
Maximum Independent Set of Rectangles

Parinya Chalermsook ∗ Julia Chuzhoy †

October 25, 2008

Abstract

We study the Maximum Independent Set of Rectangles (MISR) problem: given a collection R of n axis-
parallel rectangles, find a maximum-cardinality subset of disjoint rectangles. MISR is a special case of the
classical Maximum Independent Set problem, where the input is restricted to intersection graphs of axis-
parallel rectangles. Due to its many applications, ranging from map labeling to data mining, MISR has
received a significant amount of attention from various research communities. Since the problem is NP-
hard, the main focus has been on the design of approximation algorithms. Several groups of researches have
independently suggested O(log n)-approximation algorithms for MISR, and this remained the best currently
known approximation factor for the problem. The main result of our paper is an O(log log n)-approximation
algorithm for MISR. Our algorithm combines existing approaches for solving special cases of the problem, in
which the input set of rectangles is restricted to containing specific intersection types, with new insights into
the combinatorial structure of sets of intersecting rectangles in the plane.

We also consider a generalization of MISR to higher dimensions, where rectangles are replaced by d-
dimensional hyper-rectangles. Our results for MISR imply an O((log n)d−2 log log n)-approximation algorithm
for this problem, improving upon the best previously known O((log n)d−1)-approximation.

1 Introduction

In the Maximum Independent Set of Rectangles problem (MISR), the input is a set R of n rectangles whose sides
are parallel to the axes, and the goal is to find a maximum cardinality subset of non-intersecting rectangles. It
is easy to see that MISR is a special case of the classical Maximum Independent Set problem, in which the input
is a graph G and the goal is to find a maximum cardinality subset S of vertices that does not contain any edge.
MISR is equivalent to Maximum Independent Set where the input is restricted to intersection graphs of axis-parallel
rectangles, assuming the rectangle representation is given.

Maximum Independent Set is probably one of the most fundamental and extensively studied combinatorial
optimization problems. The current best approximation algorithm achieves an O(n/(log n)2) factor [3], and the
problem is known to be n1−ε-hard to approximate for any ε > 0 unless NP = ZPP [17], thus most probably ruling
out the possibility of provably good approximation algorithms. However, for many applications, it is enough to
solve the problem on restricted classes of instances, which often turn out to be more tractable. For example,
Maximum Independent Set is known to be efficiently solvable on interval graphs (intersection graphs of intervals
of the real line). MISR can be seen as the generalization of this problem to two dimensions. More generally,
for d ≥ 1, a d-box graph is an intersection graph of d-dimensional axis-parallel hyper-rectangles (boxes). In this
paper we study the Maximum Independent Set problem on d-box graphs (MISBd), our main focus being on the
two-dimensional case (d = 2), which is equivalent to MISR. We assume that the box representation of the graph
is given as problem input.

MISR is a basic problem in computational geometry and has many applications, e.g. in data mining [20, 14, 22],
map labeling [1, 11], and channel admission controls with advance reservation [23]. We sketch some of the
applications below. It is not surprising then that MISR has attracted a considerable amount of interest from
various research communities. Since the problem is known to be NP-hard [13, 19], the main focus has been
on designing approximation algorithms. Several groups of researches have independently suggested O(log n)-
approximation algorithms for MISR [1, 20, 25]. Further, Berman et al. [2] have shown that the constant term in
the O(log n) factor can be made arbitrarily small, and for every k, there is a dlogk ne-approximation algorithm
that runs in O(nkOPT) time, where OPT is the cost of the optimal solution. Chan [5] improved the running time

∗Department of Computer Science, University of Chicago, Chicago, IL 60637. Email: parinya@uchicago.edu
†Toyota Technological Institute, Chicago, IL 60637. Email: cjulia@tti-c.org.

of the algorithm to min
{
O(n log n+ nqk−2), nO(k/ log k)

}
, where q is the maximum clique size in the corresponding

intersection graph. Lewin-Eytan, Naor and Orda [23] designed a factor 4q-approximation algorithm for MISR.
These are the best currently known approximation algorithms for MISR, and to the best of our knowledge no
hardness of approximation results are known. We notice however that Lingas and Wahlen [24] designed an exact
2O(
√
n logn)-time algorithm for MISR. Some special cases of MISR are known to have polynomial time approximation

schemes (PTAS): Hochbaum and Maass [18] and Agarwal et al. [1] showed a PTAS for the case where all rectangles
have unit height and Chan [5] improved the running time of the algorithm. Erlebach et al. [12] provided a PTAS
for squares and rectangles with bounded aspect ratio, and Chan [4] independently designed a PTAS for squares.
For the more general MISBd problem, Berman et al. [2] gave a polynomial time O((log n)d−1)-approximation
algorithm, and an algorithm achieving b1 + 1

c log ncd−1-approximation in time nO(2c(d−1)) for all c ≥ 1, d > 2. On
the negative side, Chleb́ık and Chleb́ıková [9] proved that MISBd is APX-hard for every d ≥ 3.

In graph theory, the boxicity of graph G, denoted by box(G) (term introduced by Roberts [26]), is the minimum
dimension d, such that G can be represented as an intersection graph of d-dimensional boxes. Roberts showed
that the graph obtained by removing a perfect matching from a complete 2n-vertex graph has boxicity exactly
n. A graph has boxicity 1 iff it is an interval graph. Outer-planar graphs have boxicity at most 2 [28] and
planar graphs have boxicity at most 3 [31]. Some optimization problems become easier on graphs with bounded
boxicity, if the box representation is known. For instance, Maximum Clique can be solved in polynomial time
on graphs with constant boxicity given their box representation1 [27]. However, finding such a representation,
or even determining whether graph boxicity is K, is NP-hard even for K = 2 [10, 32, 21]. Chandran, Francis
and Sivadasan [6] show an efficient algorithm that finds a box representation of any graph G with dimension
d(∆ + 2) lnne, where ∆ is the maximum degree of G. They also show that for all graphs G, box(G) ≤ 2∆2 [7]
and box(G) ≤ tw(G) + 2 [8], where tw(G) is the treewidth of G.

Related Work. The Maximum Independent Set problem for intersection graphs of various geometric objects
has also been studied extensively. Hochbaum and Maass [18] designed a PTAS for unit d-cubes in Rd. Building
on their techniques, Erlebach, Jansen and Seidel [12] obtained a PTAS for disks and disk-like geometric objects.
Chan [4] designed a PTAS for arbitrary “fat” objects2.

In the related rectangle piercing problem, the input is a set of axis-parallel rectangles in the plane, and the
goal is to choose the smallest number of points such that each input rectangle contains at least one chosen point.
This problem is the dual of MISR, and therefore the optimal solution cost of the piercing problem upper-bounds
that of MISR. For interval graphs, the optimal solution costs of the two problems are the same. Nielsen [25]
showed an O(log n)-approximation algorithm for the rectangle piercing problem. The results of Hochbaum and
Maass [18] yield a PTAS for the piercing problem for unit squares. Chan [4] designed a PTAS for the piercing
problem for arbitrary fat objects.

