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ABSTRACT
Maximum bipartite matching (MBM) is a fundamental problem in

combinatorial optimization with a long and rich history. A classic

result of Hopcroft and Karp (1973) provides an 𝑂 (𝑚
√
𝑛)-time algo-

rithm for the problem, where 𝑛 and𝑚 are the number of vertices

and edges in the input graph, respectively. For dense graphs, an

approach based on fast matrix multiplication achieves a running

time of 𝑂 (𝑛2.371). For several decades, these results represented
state-of-the-art algorithms, until, in 2013, Madry introduced a pow-

erful new approach for solvingMBMusing continuous optimization

techniques. This line of research, that builds on continuous tech-

niques based on interior-point methods, led to several spectacular

results, culminating in a breakthrough𝑚1+𝑜 (1)
-time algorithm for

min-cost flow, that implies an𝑚1+𝑜 (1)
-time algorithm for MBM as

well.

These striking advances naturally raise the question of whether

combinatorial algorithms can match the performance of the algo-

rithms that are based on continuous techniques for MBM. One

reason to explore combinatorial algorithms is that they are often

more transparent than their continuous counterparts, and that the

tools and techniques developed for such algorithms may be useful

in other settings, including, for example, developing faster algo-

rithms for maximum matching in general graphs. A recent work

of Chuzhoy and Khanna (2024) made progress on this question

by giving a combinatorial 𝑂̃ (𝑚1/3𝑛5/3)-time algorithm for MBM,

thus outperforming both the Hopcroft-Karp algorithm and matrix

multiplication based approaches, on sufficiently dense graphs. Still,

a large gap remains between the running time of their algorithm

and the almost linear-time achievable by algorithms based on con-

tinuous techniques. In this work, we take another step towards

narrowing this gap, and present a randomized 𝑛2+𝑜 (1) -time combi-

natorial algorithm for MBM. Thus in dense graphs, our algorithm

essentially matches the performance of algorithms that are based

on continuous methods.
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Similar to the classical algorithms for MBM and the approach

used in the work of Chuzhoy and Khanna (2024), our algorithm

is based on iterative augmentation of a current matching using

augmenting paths in the corresponding (directed) residual flow net-

work. Our main contribution is a recursive algorithm that exploits

the special structure of the resulting flow problem to recover an

Ω(1/log2 𝑛)-fraction of the remaining augmentations in 𝑛2+𝑜 (1)

time.

Finally, we obtain a randomized 𝑛2+𝑜 (1) -time algorithm for max-

imum vertex-capacitated 𝑠-𝑡 flow in directed graphs when all vertex

capacities are identical, using a standard reduction from this prob-

lem to MBM.
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1 INTRODUCTION
We consider the classicalMaximum Bipartite Matching problem,
where the goal is to compute a maximum-size matching in the
given input bipartite graph𝐺 . Maximum Bipartite Matching is one
of the most central and extensively studied problems in computer
science and related disciplines, with connections to many other
fundamental graph optimization problems.

Throughout, we denote the number of vertices and the number
of edges in 𝐺 by 𝑛 and𝑚, respectively. It is well known that Maxi-
mum Bipartite Matching can be reduced to computing a maximum
𝑠-𝑡 flow in a directed flow network with unit edge capacities. The
Ford-Fulkerson algorithm [14] for maximum 𝑠-𝑡 flow then imme-
diately implies an 𝑂 (𝑚𝑛)-time algorithm for Maximum Bipartite
Matching. The algorithm is conceptually simple, and maintains a
matching𝑀 , starting with𝑀 = ∅. As long as𝑀 is not optimal, we
can augment it by computing an 𝑠-𝑡 path in the resulting residual
flow network. A celebrated work of Hopcroft and Karp [21] pro-
vides a significantly more efficient 𝑂 (𝑚

√
𝑛)-time implementation

of this idea by iteratively computing a maximal collection of inter-
nally disjoint augmenting 𝑠-𝑡 paths of shortest possible length in

https://doi.org/10.1145/3618260.3649725
https://doi.org/10.1145/3618260.3649725
https://doi.org/10.1145/3618260.3649725
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the residual flow network. This result remained the fastest known
algorithm for several decades, except for the special case of very
dense graphs, where fast matrix multiplication techniques were
shown to yield an 𝑂 (𝑛𝜔 )-time algorithm [22, 30]. Starting in 2008,
a new paradigm emerged, namely, the use of continuous tech-
niques as a method for obtaining fast algorithms for various flow
problems, that ultimately revolutionized the field. As a first illus-
tration of this paradigm, the work of Daitch and Spielman [11],
building on the breakthrough result of Spielman and Teng [33]
for efficiently solving Laplacian systems, gave an 𝑂 (𝑚3/2)-time
algorithm for directed maximum 𝑠-𝑡 flow. Later, Madry [27] used
this paradigm to design an algorithm for directed maximum 𝑠-𝑡
flow with 𝑂̃ (𝑚10/7) running time, obtaining the first substantial
improvement over the algorithm of Hopcroft and Karp for Maxi-
mum Bipartite Matching in sparse graphs. A sequence of remark-
able developments [4, 10, 24, 25, 28, 35] recently culminated in a
deterministic 𝑚1+𝑜 (1) -time algorithm for directed maximum 𝑠-𝑡
flow [8, 34], thereby providing an almost linear-time algorithm for
Maximum Bipartite Matching. In all these recent algorithms, the
directed flow problem is cast as a linear program, which is then
solved via interior-point methods (IPM). In every iteration of the
IPM, one needs to either solve a Laplacian system, or another effi-
ciently solvable problem on undirected graphs, such as min-ratio
cycle in [8]. This approach is further combined with dynamic graph
data structures to make it even more efficient.

