph G.rz.;\ph.
Partitioning Partitioning Partitioning Partitioning

proim fl problem f robllem f problem

NDP on NDP on NDP on NDP on
Grids Grids Grids Grids

Single-Shot vs Multi-shot Reductions

* |ntuitively, it feels like multi-shot reductions
should be more powerful

* Butin almost all cases, single-shot reductions
are sufficient

* |tis possible that one can construct a single-
shot reduction from 3-Coloring to NDP

a bug, not a
feature?

Single-Shot vs Multi-shot Reductions

* |ntuitively, it feels like multi-shot reductions
should be more powerful

* Butin almost all cases, single-shot reductions

are sufficient Exception: NP—hardness}

* |tis possible that one can c¢ of embedding metrics
shot reduction from 3-Colofgmo liarzanovi

Conclusions

 We showed: NDP is 2%:(v1ogn)_hard to

approximate even on sub-graphs of grids/
walls with all sources on top boundary

* Looks like we can show almost polynomial
hardness in grids (also for EDP on walls)

* Congestion minimization:
— O(log n/log log n)-approximation algorithm
— Q(log log n)-hardness of approximation

Thank you!