Applications. An important problem in geographic information systems is that of labeling of map features,
or the Name Placement problem [11]. The goal is to place labels on a map in a way that provides an
unambiguous association between the features and the labels, and ensures that labels do not overlap. Agarwal
et al. [1] model this problem as follows. We are given a set S of n points in the plane, and each point pi ∈ S
is associated with a label, represented by a rectangle Ri of a fixed size. Each such rectangle Ri has a set Pi of
possible placements on the map, where for each placement P ∈ Pi, the boundary of the corresponding rectangle
contains point pi. The goal is to maximize the number of labels placed on the map, with the restriction that the
corresponding rectangles do not overlap. It is easy to see that this is a special case of the MISR problem.

MISR is also a natural abstraction of network resource allocation with advance reservation for line topologies.
In some network resource allocation scenarios, the resources may be requested in advance of when they are
needed [16, 29, 30, 15]. This is useful for both the users, who can then be sure that the resources they request will
be available, and for the network, since it enables for better planning. Each advance request specifies the source
and the destination network vertices, as well as the time interval during which the connection will be needed. The
goal is to maximize the number of requests accommodated. For the special case of line topologies the problem
can naturally be modeled in the MISR framework.

1Notice that this is not equivalent to solving Maximum Independent Set on low boxicity graphs, since the boxicity of a graph and

its complement may vary.
2A collection C of objects in Rd is called fat iff for every r > 0 and every box R of size r, we can choose a constant number of

points inside R, such that every object intersecting R whose size is at least r contains at least one chosen point.

2

Our Results and Techniques. Our main result is summarized in the following theorem.

Theorem 1.1. There is a randomized polynomial-time approximation algorithm for the MISR problem that
produces an O(log log n)-approximate solution with high probability.

The O(log n)-approximation algorithm for MISR of Agarwal et al. [1] can be viewed as a generalization of
the exact algorithm for maximum independent set on interval graphs to two dimensions. We show that this
approach can be further extended to higher dimensions, and in particular, for any d ≥ 1, an f(n)-approximation
algorithm for MISBd−1 implies an O(f(n) log n)-approximation for MISBd. Therefore, the following theorem is a
direct consequence of Theorem 1.1:

Theorem 1.2. For every d ≥ 2, there is a randomized polynomial-time O((log n)d−2 log log n)-approximation
algorithm for MISBd.

We now sketch our main techniques. We distinguish between two types of rectangle intersections. We say
that a pair of intersecting rectangles R,R′ have a corner intersection iff one of them contains at least one corner
of the other rectangle, and otherwise we say that they have a non-corner intersection. Our starting point is
the natural LP-relaxation of MISR, where each rectangle R is associated with a variable zR, and the goal is to
maximize

∑
R zR, subject to the constraint that for every point p of the plane, the summation of values zR for

all rectangles R containing p is at most 1. We use standard randomized LP-rounding techniques to convert this
solution into a “canonical form”, where every rectangle has LP-value either 0 or 1/M for some M = Θ(log n),
thus ensuring that every point of the plane is contained in at most M rectangles with non-zero LP-weight. We
say that a set S of rectangles forms a clique iff the intersection of all rectangles in S is non-empty. The size of
the clique is the cardinality of S.

If the input set of rectangles only contains non-corner intersections, and corner intersections are not allowed,
a simple LP-rounding procedure gives a constant approximation:3 For each rectangle R ∈ R, let v(R) be the size
of the maximum clique induced by rectangles intersecting R whose width is smaller than that of R. Output the
set Si = {R | v(R) = i} of maximum cardinality over all i : 0 ≤ i ≤ M − 1. On the other hand, if the input
instance only contains corner intersections, and non-corner intersections are not allowed, Lewin-Eytan et al. [23]
show a factor-4 approximation algorithm. The main challenge is therefore handling both types of intersections
simultaneously.

A naive approach is to generalize the algorithm for non-corner intersections as follows. For each rectangle
R, let v(R) denote the size of a maximum clique induced by rectangles intersecting R in a non-corner manner,
whose width is smaller than the width of R. We can now partition all rectangles into sets S0, . . . , SM−1 according
to values v(R) as before, and then solve the problem on the largest subset Si. However, even though each Si is
guaranteed to only contain corner intersections, rectangles in Si may induce cliques whose size is as large as M ,
and therefore recovering more than a 1/M -fraction of rectangles from Si may be impossible.

Our algorithm combines the two approaches as follows. We perform Θ(log log n) iterations. In the first
iteration, we start with a coarse partition of the input set R of rectangles into subsets S′1, . . . , S

′
k according to the

values of v(R), where k is some constant. In each subsequent iteration we remove large cliques from the sets S′i
and define a new, refined partition, that serves as the input to the next iteration. In the final partition, obtained
after Θ(log log n) iterations, each set only contains constant-size cliques.

We also provide a lower bound asymptotically approaching 3/2 on the integrality gap of the LP relaxation
we are using.

Organization. We start with preliminaries in Section 2. Section 3 is devoted to proving Theorem 1.1, and
the proof of Theorem 1.2 appears in Section 4. We provide a lower bound on the integrality gap of the LP
relaxation in Appendix C

2 Preliminaries

The input to the MISR problem is a set R of n axis-parallel rectangles. We assume that each rectangle
R ∈ R is given by a quadruple (xl(R), xr(R), yt(R), yb(R)) of real numbers, corresponding to the x-
coordinates of its left and right boundaries and the y-coordinates of its top and bottom boundaries, respectively.

3This special case of the problem can be solved exactly since the corresponding intersection graph is perfect [23].

3

Furthermore, we assume that the rectangles are closed, i.e., each R ∈ R is defined as follows: R ={
(x, y) | xl(R) ≤ x ≤ xr(R) and yb(R) ≤ y ≤ yt(R)

}
. We say that rectangles R and R′ intersect iff R ∩ R′ 6= ∅.

A set S ⊆ R of rectangles is called independent iff no pair of rectangles in S intersect. The goal of the MISR
problem is to find a maximum-cardinality independent set of rectangles. We assume w.l.o.g. that no rectangle of
R is contained in another rectangle.

For any pair R,R′ of intersecting rectangles, we say that they have a corner intersection iff one of the two
rectangles contains at least one corner of the other. Otherwise, their intersection is called non-corner intersection
(see Figure 1). Notice that in the case of a non-corner intersection, it is impossible that the widths of R and of
R′ are identical; if the width of R is smaller than the width of R′, then xl(R′) < xl(R) < xr(R) < xr(R′) and
yt(R) > yt(R′) > yb(R′) > yb(R).

Figure 1: (a): a non-corner intersection; (b): corner intersections

Our starting point is a natural LP-relaxation for MISR. For each rectangle R ∈ R, we have an indicator
variable zR for choosing R to the solution. Let X =

{
xl(R), xr(R) | R ∈ R

}
and Y =

{
yt(R), yb(R) | R ∈ R

}
be

the sets of all the x and y coordinates of the corners of input rectangles, respectively. We define P to be the set
of “interesting” points of the plane: P = {(x, y) | x ∈ X and y ∈ Y }. The LP relaxation is as follows.