In view of this recent history, it is natural to ask whether combi-
natorial techniques can be used to design algorithms for Maximum
Bipartite Matching (and also other flow-like problems), whose
performance matches that of algorithms that are based on contin-
uous methods. There are several reasons to focus on combinatorial
techniques. First, they tend to be more transparent than their con-
tinuous counterparts. Second, it is likely that tools and techniques
that are developed in order to design a combinatorial algorithm
for as fundamental a problem as Maximum Bipartite Matching
will prove useful in other applications. Lastly, while continuous
techniques led to an𝑚1+𝑜 (1) -time algorithm for Maximum Bipar-
tite Matching, the landscape of fast algorithms for the Maximum
Matching problem in general graphs did not benefit from these
developments. In dense graphs, a fast-matrix multiplication based
approach gives 𝑂 (𝑛2.371)-time algorithm for Maximum Match-
ing in general graphs [22, 30]. More interestingly, in sparse to
moderately dense graphs, the best known runtime still stands on
𝑂̃ (𝑚

√
𝑛) [15, 18, 29, 36] and utilizes an augmenting-paths based

approach, similar to that used in combinatorial algorithms for
Maximum Bipartite Matching.

In a very recent work, Chuzhoy and Khanna [9] made progress
on narrowing the striking gap between the performance of combina-
torial and IPM-based approaches for MaximumBipartite Matching,
by providing a combinatorial deterministic 𝑂̃ (𝑚1/3𝑛5/3)-time algo-
rithm, thus outperforming both the Hopcroft-Karp algorithm, and
the matrix multiplication based approaches on sufficiently dense
graphs. Still, a large gap remains between the performance of the
best combinatorial algorithms and the almost linear-time achiev-
able by algorithms based on continuous techniques. In particular,
on dense graphs, the performance gap incurred by the current

best combinatorial algorithm is Ω(𝑛1/3). In this work, we take an-
other step towards narrowing this performance gap, and essentially
eliminate it in dense graphs. Our main result is summarized below.

Theorem 1.1. There is a randomized combinatorial algorithm
for the Maximum Bipartite Matching problem, that, given an 𝑛-
vertex bipartite graph 𝐺 , outputs a maximum matching 𝑀 in 𝐺
with probability at least 1 − 1/poly(𝑛). The running time of the

algorithm is 𝑂
(
𝑛2 · 2𝑂 (

√
log𝑛 ·log log𝑛)

)
.

Our algorithm outperforms the Hopcroft-Karp algorithm on
graphs with 𝜔 (𝑛1.5) edges, and in dense graphs, it essentially
matches the performance of algorithms based on continuous tech-
niques. Furthermore, in almost all edge density regimes, this algo-
rithm outperforms the runtime achieved in [9].

Using a standard reduction from vertex-capacitated flow in
directed graphs to Maximum Bipartite Matching (see Theorem
16.12 in [32], for instance), we also obtain a combinatorial algorithm
with similar running time for maximum vertex-capacitated flow
when all vertex capacities are identical.

Corollary 1.2. There is a randomized combinatorial algorithm
for the directed maximum 𝑠-𝑡 flow problem with uniform vertex ca-
pacities, that given an 𝑛-vertex directed graph𝐺 , outputs a maximum
𝑠-𝑡 flow with probability at least 1 − 1/poly(𝑛). The running time of

the algorithm is 𝑂
(
𝑛2 · 2𝑂 (

√
log𝑛 ·log log𝑛)

)
.

Similarly to the classical algorithms for Maximum Bipartite
Matching, our approach for proving Theorem 1.1 is based on itera-
tively augmenting a current matching using augmenting paths in
the residual flow network. We employ the multiplicative weights
update (MWU) framework, that effectively reduces the underlying
flow problem to decremental single-source shortest paths (SSSP)
in directed graphs, a connection first observed by Madry [26] and
also used in [9]. As observed in [9], this reduction results in a
special case of decremental SSSP that appears significantly easier
than general decremental directed SSSP. Our main contribution
is a recursive algorithm that exploits the special structure of the
resulting flow problem to recover an Ω(1/log2 𝑛)-fraction of the
remaining augmentations in 𝑛2+𝑜 (1) time. We abstract this task as
a problem called RouteAndCut, where the input is a directed graph
𝐺 , two disjoint sets 𝐴, 𝐵 of its vertices with |𝐴| ≤ |𝐵 |, and two
additional parameters 1 ≤ 𝜂 ≤ Δ. The goal is to either compute
a collection P of at least Ω(Δ/poly log𝑛) paths that connects dis-
tinct vertices of 𝐴 to distinct vertices of 𝐵 with vertex-congestion
at most 𝜂; or to output a cut that approximately certifies infea-
sibility of the desired routing. Our main result is a randomized
algorithm for RouteAndCut, whose running time is bounded by
𝑛1+𝑜 (1) · (𝑛 − |𝐵 |). It is worth highlighting that when |𝐵 | is suffi-
ciently large, this running time may be much smaller than |𝐸 (𝐺) |.
This performance gain for large sets 𝐵 serves as a crucial building
block for our 𝑛2+𝑜 (1) -time algorithm.