(LP) max
∑
R∈R

zR

s.t.
∑
R:p∈R

zR ≤ 1 for all p ∈ P

zR ≥ 0 for all R ∈ R

Notice that |P| ≤ (2n)2, and moreover, if z is a feasible solution for (LP), then for every point p in the plane,∑
R:p∈R zR ≤ 1. Let OPT denote the value of the optimal feasible solution for (LP).

We say that a set Q of rectangles forms a clique iff the intersection of all rectangles in Q is non-empty.
The size of the clique is the cardinality of Q. Lewin-Eytan, Naor and Orda [23] designed an LP-rounding (4q)-
approximation algorithm for MISR, where q is the size of the maximum clique in R. We state their result formally
in the next theorem and use it in our algorithm.

Theorem 2.1. [23] There is a polynomial time algorithm, that, given an instance R with an LP-solution of cost
Z, produces an integral solution whose cost is at least Z/4q, where q is the size of the maximum clique in R.

It will be convenient for us to work with a certain type of solutions for (LP) that we call canonical solutions,
defined as follows. We use a parameter M = 64 log n. A canonical solution to (LP) is given by a multi-subset
R′ of R (i.e., R′ may contain several copies of each rectangle R ∈ R), such that the size of the maximum clique
in R′ is at most M . Such a set R′ is naturally associated with an LP-solution, where each R ∈ R′ is assigned
an LP-value of z′R = 1/M . Clearly, z′ is a feasible LP-solution for instance R′, and it also induces a feasible
LP-solution for R, where the LP-value of rectangle R ∈ R is the sum of LP-values of its copies in R′. The next
lemma states that any solution to (LP) can be converted into a canonical solution, while losing only a constant
factor in the LP solution cost. The proof uses standard randomized rounding techniques and can be found in
Appendix A.

4

Lemma 2.1. There is an efficient randomized algorithm, that, given an optimal LP-solution of cost OPT for R,
produces, with high probability, a feasible canonical solution R′ whose associated LP-cost is |R

′|
M ≥ cOPT, for some

constant c.

Let OPT′ be the cost of the LP-solution associated with R′, OPT′ = Ω(OPT). From now on we focus on
finding a near-optimal integral solution for R′, by performing LP-rounding of the canonical LP-solution associated
with R′. If R′, R′′ ∈ R′ are copies of the same rectangle R ∈ R, then we say that they are identical, and we view
them as having a corner intersection. To simplify notation, we will refer to R′ as R and to OPT′ as OPT from
now on.

We need to define a notion of “thinness” of a rectangle, with respect to other rectangles intersecting it in a
non-corner manner. We use this notion later in defining iterative partitions of R.

Definition 2.1. For each rectangle R ∈ R, let V (R) be the set of all rectangles R′ ∈ R such that R and R′

have a non-corner intersection and the width of R′ is smaller than the width of R. Let v(R) be the size of the
maximum clique in V (R).

Notice that since R is a canonical solution, 0 ≤ v(R) ≤M − 1 for all R. We will view the value v(R) as the
measure of “thinness” of R, and it will only be computed once at the beginning of the algorithm. Notice that for
each rectangle R, if Q ⊆ V (R) is a clique of size v(R), then

(⋂
R′∈QR

′) ∩R is a rectangle intersecting the upper
and the lower boundary of R. It is easy to see that if R and R′ have a non-corner intersection then v(R) 6= v(R′):
assume w.l.o.g. that the width of R is smaller than the width of R′. Then {R} ∪ V (R) ⊆ V (R′) and therefore
v(R′) ≥ v(R) + 1.

3 The Algorithm

In this section we prove Theorem 1.1, by presenting an O(log log n)-approximation algorithm for MISR. We start
with a high level overview. Recall that we are given a canonical set R of rectangles, with maximum clique size
bounded by M = O(log n). A natural approach is to partition R into M subsets S1, . . . , SM , where R ∈ Si iff
v(R) = i−1. If set R is restricted to only contain non-corner intersections, then every set Si is an independent set
of rectangles, and moreover, set Si with maximum cardinality over all 1 ≤ i ≤M contains at least OPT′ = Ω(OPT)
rectangles. However, in our more general setting, where corner intersections are allowed, it is possible that sets
Si contain large cliques, and only a small collection of independent rectangles can be recovered from each of
them. Our goal is to build a similar partition of rectangles according to their values of v(R), while ensuring that
the maximum clique size in every set of the partition is bounded by a constant. This is done gradually over
Θ(log log n) iterations. Each iteration starts from some partition of R and produces a new, refined partition,
while removing large cliques from each set of the partition. The threshold defining large cliques decreases from
iteration to iteration, and after the last iteration only constant-sized cliques remain in each set of the partition. In
addition to R, the algorithm maintains a set T containing some rectangles that were removed from R. We ensure
that the cost of the fractional solution associated with T is close to the LP-weight of the removed rectangles,
while on the other hand there is an integral solution for T whose cost is close to that of the fractional solution.
The final solution will either contain a subset of T or a subset of one of the sets Si from the final partition.

The removal of large cliques from sets Si is performed as follows. We observe that if some set Si of rectangles
contains a large clique, then there is a rectangle R ∈ Si that has a large “α-cover”: that is, a quadruple
X1, X2, X3, X4 ⊆ Si of sets of rectangles, such that the intersection of all rectangles in {R} ∪X1 ∪X2 ∪X3 ∪X4

is non-empty and |X1| = |X2| = |X3| = |X4| = α. Moreover, every rectangle in X1 intersects the top boundary of
R, while every rectangle in X2 intersects the bottom boundary of R. Similarly, rectangles in X3 and X4 intersect
the left and the right boundaries of R, respectively. We then place R in T and remove rectangles of X1, X2,
X3 and X4 from the instance, charging their LP-weight to R. The special structure of the α-covers allows us to
argue that if the algorithm chooses T for its output, a good solution can be recovered from it. In order to ensure
this, we also maintain a partition of set T into independent sets. We now proceed to describe the algorithm more
formally.

3.1 Algorithm Description We compute values v(R) once at the beginning of the algorithm, and use these
original values throughout the algorithm. We use a parameter β = 20. The algorithm works in iterations. The
input to iteration i consists of two disjoint sets Ri, Ti of rectangles. Set Ri is partitioned into ki = βi subsets

5

Si1, S
i
2, . . . , S

i
ki

, where set Sij contains all rectangles R ∈ Ri with (j−1)M/βi ≤ v(R) < jM/βi. Notice that in the
first iteration, sets S1

1 , . . . , S
1
k1

define a coarse partition of the rectangles, where each set S1
j may contain rectangles

with values v(R) differing by logarithmic factors, and in each subsequent iteration the partition becomes finer.
Set Ti is also partitioned into ki subsets T i1, . . . , T

i
ki

, and the following properties hold:

C1. For each j : 1 ≤ j ≤ ki, the rectangles of T ij do not intersect each other and do not intersect rectangles of
Sij ∪ Sij−1.

C2. Each rectangle R ∈ Ti is associated with charge cR ≤ 106 log logn/βi.

C3. Let Wi denote the total LP-weight of rectangles in Ri (where the weight of each rectangle is 1/M), and let
Ci denote the total charge of rectangles in Ti. Then Wi + Ci ≥ OPT(1− 1/ log logn)i.

C4. For each set Sij , the maximum clique size is at most 100M/βi.

Iteration i receives as input setsRi, Ti, together with a partition T i1, . . . , T
i
ki

of set Ti and a charge c : Ti → R>0

for which properties C1–C4 hold. The output of the iteration is a set Ri+1 ⊆ Ri and Ti+1, together with partition{
T i+1
j

}ki+1

j=1
of Ti+1 and charge c′ for rectangles in Ti+1, for which properties C1–C4 hold. We show in the next

section how to implement each iteration. Assuming this can be done in polynomial time, we now show that an
O(log log n)-approximation for MISR follows.

The input to the first iteration is R1 = R, T1 = ∅. It is easy to see that conditions C1–C4 hold for this
input. We then run the algorithm for h iterations, where h is the smallest integer for which βh ≥ M/100.
It is easy to see that h = Θ(log log n). Let Rh+1, Th+1 be the output of the last iteration. By property C3,
Wh+1 + Ch+1 ≥ OPT(1 − 1/ log log n)h+1 ≥ Ω(OPT). Therefore, either Wh+1 ≥ Ω(OPT), or Ch+1 ≥ Ω(OPT).
Assume first that Wh+1 ≥ Ω(OPT), and consider the final partition Sh+1

1 , . . . , Sh+1
kh+1

of Rh+1. We thus have
kh+1 = βh+1 ≥ M/100 sets Sh+1

j , and the total LP-weight of rectangles in all these sets is Ω(OPT), while the

weight of each rectangle is 1/M . Therefore, there are Ω(M · OPT) rectangles in ∪kh+1
j=1 S

h+1
j , and at least one

set Sh+1
j contains Ω(OPT) rectangles. By property C4, the size of the maximum clique in Sh+1

j is bounded by
some constant q. We can now define a new feasible LP-solution for set Sh+1

j of rectangles, where each rectangle
R ∈ Sh+1

j is assigned an LP-value zR = 1/q. The value of this LP-solution is Ω(OPT/q), and by Theorem 2.1,
we can recover Ω(OPT/q2) = Ω(OPT) independent rectangles in Sh+1

j .
Assume now that Ch+1 ≥ Ω(OPT). Again we have kh+1 ≥ M/100 sets Th+1

j , for 1 ≤ j ≤ kh+1, whose total
charge is Ω(OPT). Thus, at least one set Th+1

j has charge Ω(OPT/M). From property C2, for each R ∈ Th+1
j ,

the charge cR ≤ 106 log log n/βh+1. Therefore, |Th+1
j | ≥ Ω(OPT/M)/(106 log log n/βh+1) = Ω(OPT/ log log n).

Since the rectangles of Th+1
j do not intersect, we get an O(log log n)-approximation.

3.2 Iteration Description Consider some iteration i. We are given as input a subset Ri of rectangles,
which is subdivided into sets Sij for 1 ≤ j ≤ ki, where ki = βi. Set Sij contains all rectangles R ∈ Ri with
(j − 1)M/βi ≤ v(R) < jM/βi. We are also given a set Ti of rectangles, which is subdivided into subsets T ij for
1 ≤ j ≤ ki, together with charge c. We assume that properties C1–C4 hold for this input. Our goal is to produce
subsets Ri+1, Ti+1 together with the corresponding partitions

{
Si+1
j

}ki+1

j=1
,
{
T i+1
j

}ki+1

j=1
and charge c′ for rectangles

in Ti+1 for which properties C1–C4 hold. The algorithm has three major steps. In the first step, we perform
an initial partition of sets Ri and Ti, into subsets

{
Si+1
j

}ki+1

j=1
,
{
T i+1
j

}ki+1

j=1
. This step will ensure properties C1,

C2 and C3. However, property C4 does not necessarily hold, and some of the sets Si+1
j may have large cliques.

The next two steps take care of this, while preserving the other properties. In the second step we remove from
Ri those rectangles (called bad rectangles) that have corner intersections with many other rectangles. Finally, in
the last step, which is the heart of our algorithm, we repeatedly find large cliques in sets Si+1

j , for 1 ≤ j ≤ ki+1,
and remove them, while adding one of the clique rectangles to Ti+1 and charging the LP-weight of all the clique
rectangles to it. The removal of bad rectangles in Step 2 allows us to bound the charge as required by Property C2.
We now proceed to describe these three steps more formally.

6

Step 1: Initial Partition. We start with Ri+1 = Ri, and partition set Ri+1 into ki+1 = βi+1 sets,{
Si+1
j

}ki+1

j=1
, as follows. Set Si+1

j contains all rectangles R ∈ Ri+1 with (j−1)M/βi+1 ≤ v(R) < jM/βi+1. Notice

that this partition is a refinement of the original partition
{
Sij
}ki

j=1
of Ri, where the rectangles of Sij now belong

to sets Si+1
(j−1)β+1, . . . , S

i+1
jβ .

Set Ti is used to produce ki+1 subsets T i+1
1 , . . . , T i+1

ki+1
as follows. For each j : 1 ≤ j ≤ ki, sets

T i+1
(j−1)β+1, . . . , T

i+1
jβ are copies of T ij . The charge of each rectangle R ∈ Ti is split evenly among the β new

copies. Let Ti+1 denote the union of rectangles in sets T i+1
j , for 1 ≤ j ≤ ki+1. We will use the following properties

of the new partition:

D1. For each j : 1 ≤ j ≤ ki+1, the rectangles of T i+1
j do not intersect each other and do not intersect rectangles

of Si+1
j ∪ Si+1

j−1 ∪ S
i+1
j−2: To see this, let j′ be the index for which Si+1

j ⊆ Sij′ . Then T i+1
j = T ij′ , and

Si+1
j ∪ Si+1

j−1 ∪ S
i+1
j−2 ⊆ Sij′ ∪ Sij′−1. We can now use property C1.

D2. For each rectangle R ∈ Ti+1, the new charge c ensures that cR ≤ 106 log log n/βi+1. This follows since
the original instance had property C2, and the new charges are defined to be 1/β-fraction of the original
charges.

D3. If W is the total LP-weight of rectangles in Ri+1 (where the weight of each rectangle is 1/M), and C is
the total charge of rectangles in Ti+1, then W + C ≥ OPT(1 − 1/ log log n)i. This property holds due to
property C3, and since the total charge and the LP-weight of rectangles have not been changed.