As in the work of [9], the task of efficiently solving RouteAndCut
in turn relies on an efficient algorithm for maintaining an expander
in a dynamically changing graph, a problem that we refer to as
MaintainCluster. One key contribution of our work is the intro-
duction of a parameterized version of both these problems that
allows us to use a bootstrapping approach in the design of our
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algorithm, where we exploit efficient algorithms for one problem
to obtain efficient algorithms for the other problem and vice versa.
Another key technical contribution is an efficient algorithm for a
new problem that we introduce, called ConnectToCenters, whose
goal is to efficiently maintain short paths from all vertices of a given
graph 𝐺 to a pre-specified collection of “center” vertices, even as
𝐺 undergoes online updates. This problem may be viewed as a
representative abstraction of a common paradigm used in many
graph algorithms, in which an expander is embedded into the in-
put graph, and all graph vertices are then routed to the vertices of
the expander. As such, our algorithm for this problem may prove
useful in other applications. Finally, another insight utilized by our
algorithm is an explicit recognition of the fact that each iteration
of the MWU algorithm leads to very specific kind of updates in the
underlying SSSP instance, namely, well-behaved increases in the
lengths of some edges. While these length increases can easily be
simulated as edge deletions, a black-box simulation as an instance
of decremental SSSP gives away some of the inherent algorithmic
advantages offered by these special kind of updates that our algo-
rithm exploits. We give a detailed overview of our algorithm and
its comparison to the algorithm of [9] in the next subsection.

We conclude by noting that in addition to the conceptual sim-
plicity of a combinatorial augmenting path based approach to solve
Maximum Bipartite Matching, the techniques developed here for
speeding up augmentations may also prove useful in obtaining
faster algorithms for Maximum Matching in general graphs. We
also believe that some of the technical tools that we introduce,
such as an efficient algorithm for the ConnectToCenters problem
that we describe in more detail below, are of independent interest.

1.1 Our Techniques
Our algorithm builds on and extends the techniques of [9], which,
in turn, build on the algorithm of [6] for the directed decremen-
tal Single-Source Shortest Path (SSSP) problem. We start with a
high-level overview of the algorithm of [9], and then provide the
description of our improved algorithm.

It is well known that the Maximum Bipartite Matching problem
in a graph𝐺 can be equivalently cast as the problem of computing
an integral maximum 𝑠-𝑡 flow in a corresponding directed flow net-
work𝐺 ′ with unit edge capacities. We can view any given matching
𝑀 in𝐺 as defining an 𝑠-𝑡 flow 𝑓 in𝐺 ′ of value |𝑀 |. We let 𝐻 = 𝐺 ′

𝑓

be the corresponding residual flow network, that we refer to as
the residual flow network corresponding to matching 𝑀 . We note
that the residual flow network 𝐻 has a special structure: namely,
each vertex in 𝐻 has in-degree 1 or out-degree 1. Therefore, if P
is a collection of paths in 𝐻 causing edge-congestion at most 𝜂,
then the paths in P cause vertex-congestion at most 𝜂 and vice
versa. For all problems that we define below, we assume that their
input graph also has this special structure. For convenience, we
will focus on edge-congestion, and on edge-based cuts in such
graphs. We also note that any directed graph can be converted
into a graph with this special structure by replacing every vertex 𝑣
with a pair 𝑣+, 𝑣− of new vertices, such that all edges that enter 𝑣
become incident to 𝑣−, and all edges leaving 𝑣 become incident to
𝑣+, and inserting the edge (𝑣−, 𝑣+) into the graph.

The residual network𝐻 corresponding to a matching𝑀 contains
Δ = OPT − |𝑀 | edge-disjoint 𝑠-𝑡 paths, where OPT is the value of
the maximum bipartite matching. Suppose now that we can de-
sign an algorithm that computes a collection P of Ω(Δ/poly log𝑛)
𝑠-𝑡 paths in 𝐻 , that cause 𝑂 (poly log𝑛) edge-congestion. Using
standard methods, we can then efficiently recover a collection P ′

of Ω(Δ/poly log𝑛) edge-disjoint 𝑠-𝑡 paths in 𝐻 , which can in turn
be used in order to augment the current matching𝑀 , thereby ob-
taining a new matching 𝑀 ′ of cardinality |𝑀 | + Ω(Δ/poly log𝑛).
In other words, OPT − |𝑀 ′ | ≤ (OPT − |𝑀 |) · (1 − 1/poly log𝑛),
so the gap between the optimal solution value and the size of
the matching the algorithm maintains reduces by at least factor
(1 − 1/poly log𝑛). It is then easy to verify that, after𝑂 (poly log𝑛)
such iterations, the algorithm obtains an optimal matching. This
is precisely the high-level approach that was used by [9], and we
follow it in this work as well. In order to obtain an algorithm for
Maximum Bipartite Matching, it is now sufficient to design a pro-
cedure that, given a residual flow network 𝐻 corresponding to the
current matching𝑀 , efficiently computes the set P of 𝑠-𝑡 paths in
𝐻 with the above properties.