Step 2: Removal of Bad Rectangles. Let H be any set of rectangles with maximum clique size M ′,
and let R ∈ H be any rectangle. For γ > 0, we say that R is (γ,M ′)-bad with respect to H, if R has corner
intersections with at least γM ′ rectangles of H. The next claim shows that the number of bad rectangles in
H is small. The proof uses averaging arguments similar to those used in Lemma 1 in [23] and can be found in
Appendix B.

Claim 3.1. For any set H of rectangles with maximum clique size M ′, the number of (γ,M ′)-bad rectangles w.r.t.
H is at most 4

γ |H|.

Consider some rectangle R ∈ Ri+1, and assume that R ∈ Si+1
j . We say that R is a bad rectangle iff it is

(γ,M ′)-bad w.r.t. Si+1
j ∪ Si+1

j+1 ∪ S
i+1
j+2, for parameters γ = 12 log log n, M ′ = 300M/βi. Due to Property C4, the

size of the maximum clique in Si+1
j ∪ Si+1

j+1 ∪ S
i+1
j+2 is at most M ′.

In Step 2 of the algorithm, we remove all bad rectangles from Ri+1. From Claim 3.1, the number of rectangles
removed from Si+1

j ∪ Si+1
j+1 ∪ S

i+1
j+2 is bounded by 1

3 log logn |S
i+1
j ∪ Si+1

j+1 ∪ S
i+1
j+2|, and therefore, we remove at most

1
log logn |Ri+1| rectangles from Ri+1 in this step overall. While properties D1 and D2 continue to hold, if we denote
by W the total LP-weight of the rectangles remaining in Ri+1 and by C the total charge to rectangles in Ti+1, we
now have that W +C ≥ OPT(1−1/ log log n)i+1. Therefore, current partitions

{
Si+1
j

}
,
{
T i+1
j

}
of sets Ri+1, Ti+1

satisfy properties C1, C2 and C3. Our goal is now to ensure property C4, while maintaining these properties.
Step 3: Removal of Large Cliques. This step is the heart of our algorithm. To simplify notation, we

refer from now on to sets Si+1
j as Sj and to sets T i+1

j as Tj . We also denote Ri+1, Ti+1 and ki+1 by R′, T ′ and
k, respectively. One of our main observations is that the existence of a large clique implies a large α-coverage,
which is defined as follows.

Definition 3.1. Let R ∈ Sj for some j, and let X1, X2, X3, X4 ⊆ Sj be distinct collections of rectangles,
|X1| = |X2| = |X3| = |X4| = α. We say that they form an α-covering of R iff:

• Each rectangle in X1 (resp. X2) intersects the top (resp. bottom) boundary of R, and each rectangle in X3

(resp. X4) intersects the left (resp. right) boundary of R.

• There is a point p contained in every rectangle in set X1 ∪X2 ∪X3 ∪X4 ∪ {R}.

For each R ∈ Sj, for 1 ≤ j ≤ k, we denote by α(R) the maximum value α such that there exist
X1, X2, X3, X4 ⊆ Sj that form an α-covering of R.

7

The following claim shows that whenever there is a large clique in any set Sj , there must be a rectangle R
with large covering number α(R). In the rest of the algorithm we will repeatedly find such rectangles and reduce
the clique size by moving them from R′ to T ′, while removing some of the rectangles from R′ completely.

Claim 3.2. Consider set Sj for any j : 1 ≤ j ≤ k, and assume that Sj contains a clique of size c. Then there is
at least one rectangle R ∈ Sj with α(R) ≥ bc/4c − 1.

Proof. Let C ⊆ Sj be any clique of size c, and let p be a point contained in every rectangle of C. Let X1 ⊆ C
denote the set of bc/4c − 1 rectangles R with highest top boundaries (i.e., largest values of yt(R)), breaking ties
arbitrarily. Let X2 ⊆ C \X1 denote the set of bc/4c−1 rectangles with lowest bottom boundaries (smallest values
of yb(R)), breaking ties arbitrarily. Define X3 and X4 similarly for the left and right boundaries. Let R be any
rectangle in C \ (X1 ∪X2 ∪X3 ∪X4).

It is easy to see that every rectangle in X1 (resp. X2) intersects the upper (resp. lower) boundary of R,
and every rectangle in X3 (resp. X4) intersects the left (resp. right) boundary of R. Thus, (X1, X2, X3, X4) is a
(bc/4c − 1)-covering of R.

If Sj does not contain rectangles R with α(R) ≥ 20M/βi+1 = 20M/k, then Claim 3.2 ensures that the size
of the largest clique in Sj is at most 100M/βi+1, and Property C4 holds in Sj . The next claim shows that the
last two sets Sk−1 and Sk in the partition cannot contain large cliques.

Claim 3.3. If α(R) ≥ 20M/k and R ∈ Sj, then j ≤ k − 2.

Proof. Assume for contradiction that j > k − 2. Consider set C ⊆ V (R) of rectangles that form a clique of
size v(R). Since j > k − 2, v(R) ≥ M − 2M/k must hold. Let ` be any vertical line segment contained in
R ∩

(⋂
R′∈C R

′), such that ` contains a point on the top and a point on the bottom boundary of R. We denote
the x-coordinate of ` by x`.

Let (X1, X2, X3, X4) be the α(R)-cover of R, and let p = (x′, y′) be a point contained in the intersection of
all rectangles in {R} ∪ X1 ∪X2 ∪X3 ∪X4. We assume w.l.o.g. that x` ≤ x′, and the other case is symmetric.
Consider the point q = (x`, y′) (see Figure 2). We claim that more than M rectangles contain q. First, since q lies
on `, every rectangle in C contains q. Additionally, since every rectangle in X3 contains p and intersects the left
boundary of R, q also belongs to every rectangle of X3. Moreover, X3 ∩C = ∅, since C only contains rectangles in
V (R), while all rectangles in X3 intersect the left boundary of R and therefore do not belong to V (R). Therefore,
the number of rectangles containing q is at least v(R) + |X3| ≥M − 2M/k+ 20M/k > M . This is a contradiction
since R is a canonical set.

We are now ready to describe the algorithm executed at Step 3. While there exist rectangles R ∈ R′ with
α(R) ≥ 20M/k (where α(R) is computed with respect to set Sj to which R belongs), we select such a rectangle
R that has smallest width, breaking ties arbitrarily. If R ∈ Sj , then by Claim 3.3, 1 ≤ j ≤ k − 2. We then run
the following procedure.

Round(R)

Assume that R ∈ Sj , and let X1, X2, X3, X4 be the corresponding α-coverage with point p contained in all
rectangles of X1 ∪X2 ∪X3 ∪X4 ∪ {R}.

• Remove R from R′ and add it to Tj+2.

• Remove all rectangles R′ ∈ Sj ∪ Sj+1 ∪ Sj+2 containing p from R′.
Let R1

l ∈ X1 be the rectangle minimizing the value of xl(R) in X1, and let R1
r ∈ X1 be the rectangle

maximizing value xr(R) inX1, breaking ties arbitrarily. Similarly, letR2
l , R

2
r ∈ X2 be the two rectangles

minimizing xl(R) and maximizing xr(R) in X2, respectively.

• Remove from R′ all rectangles R′ ∈ Sj ∪ Sj+1 ∪ Sj+2 that have corner-intersections with at least one
of the rectangles in

{
R,R1

l , R
1
r , R

2
l , R

2
r

}
.

• Set the charge of R to be the LP-weight of all rectangles removed from R′ by this procedure.

8

Figure 2: Illustration for proof of Claim 3.3

We now prove that properties C1–C4 hold when the algorithm terminates. Due to Claim 3.2, once the
algorithm stops, the maximum clique size in any set Sj , 1 ≤ j ≤ k is at most 4 · (20M/k + 2) ≤ 100M/k, and
therefore property C4 holds. Moreover, observe that during the rectangle rounding step the sum of total charge
of rectangles in T ′ and the LP-weight of rectangles in R′ do not change. This is since the LP-weight of every
rectangle removed from R′ is charged to some rectangle newly added to T ′. This ensures property C3. We now
prove that property C2 is also preserved.

Claim 3.4. The charge of each rectangle R that is added to T by procedure Round(R) is bounded by
106 log log n/k.

Proof. Recall that we only remove the following rectangles. (1) Rectangles in set Sj ∪ Sj+1 ∪ Sj+2 containing p:
due to property C4 in the input to the current iteration, the maximum clique size in each such set is bounded
by 100M/βi, and thus the total LP-weight of these rectangles is at most 300/βi = 6000/βi+1. (2) Rectangles
in set Sj ∪ Sj+1 ∪ Sj+2 that have corner intersection with one of the rectangles

{
R,R1

l , R
1
r , R

2
l , R

2
r

}
. Since

we have removed all bad rectangles from R′, each rectangle in
{
R,R1

l , R
1
r , R

2
l , R

2
r

}
intersects with at most

(12 log log n) · (300M/βi) = 3600M log log n/βi rectangles. The total LP-weight of such rectangles is at most
5 · β · 3600 log log n/βi+1. Therefore, the total charge to R is bounded by 106 log log n/βi+1 as required.

Finally, the next theorem shows that Property C1 is preserved as well, completing the proof of Theorem 1.1.

Theorem 3.1. For every 1 ≤ j ≤ k, rectangles of Tj do not intersect each other and do not intersect rectangles
in Sj ∪ Sj−1.

Proof. Recall that before the rounding steps were performed, property D1 ensured that for each j, the rectangles
of Tj do not intersect each other and do not intersect rectangles in set Sj ∪ Sj−1 ∪ Sj−2. It is enough to prove
the following lemma:

Lemma 3.1. Whenever rectangle R ∈ Sj is added to Tj+2 due to procedure Round(R), it does not intersect any
rectangle in Tj+2∪Sj+2∪Sj+1. Moreover, there is no rectangle R′ ∈ Sj that intersects R in a non-corner manner,
whose width is greater than the width of R.

Proof. The proof is by induction on the order in which rectangles R are added to Tj+2. Assume first for
contradiction that there is a rectangle R′ ∈ Tj+2 that intersects with R. If R′ belonged to Tj+2 before the
execution of Step 3, then Property D1 ensures that R and R′ do not intersect. Otherwise, R′ has been added
to Tj+2 during Step 3 before R and so its width is smaller than the width of R. When procedure Round(R′)
was executed, we have removed from Sj ∪ Sj+1 ∪ Sj+2 all rectangles that have corner intersection with R′, and
therefore the intersection between R and R′ must be a non-corner one. Due to the induction hypothesis it is then
impossible that R and R′ intersect.

9

Assume now for contradiction that R intersects some rectangle R′ ∈ Sj+1 ∪ Sj+2. Since we remove all
rectangles in Sj ∪ Sj+1 ∪ Sj+2 that have corner-intersections with R during procedure Round(R), it must be a
non-corner intersection. Moreover, since R ∈ Sj while R′ ∈ Sj+1 ∪Sj+2, v(R) < v(R′) and therefore the width of
R′ must be greater than the width of R. To finish the proof of the theorem, it now remains to show that if R and
R′ have a non-corner intersection and the width of R′ is greater than the width of R then R′ 6∈ Sj ∪ Sj+1 ∪ Sj+2.
The next claim will then finish the proof of the theorem.

Claim 3.5. Let R′ be any rectangle intersecting R in a non-corner manner, such that the width of R′ is greater
than the width of R. Then v(R′) ≥ v(R) + α(R)/4 ≥ v(R) + 5M/k. It follows that R′ 6∈ Sj ∪ Sj+1 ∪ Sj+2.

Proof. Consider the α(R)-covering (X1, X2, X3, X4) ⊆ Sj of R, and let p = (x, y) be the point contained in every
rectangle in set {R} ∪X1 ∪X2 ∪X3 ∪X4. Since R′ was not removed during procedure Round(R), it does not
contain point p. Assume w.l.o.g. that R′ lies strictly above p (the other case is symmetric).

We first show that for every rectangle P ∈ X1, R′ intersects P in a non-corner manner, and the width of R′

is greater than the width of P (see Figure 3). Let P ∈ X1. Recall that P intersects the top boundary of R and
contains point p, while R′ lies strictly between the top boundary of R and point p. Therefore, R′ cannot contain
corners of P . On the other hand, since R′ was not removed by procedure Round(R), R′ and R1

l intersect in a
non-corner manner, and R′ and R1

r intersect in a non-corner manner. This can only happen if the left boundary
of R′ lies completely to the left of the left boundary of R1

l (and thus to the left of P), and the right boundary of
R′ lies to the right of the right boundary of R1

r (and thus to the right of P). Thus, X1 ⊆ V (R′).

Figure 3: Illustration for claim that X1 ⊆ V (R′)

Consider now the vertical line L passing through p. Let Q ⊆ X1 be the set of b|X1|/2c rectangles whose
left boundary is closest to L in X1, and let P ∈ Q be the rectangle whose right boundary is closest to L in Q
(see Figure 4). Notice that all rectangles in X1 \ Q intersect the left boundary of P , and all rectangles in Q
intersect the right boundary of P . Therefore, no rectangle of X1 may belong to V (P). Let C′ ⊆ V (P) be a clique
of size v(P). Let q = (x′, y′) be any point in the intersection of rectangles in C′ ∪ {P,R′}. Assume first that
x′ ≤ x. Then every rectangle in X1 \ Q contains q, and C′ ∪ (X1 \ Q) ⊆ V (R′) form a clique of size at least
v(P) + dα(R)/2e ≥ v(R) −M/k + dα(R)/2e ≥ v(R) + α(R)/4. Similarly, if x > x′, then every rectangle in Q
contains q, and C′ ∪Q ⊆ V (R′) form a clique of size at least v(P) + bα(R)/2c ≥ v(R) + α(R)/4.