For technical reasons that will become clear later, we define a
slightly more general problem, that we call RouteAndCut. In this
problem, the input is a directed graph𝐻 , two disjoint sets𝐴, 𝐵 of its
vertices with |𝐴| ≤ |𝐵 |, and two parameters 1 ≤ Δ ≤ min {|𝐴|, |𝐵 |}
and 1 ≤ 𝜂 ≤ Δ. The goal is to either compute a collection Q of
Ω(Δ/poly log𝑛) paths, each of which connects a distinct vertex of
𝐴 to a distinct vertex of𝐵, such that the paths inQ cause congestion
𝑂̃ (𝜂); or to compute a cut (𝑋,𝑌 ) in𝐻 with |𝐸𝐻 (𝑋,𝑌 ) | ≪ Δ/𝜂, with
𝑋 containing a large fraction of vertices of 𝐴, and 𝑌 containing a
large fraction of the vertices of 𝐵. While [9] do not explicitly define
and solve this problem, their algorithm can be adapted to solve
a special case of RouteAndCut, where 𝜂 ≤ 𝑂 (poly log𝑛). So for
brevity, we will say that the algorithm of [9] solves this special
case of RouteAndCut. Clearly, an algorithm for the RouteAndCut
problem can be used in order to compute a collection P of paths in
the residual flow network𝐻 corresponding to the current matching
𝑀 , with the desired properties that we described above.

The RouteAndCut problem falls into the extensively studied
class of graph routing and flow problems. One standard approach
for obtaining fast algorithms for such problems, due to [3, 13, 16],
is via the Multiplicative Weight Update (MWU) method. It was
further observed byMadry [26] that this approach can be viewed as
reducing a given flow problem to a variant of decremental SSSP or
APSP. In our case, the reduction is to decremental SSSP in directed
graphs. While strong lower bounds are known for exact algorithms
for decremental SSSP and APSP (see, e.g. [1, 2, 12, 20, 31]), we can
exploit the special properties of the SSSP instances that arise from
the RouteAndCut problem in order to obtain faster algorithms, an
approach that was also used by [9].

We note that [7] provided a (1 + 𝜖)-approximation algorithm
for directed decremental SSSP with total update time 𝑂 (𝑛2/𝜖),
assuming all edge lengths are poly-bounded. Unfortunately, their
algorithm can only withstand an oblivious adversary whereas in-
stances of decremental SSSP arising from the MWU framework
crucially require algorithms that can withstand an adaptive adver-
sary, since the choice of the edge to be deleted in every update
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may depend on the algorithm’s past behavior. A recent work of [6]
provided a (1 + 𝜖)-approximation algorithm for the directed decre-
mental SSSP problem with an adaptive adversary, that achieves

total update time 𝑂
(
𝑛8/3+𝑜 (1)

𝜖

)
(assuming that all edge lengths

are poly-bounded). While this total update time is too high for
speeding up algorithms for Maximum Bipartite Matching, their
approach was adapted by [9] to handle the specific instances of
SSSP that they obtain, leading to faster algorithms for Maximum
Bipartite Matching. Specifically, one of the key observations of
[9] is that the SSSP instances that arise from applying the MWU
method to the Maximum Bipartite Matching problem have the
property that all queries are between a fixed pair (𝑠, 𝑡) of vertices,
and a rather large approximation factor is acceptable. Moreover,
by slightly modifying the standard MWU framework, they ensure
that it is sufficient that the algorithm for the SSSP problem only
responds to shortest-path queries as long as the current graph 𝐻
contains a collection of least Ω(Δ/poly log𝑛) disjoint and short
𝑠-𝑡 paths, where Δ is the target number of augmenting paths that
the algorithm aims to produce. We also follow their approach, and
reduce the RouteAndCut problem, via a slightly modified MWU
method, to a special case of directed decremental SSSP, that we
refer to as decremental 𝑠-𝑡-SP, that has all of the above properties.
We note that 𝑠-𝑡-SP is somewhat more general than the special
case of the SSSP problem that was considered in [9], since they
only provide an algorithm for the special case of RouteAndCut
where 𝜂 ≤ 𝑂 (poly log𝑛), while we need an algorithm that works
for a wider range of values of parameter 𝜂. For now we focus on
the description of their algorithm, and we assume for simplicity
that 𝜂 = 1 in this discussion.

The algorithm of [9] for a special case of the decremental 𝑠-𝑡-SP
problem follows the high-level approach of [6], that consists of two
parts. First, they maintain a partition X of graph 𝐻 \ {𝑠, 𝑡} into
a collection of expander-like graphs; we abstract the problem of
maintaining each such graph, that we call MaintainCluster prob-
lem, below. Intuitively, the MaintainCluster subroutine is given as
input a vertex-induced subgraph 𝐻 ′ of 𝐻 , and a distance param-
eter 𝑑 , with 𝐻 ′ undergoing an online sequence of edge deletions.
It needs to efficiently support short-path queries in 𝐻 ′: given a
pair 𝑥,𝑦 ∈ 𝑉 (𝐻 ′) of vertices, return an 𝑥-𝑦 path of length at most
𝑑 in 𝐻 ′. However, it may, at any time, produce a cut (𝐴, 𝐵) in 𝐻 ′

of sparsity at most 𝑂
(
poly log𝑛

𝑑

)
, after which the vertices on one

side of the cut are deleted from 𝐻 ′, and the algorithm needs to
continue with the resulting graph. The second main ingredient in
the algorithm of [9] is the Approximate Topological Order (ATO)
framework of [7] (which is in turn based on the works of [19] and
[5]), combined with the algorithm of [7] for decremental SSSP on
“almost” DAG’s. The latter algorithm is applied to the graph 𝐻̂ , that
is obtained from 𝐻 by contracting every almost-expander 𝑋 ∈ X
into a single vertex. We now discuss each of these components in
turn, starting with the ATO framework.

TheATO framework. The Approximate Topological Order (ATO)
framework of [7, 19] is a central component in the algorithms of
[6, 9], as well as our algorithm. An ATO data structure in a dy-
namic graph 𝐻 must maintain a partition X of the vertices of 𝐻
into subsets. We refer to the sets 𝑋 ∈ X as clusters, and to X as a

clustering. The only allowed changes to the clustering X are cluster
splittings: given an existing cluster 𝑋 ∈ X and a subset 𝑋 ′ ⊆ 𝑋

of its vertices, delete the vertices of 𝑋 ′ from 𝑋 , and add 𝑋 ′ as a
new cluster to X. We assume further that the input graph 𝐻 con-
tains two special vertices 𝑠 and 𝑡 , and that clusters 𝑆 = {𝑠} and
𝑇 = {𝑡} always lie in X. In addition to maintaining the clustering
X, the ATO must maintain an ordering 𝜎 of its clusters. Assume
that X = {𝑋1, . . . , 𝑋𝑟 }, and that the clusters are indexed accord-
ing to the ordering 𝜎 . Assume further that a cluster 𝑋𝑖 undergoes
splitting, with the new cluster 𝑋 ′

𝑖
⊆ 𝑋𝑖 inserted into X. Then the

ordering 𝜎 must evolve in a consistent manner, that is, the new
ordering must be either (𝑋1, . . . , 𝑋𝑖−1, 𝑋 ′

𝑖
, 𝑋𝑖 \ 𝑋 ′

𝑖
, 𝑋𝑖+1, . . . , 𝑋𝑟 ), or

(𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖 \ 𝑋 ′
𝑖
, 𝑋 ′

𝑖
, 𝑋𝑖+1, . . . , 𝑋𝑟 ). Consider now some edge

𝑒 = (𝑥,𝑦) of 𝐻 , and assume that 𝑥 ∈ 𝑋𝑖 and 𝑦 ∈ 𝑋 𝑗 . If 𝑋𝑖 appears
before 𝑋 𝑗 in the ordering 𝜎 , then we say that 𝑒 is a left-to-right
edge; if 𝑖 = 𝑗 , we say that it is a neutral edge; and otherwise we
say that it is a right-to-left edge. If 𝑒 is a right-to-left edge, then
we define its span: span(𝑒) = ∑𝑖

𝑖′=𝑗 |𝑋𝑖′ | (we assume here that the

sets in X are indexed according to the ordering 𝜎). Let 𝐻̂ be the
contracted graph corresponding to𝐻 : that is, 𝐻̂ is obtained from𝐻

by contracting each of the clusters 𝑋 ∈ X into a vertex 𝑣𝑋 . For sim-
plicity, we will refer to the vertices 𝑣𝑆 and 𝑣𝑇 as 𝑠 and 𝑡 , respectively.
Intuitively, if we could maintain the ATO without introducing
any right-to-left edges, then the corresponding contracted graph 𝐻̂
is a DAG, and the ordering 𝜎 associated with the ATO naturally
defines a topological ordering of the vertices of 𝐻̂ . We could then
use the algorithm of [7] for decremental SSSP in DAG’s, that builds
on the work of [5, 19], in order to support approximate shortest
path queries in 𝐻̂ between 𝑠 and other vertices of 𝐻̂ , with total
update time 𝑂 (𝑛2). But in order to be able to support shortest 𝑠-𝑡
path queries in the original graph 𝐻 , we need to ensure that the
diameters of the subgraphs 𝐻 [𝑋 ] corresponding to the clusters
𝑋 ∈ X are sufficiently small, and that we can support approximate
shortest-path queries between arbitrary pairs of vertices within
each such graph efficiently.

Towards this end, it was observed by [7] that the algorithm for
decremental SSSP in DAG’s can be further extended to “almost
DAG’s”: suppose𝐺 is a directed graph, and let 𝜌 be a fixed ordering
of its vertices. Assume that𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}, where the vertices
are indexed according to the ordering 𝜌 . If 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) is an edge
with 𝑖 > 𝑗 , then we say that 𝑒 is a right-to-left edge of𝐺 with width
(𝑖− 𝑗). It was shown in [7] that the algorithm for decremental SSSP
on DAG’s can be efficiently extended to such graphs 𝐺 , provided
that the total width of all right-to-left edges is relatively small.
Specifically, the running time of their algorithm becomes roughly
𝑂̃ (𝑛2 + Γ · 𝑛), where Γ is the total width of the right-to-left edges.

Assume now that the algorithm for SSSP on the almost-DAG
graph𝐺 only needs to respond to approximate shortest-path queries
between a specific fixed pair 𝑠, 𝑡 of vertices, and moreover, that it
only needs to support such queries as long as 𝐺 contains Ω(Δ)
short edge-disjoint 𝑠-𝑡 paths. It was observed in [9] that, in such a
case, the running time of the algorithm of [7] improves to roughly
𝑂̃ (𝑛2 + Γ · 𝑛/Δ). This observation was one of the key insights that
allowed them to obtain a faster running time for the special case
of the 𝑠-𝑡-SP problem, and for Maximum Bipartite Matching.
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We now provide additional relevant details of the algorithm of
[9]. Like in [6], the MaintainCluster problem is exploited in order
to maintain an ATO of the input graph 𝐻 . Initially, the clustering
X contains three clusters: 𝑆 = {𝑠}, 𝑇 = {𝑡}, and𝑈 = 𝑉 (𝐻 ) \ {𝑠, 𝑡}.
The algorithm for the MaintainCluster problem is then initialized
on graph 𝐻 [𝑈 ], with an appropriately chosen distance parameter
𝑑𝑈 . In general, whenever a new cluster 𝑋 joins X, the algorithm
for the MaintainCluster problem is initialized on 𝐻 [𝑋 ]. Whenever
that algorithm produces a sparse cut (𝐴, 𝐵) in𝑋 , we select a subset
𝑍 ∈ {𝐴, 𝐵} of vertices to be deleted from 𝑋 , update 𝑋 by deleting
these vertices, and add 𝑍 as a new cluster to X, after which the
algorithm for the MaintainCluster problem is initialized on 𝐻 [𝑍 ].
The key idea is that, since the cuts produced by the algorithm for
the MaintainCluster problem are sparse, we can ensure that the
total span of all right-to-left edges is sufficiently small. If we then
consider the contracted graph 𝐻̂ , this, in turn, ensures that the total
width of all right-to-left edges in 𝐻̂ is low. We can now apply the
algorithm of [7] for decremental SSSP on almost-DAG’s to support
approximate shortest 𝑠-𝑡 path queries in 𝐻̂ , while exploiting the
fact that such queries only need to be supported as long as 𝐻̂
contains a large number of short edge-disjoint 𝑠-𝑡 paths, in order to
speed it up. For every cluster𝑋 ∈ X, we can then use the algorithm
for the MaintainCluster problem on 𝐻 [𝑋 ], in order to respond
to approximate shortest-path queries between pairs of vertices
in 𝑋 . Combining these data structures together, we can support
approximate shortest 𝑠-𝑡 path queries in the original graph 𝐻 , as
long as 𝐻 contains many short edge-disjoint 𝑠-𝑡 paths. This high-
level approach allows one to obtain algorithms for decremental
𝑠-𝑡-SP, and for the RouteAndCut problem, from algorithms for the
MaintainCluster problem, that we now discuss in more detail.

TheMaintainCluster problem. To recap, in the MaintainCluster
problem, the input is a graph𝐺 that undergoes an online sequence
of edge deletions, and a distance parameter 𝑑 . The goal is to effi-
ciently support short-path queries: given a pair 𝑥,𝑦 of vertices of
𝐺 , return a path of length at most 𝑑 connecting them in 𝐺 . The
algorithm may, however, at any time, produce a cut (𝐴, 𝐵) in 𝐺 of

sparsity at most 𝑂
(
poly log𝑛

𝑑

)
, following which, the vertices of one

side of the cut are deleted from𝐺 . The algorithm is used in order
to maintain individual clusters of the ATO. A similar problem
was considered by [6], who provide an algorithm with total update
time𝑂 ( |𝐸 (𝐺) | · 𝑑2) for it, where the time to respond to each query
is roughly proportional to the number of edges on the path that
the algorithm returns. In [9] this problem was considered in a more
relaxed setting, where the number of queries that the algorithm
must support is bounded by a given parameter Δ, and the goal is
to minimize the total running time of the algorithm, that is, the
sum of the total update time, and the time required to respond to
all queries. The algorithm of [9] for this setting has running time

𝑂 ( |𝐸 (𝐺) | · 𝑑 + |𝑉 (𝐺) |2) · max

{
1, Δ ·𝑑2

|𝑉 (𝐺) |

}
, which, for the specific

parameters that they employ, becomes 𝑂 ( |𝐸 (𝐺) | · 𝑑 + |𝑉 (𝐺) |2). In
order to obtain our improved algorithm for Maximum Bipartite
Matching, we need to generalize this result so that it works for a
wider range of parameters, achieving running time |𝑉 (𝐺) |2+𝑜 (1) .

The algorithm of [9] follows a rather standard approach. First,
they use the Cut-Matching game in order to compute a large

expander graph𝐺 , and to embed it into𝐺 via short paths that cause
low congestion. The algorithm for the Cut Player is implemented
in a rather straightforward manner, since they can afford a running
time that is as high as Θ( |𝑉 (𝐺) |2). The algorithm for the Matching
Player essentially needs to solve an instance of the RouteAndCut
problem. Using the MWU approach as before, it can be reduced to
solving an instance of directed decremental SSSP. The algorithm
of [9] then uses the standard Even-Shiloach tree data structure
in order to solve the latter problem. In addition to the expander
𝐺 and its embedding into 𝐺 , the algorithm of [9] maintains two
additional Even-Shiloach trees in𝐺 . Both trees are rooted in the
vertices of𝐺 , and have depth roughly 𝑑 . One of the trees has all its
edges directed away from the root, and the other has all of its edges
directed towards the root. In order to respond to a query between
a pair 𝑥,𝑦 of vertices of 𝐺 , the two Even-Shiloach trees are used to
compute a short path connecting 𝑥 to some vertex 𝑥 ′ ∈ 𝑉 (𝐺), and
a short path connecting some vertex 𝑦′ ∈ 𝑉 (𝐺) to 𝑦. A simple BFS
search in the expander𝐺 then yields a short path connecting 𝑥 ′ to
𝑦′, which can be turned into an 𝑥 ′-𝑦′ path in 𝐺 by exploiting the
embedding of 𝐺 into 𝐺 .

We now describe several sources of inefficiency of the algorithm
of [9], and then describe our approach to overcoming them. First,
both the algorithms of [9] and [6] for the MaintainCluster problem
are only designed for graphs with unit edge-lengths. However, both
of these works solve (a variant of) the SSSP problem in graphs with
arbitrary edge lengths. To overcome this difficulty, [9] use the same
approach as [6]: namely, they choose a threshold 𝜏 , and initially
delete all edges whose length is greater than 𝜏 (called long edges)
from the input graph 𝐻 . The lengths of the remaining edges (called
short edges) are set to 1 for the sake of maintaining the ATO and
solving the MaintainCluster problem on the resulting instances.
The long edges however are reinserted into the contracted graph
𝐻̂ , and the actual lengths of the short edges are used in it as well.
This approach unfortunately results in a rather large number of
right-to-left edges with a large width in 𝐻̂ , as it may potentially
include all long edges. In order to overcome this difficulty, we
design an algorithm for the MaintainCluster problem that can
handle arbitrary edge lengths, which adds an additional dimension
of technical challenges.

The second main source of inefficiency in the algorithm of [9] is
the use of Even-Shiloach trees in their algorithm forMaintainCluster,
both in implementing the Matching Player in the Cut-Matching
game, and in order to maintain short paths connecting all vertices
of 𝐺 to the vertices of the expander 𝐺 . It is immediate to see that
the problem that the Matching Player needs to solve is essentially
an instance of the RouteAndCut problem. We also observe that
an algorithm for a variant of the RouteAndCut problem can be ex-
ploited in order to maintain the paths connecting all vertices of 𝐺
to the vertices of𝑉 (𝐺). We abstract this as a new problem, that we
call ConnectToCenters, and discuss it below. We believe that this
problem and our algorithm for solving it are of independent interest.
We remark that this reduction from the ConnectToCenters prob-
lem to the RouteAndCut problem requires that the algorithm for
the RouteAndCut problem works for arbitrary congestion parame-
ter 𝜂 ≤ Δ, and this is the reason for our more general definition of
the RouteAndCut problem.
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To summarize, as already shown in previous work, in order to
obtain an efficient algorithm for the RouteAndCut problem, it is
enough to obtain an efficient algorithm for the MaintainCluster
problem, and we observe that the opposite is also true: an efficient
algorithm for the RouteAndCut problem implies an efficient al-
gorithm for the MaintainCluster problem. This, however, creates
a chicken-and-egg issue, where in order to solve one of the two
problems efficiently, we need to design an efficient algorithm for
the other. We overcome this barrier by using a recursive approach.

A recursive approach. We parameterize both the RouteAndCut
and the MaintainCluster problem using a parameter 𝑟 > 0. We say
that an instance of the MaintainCluster problem on an 𝑛-vertex

graph𝐺 with a distance parameter 𝑑 is 𝑟 -restricted, if 𝑑 ≤ 2
𝑟 ·
√
log𝑛 .

Consider now an instance of the RouteAndCut problem on an
𝑛-vertex graph 𝐻 , with two subsets 𝐴, 𝐵 of its vertices, and param-
eters Δ and 𝜂. It is not hard to see that, if P is any collection of
Ω(Δ/poly log𝑛) paths connecting vertices of 𝐴 to vertices of 𝐵,
that cause vertex-congestion at most 𝜂, then a large fraction of the
paths in P have length 𝑂̃ (𝑛𝜂/Δ). We say that an instance of the

RouteAndCut problem is 𝑟 -restricted if 𝑛𝜂

Δ ≤ 2
𝑟 ·
√
log𝑛 . We show a

straightforward algorithm for the 1-restricted RouteAndCut prob-
lem. Then for all 𝑟 ≥ 1, we show that an efficient algorithm for
the 𝑟 -restricted RouteAndCut problem implies an efficient algo-
rithm for the 𝑟 -restricted MaintainCluster problem. We also show
that an efficient algorithm for the 𝑟 -restricted MaintainCluster
problem implies an efficient algorithm for the (𝑟 + 1)-restricted
RouteAndCut problem. Using induction on 𝑟 , we then simultane-
ously obtain efficient algorithms for the RouteAndCut and the
MaintainCluster problems for the entire range of values for the
parameter 𝑟 .

ConnectToCenters problem. The ConnectToCenters problem is
employed as a subroutine in the algorithm for the MaintainCluster
problem, but we feel that it is interesting in its own right, as it
seems to arise in many different settings. Suppose we are given a
dynamic 𝑛-vertex graph 𝐺 ; for now we will assume that 𝐺 under-
goes an online sequence of edge deletions, but in fact our algorithm
considers other updates, as described later. In addition to graph 𝐺 ,
assume that we are given a parameter 𝑑 , and a subset𝑇 ⊆ 𝑉 (𝐺) of
vertices that we call centers. The goal is to maintain, for every vertex
𝑣 ∈ 𝑉 (𝐺), a path 𝑃 (𝑣) of length at most𝑑 , connecting 𝑣 to some ver-
tex of𝑇 . As the time progresses, some vertices may be deleted from
𝑇 , but we are guaranteed that 𝑇 always contains a large enough
fraction of the vertices of 𝐺 , e.g. |𝑇 | ≥ Ω( |𝑉 (𝐺) |/(𝑑 poly log𝑛). In
order to ensure that the deletion of edges from 𝐺 does not impact
too many paths in P∗ = {𝑃 (𝑣) | 𝑣 ∈ 𝑉 (𝐺)}, it is desirable that the
paths cause a small edge-congestion (say at most 𝑂̃ (𝑑)), and for
similar reasons it is desirable that every vertex 𝑥 ∈ 𝑇 serves as
an endpoint of relatively few such paths (say at most 𝑂̃ (𝑑)). At
any time, the algorithm may compute a cut (𝐴, 𝐵) of sparsity at

most 𝑂
(
poly log𝑛

𝑑

)
, with |𝐴 ∩ 𝑇 | ≪ |𝐴|, after which the vertices

of 𝐴 are deleted from 𝐺 and the algorithm continues. We note
that whenever the by now standard paradigm of embedding an
expander into the input graph𝐺 and then maintaining short paths
connecting all vertices of 𝐺 to the vertices of the expander is used,
one essentially needs to solve a variant of the ConnectToCenters

problem. So far this was typically done by using Even-Shiloach
trees, but this data structure becomes inefficient once the depth
parameter 𝑑 is sufficiently large. It is for this reason that we be-
lieve that our algorithm for the ConnectToCenters problem is of
independent interest.

It is easy to see that the initial collectionP∗ = {𝑃 (𝑣) | 𝑣 ∈ 𝑉 (𝐺)}
of paths of length𝑂 (𝑑) each, connecting every vertex of𝐺 to some
vertex of 𝑇 , that cause edge-congestion 𝑂̃ (𝑑), can be computed by
employing an algorithm for the RouteAndCut problem. As edges
are deleted from 𝐺 , and vertices are deleted from 𝑇 , some of the
paths in P∗ may be destroyed. Whenever a path 𝑃 (𝑣) ∈ P∗ is
destroyed, we say that vertex 𝑣 becomes disconnected. We then
need to reconnect all disconnected vertices to 𝑇 . This, again, can
be done by employing an algorithm for the RouteAndCut problem,
but doing so directly may be very inefficient. Assume, for example,
that we are given an algorithm A for the RouteAndCut problem,
that, on an 𝑛-vertex graph 𝐺 , has running time 𝑂 (𝑛2+𝑜 (1) ). Every
time a subset of vertices of 𝐺 becomes disconnected, we would
need to employ this algorithm in order to reconnect them to 𝑇 .
However, it is possible that only a small number of vertices become
disconnected at a time, and spending Θ(𝑛2+𝑜 (1) ) time to recon-
nect them each time is prohibitively expensive. A better approach
seems to be to consider the set 𝑈 of vertices that are currently
connected, and the set 𝑈 ′ of vertices that are currently discon-
nected. We could then attempt to route the vertices of 𝑈 ′ to the
vertices of𝑈 by constructing a new collection Q = {𝑄 (𝑢) | 𝑢 ∈ 𝑈 ′}
of paths, where each path 𝑄 (𝑢) connects 𝑢 to some vertex of 𝑈 ;
and then exploit the existing paths in {𝑃 (𝑣) | 𝑣 ∈ 𝑈 } in order to
compute paths connecting every vertex of𝑈 ′ to the vertices of 𝑇 .
However, we cannot afford to spend Θ(𝑛2) time in order to com-
pute the set Q of paths. On the other hand, intuitively, if |𝑈 ′ | ≪ 𝑈 ,
then we may not need to explore the entire graph 𝐺 in order to
compute the set Q of paths. In order to overcome this difficulty,
we require that the algorithm for the RouteAndCut problem has
running time roughly 𝑛1+𝑜 (1) · (𝑛 − |𝐵 |), instead of 𝑛2+𝑜 (1) . In par-
ticular, if the graph 𝐺 is sufficiently dense and |𝐵 | is sufficiently
large, then this running time may be much smaller than |𝐸 (𝐺) |.
Our reduction from the (𝑟 + 1)-restricted RouteAndCut problem
to the 