4 A Generalization To Higher Dimensions

Let A be any f(n)-approximation algorithm for the MISBd problem for any d ≥ 2. We show that there is an
O(log n · f(n))-approximation algorithm for MISBd+1. Our algorithm is similar to the algorithm of Agarwal et
al. [1] which can be seen as obtaining an O(log n)-approximation algorithm for MISB2 from an exact algorithm
for MISB1. The proof of the next theorem, combined with Theorem 1.1 will complete the proof of Theorem 1.2.

Theorem 4.1. If there is a factor f(n)-approximation algorithm A for MISBd, then there is an O(f(n) log n)-
approximation algorithm for MISBd+1, for any d ≥ 1.

Proof. Let R be an instance of MISBd+1. For each rectangle R ∈ R, let γR be the largest value of (d + 1)th
coordinate of any point in R. Let y ∈ R be such that exactly b |R|2 c rectangles of R have γR ≤ y. We partition R

10

Figure 4: Illustration for proof of Claim 3.5

into three sets, I, Il and Ir as follows. Let H be the hyperplane xd+1 = y. Set I contains all rectangles R that
intersect H, and sets Il and Ir contain all rectangles lying completely to the left or to the right of H, respectively.
More formally, if we denote the (d + 1)th coordinate of point p by pd+1, then I = {R ∈ R|∃p ∈ R : pd+1 = y},
Il = {R ∈ R|∀p ∈ R : pd+1 < y} and Ir = {R ∈ R|∀p ∈ R : pd+1 > y}.

Let I ′ be the instance of MISBd obtained from I by ignoring the last coordinate of each rectangle. We run A
on I ′, and solve the problem recursively on Il and Ir. Let S, Tl, Tr be the corresponding solutions. The algorithm
outputs either S or Tl ∪ Tr, whichever contains more rectangles.

We show by induction on the input size that this algorithm produces an O(f(n) log n)-approximation. We
consider two cases. First, if the optimal solution cost on I is at least OPT/ log n, then |S| ≥ OPT/(f(n) log n) since
A is an f(n)-approximation algorithm. Otherwise, denote by OPTl and OPTr the sizes of maximum independent
sets in Il and Ir respectively. We have that OPTr + OPTl ≥ OPT(1− 1/ log n). Using the induction hypothesis,
since |Il|, |Ir| ≤ n/2, we have that |Tl| ≥ OPTl/(f(n)(log n − 1)) and |Tr| ≥ OPTr/(f(n)(log n − 1)). Therefore,
|Tl ∪ Tr| ≥ OPT/(f(n) log n).

5 Conclusion

We have shown an O(log log n)-approximation algorithm for MISR. However, the exact approximability status
of MISR still remains open, and in particular it is interesting whether this problem admits a PTAS. Another
interesting open question is establishing the integrality gap of (LP). Our results imply an O(log log n) upper bound
and a lower bound asymptotically approaching 3/2. It is also interesting whether our approach can be extended
to O((log log n)d)-approximation for MISBd, and whether it can used to obtain sub-logarithmic approximation for
the weighted version of MISR.

References

[1] P. K. Agarwal, M. J. van Kreveld, and S. Suri. Label placement by maximum independent set in rectangles.
Computational Geometry, 11(3-4):209–218, 1998.

[2] P. Berman, B. DasGupta, S. Muthukrishnan, and S. Ramaswami. Improved approximation algorithms for rectangle
tiling and packing. In ACM-SIAM Symposium on Discrete Algorithms, pages 427–436, 2001.

[3] R. B. Boppana and M. M. Halldórsson. Approximating maximum independent sets by excluding subgraphs. BIT,
32(2):180–196, 1992.

[4] T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects. Journal of Algorithms,
46(2):178–189, 2003.

[5] T. M. Chan. A note on maximum independent sets in rectangle intersection graphs. Information Processing Letters,
Volume 89, Number 1, pp. 19-23, 2004.

11

[6] L. S. Chandran, M. C. Francis and N. Sivadasa. Geometric Representation of Graphs in Low Dimension Using Axis
Parallel Boxes. Algorithmica, to appear.

[7] L. S. Chandran, M.C. Francis, and N. Sivadasan. Boxicity and maximum degree. Journal of Combinatorial Theory
Series B (2007).

[8] L.S. Chandran, M.C. Francis, N. Sivadasan. Boxicity and Treewidth. Journal of Combinatorial Theory Series B 97(5),
733744 (2007).

[9] Miroslav Chleb́ık and Janka Chleb́ıková. Approximation hardness of optimization problems in intersection graphs of
d-dimensional boxes. In ACM-SIAM Symposium on Discrete Algorithms, pages 267–276, 2005.

[10] M. B. Cozzens. Higher and multidimensional analogues of interval graphs. Ph.D. thesis, Rutgers University, New
Brunswick, NJ (1981).

[11] J. S. Doerschler and H. Freeman. A rule-based system for dense-map name placement. Communication of The ACM
35, 1, pp. 68-79, 1992.

[12] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for geometric intersection
graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.

[13] R.J. Fowler, M.S. Paterson and S.L. Tanimoto, Optimal packing and covering in the plane are NP-complete.
Information Processing Letter. 12 3 (1981), pp. 133137.

[14] T. Fukuda, Y. Morimoto, S. Morishita and T. Tokuyama. Data Mining with optimized two-dimensional association
rules. ACM Trans. Database Syst. 26, 2, pp. 179-213, 2001.

[15] A. G. Greenberg and D. Wischik. Admission Control for Booking Ahead Shared Resources, In Proceedings IEEE
INFOCOM ’98, pp. 873–882, 1998.

[16] R. A. Guerin and A. Orda. Networks with advance reservations: The routing perspective. In Proceedings of the 19th
Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), 2000.

[17] J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001.
[18] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing problems in image

processing and vlsi. Journal of the ACM, 32(1):130–136, 1985.
[19] H. Imai, T. Asano. Finding the Connected Components and a Maximum Clique of an Intersection Graph of Rectangles

in the Plane. Journal of Algorithms 4(4): 310-323, 1983.
[20] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling and packing. In ACM-SIAM

Symposium on Discrete Algorithms, pages 384–393, 1998.
[21] Jan Kratochv́ıl A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness. Discrete Applied

Mathematics, 52(3):233–252, 1994.
[22] B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proceedings of the International Conference on

Data Engineering (ICDE’97), pages 220–231, 1997.
[23] Liane Lewin-Eytan, Joseph Naor, and Ariel Orda. Routing and admission control in networks with advance

reservations. In Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
pages 215–228, 2002.

[24] A. Lingas and M. Wahlen. A note on maximum independent set and related problems on box graphs. Information
Processing Letter, 93(4):169–171, 2005.

[25] Frank Nielsen. Fast stabbing of boxes in high dimensions. Theoretical Computer Science, 246(1-2):53–72, 2000.
[26] F.S. Roberts. On the boxicity and Cubicity of a graph. In: Recent Progresses in Combinatorics, pp. 301-310. Academic,

New York (1969).
[27] B. Rosgen, L. Stewart. Complexity results on graphs with few cliques. Discrete Math. Theor. Comput. Sci. 9, 127136

(2007) 21. Scheinerman, E.R.: Intersection
[28] E.R. Scheinerman, Intersection classes and multiple intersection parameters. Ph.D. thesis, Princeton University

(1984).
[29] O. Schelén and S. Pink. Resource sharing in advance reservation agents. Journal of High Speed Networks 7, 3-4, pp.

213-228, 1998.
[30] A. Schill, F. Breiter, and S. Kühn. Design and evaluation of an advance reservation protocol on top of RSVP. In

Proceedings of The International Conference on Broadband Communications, Stuttgart, Chapman & Hall, pp. 23–40,
1998.

[31] C. Thomassen. Interval representations of planar graphs. Journal of Combinatorial Theory Series B 40, 920 (1986).
[32] Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM Journal on Algebraic Discrete

Methods, 3(3):351-358, 1982.

12

A Proof of Lemma 2.1

Proof. For each rectangle R ∈ R, let cR = dzRMe. We create cR copies of R, with the first cR − 1 copies having
LP-value 1/M , and the last copy with LP-value zR− (cR− 1)/M . Let R∗ be the resulting multi-set of rectangles
and z∗ be its corresponding LP-solution. Clearly, the sum of LP-values z∗ of copies of R in R∗ is exactly zR.

We now construct set R′ as follows. Each rectangle R ∈ R∗ is independently selected to R′ with probability
M
2 z
∗
R. Let z′ be the LP-solution for set R′, where every rectangle is assigned value 1/M .
Observe first that the expected solution value is OPT/2. Using Chernoff bound, the probability that the

LP-value of z′ is less than OPT/4 is at most e−OPT/16 < 1/4 (assuming that OPT > c for some constant c).
To show that the solution is feasible, it is enough to prove that for each point p ∈ P, the probability that

more than M rectangles containing p are in R′ is at most 1/n4. We can then use the union bound to show that
the solution is feasible with high probability.

For any point p ∈ P, let Cp be the set of rectangles in R′ containing p. Observe that E [|Cp|] ≤M/2. Using
Chernoff bound, we get

Pr [|Cp| ≥M] ≤ e−M/16 ≤ 1
n4

Applying the union bound to the n2 points in P, we get that with high probability the solution is a feasible
solution. Thus, with constant probability, we get a feasible solution whose LP-value is at least OPT/4.

B Proof of Claim 3.1

Proof. For each rectangle R ∈ H, let I(R) be the set of rectangles identical to R in H, including R. For
two non-identical rectangles R,R′, let c(R,R′) be the number of corners of R contained in R′. Observe
that c(R,R′) ∈ {0, 1, 2}, and, since the maximum clique size in R′ is at most M ′, for each rectangle R,
|I(R)| +

∑
R′ 6∈I(R) c(R,R

′) ≤ 4M ′. For each rectangle R ∈ H, let NH(R) be the number of rectangles in H
that have corner intersections with R. We can now bound the average value of NH(R) as follows:

∑
R∈H
|NH(R)| = |{(R,R′) : R,R′ corner-intersect }|

≤
∑
R∈H

|I(R)|+
∑

R′∈H\I(R)

c(R,R′)


≤ 4M ′|H|

To see that the first inequality is true, observe that there are two types of possible corner-intersections for
non-identical rectangles R and R′: either each rectangle contains exactly one corner of the other, in which case
this intersection contributes 2 to both sides of the inequality; or one rectangle contains two corners of the other,
in which case again the intersection contributes 2 to both sides of the inequality.

We can now use standard averaging arguments to complete the claim. Assume for contradiction that there
are more than 4

γ |H| rectangles that are (γ,M ′)-bad. Since each such rectangle has |NH(R)| > γM ′, we get that∑
R∈H|NH(R)| > 4M ′|H|, a contradiction.

C A Lower Bound on Integrality Gap

In this section we show a lower bound on the integrality gap of (LP) that asymptotically approaches 3/2. Our
instance only contains corner intersections. Our construction is recursive, and we construct a sequence I1, . . . , In
of instances, where the integrality gap of In is 3n+2

2(n+1) .

Each instance Ij contains three special rectangles: Rj1, R
j
2 and Rj3. Additionally, we have a “virtual” rectangle

Rjv that has the property that all rectangles of Ij excluding Rj1, R
j
2, R

j
3 are contained in Rjv. We notice that Rjv

is not part of the problem instance, but is convenient to use as a bounding box for all rectangles in Ij excluding
Rj1, R

j
2, R

j
3. Figure 5 shows a schematic view of Ij .

Instance I1 contains five rectangles, whose intersection graph is just a 5-cycle, as shown in Figure 6.

13

Figure 5: Schematic View of Ij

In order to obtain instance Ij+1 from instance Ij we proceed as follows. First, we rotate Ij clockwise by 90
degrees. Next, we place Rj+1

1 to the left of Ij , intersecting Rj1 and Rj2 but not intersecting Rjv. Similarly, Rj+1
2 is

placed to the right of Ij , intersecting Rj3 but not Rjv. Finally, Rj+1
3 is placed above Ij , intersecting Rj+1

1 and Rj+1
2

only. Figure 7 shows how instance Ij+1 is constructed from instance Ij , including the virtual rectangle Rj+1
v .

We now proceed to analyze the integrality gap of instance Ij . First, it is clear that Ij contains 3j+2 rectangles,
and the size of the maximum clique is 2. Therefore, a fractional solution assigning LP-weight 1

2 to each rectangle
is a feasible solution of cost (3j + 2)/2. We next show that the cost of the integral solution is at most j + 1.

Claim C.1. The optimal integral solution of Ij contains at most j + 1 rectangles.

Proof. We prove by induction on j. It is easy to verify that the optimal solution for I1 contains 2 rectangles, and
the optimal solution for I2 contains 3 rectangles. Assume that maximum independent set for Ij contains (j + 1)
rectangles and consider Ij+1. Let S be any solution for Ij+1. Notice that there are exactly three rectangles in Ij+1

that do not appear in Ij : R
j+1
1 , Rj+1

2 and Rj+1
3 . Therefore, if S contains at most one of these three rectangles, we

can use the induction hypothesis to conclude that |S| ≤ j + 2. Assume now that S contains at least two of these
rectangles. The only way for this to happen is when both Rj+1

1 and Rj+1
2 are in S. Then none of the rectangles

Rj+1
3 , Rj1, R

j
2, R

j
3 may belong to S. The size of S \

{
Rj+1

1 , Rj+1
2

}
is then bounded by optimal integral solution for

Ij−1, and therefore by the induction hypothesis, |S| ≤ j + 2.

It now follows that the integrality gap for In is (3n+ 2)/2(n+ 1).

14

Figure 6: Instance I1

Figure 7: Instance Ij+1

15

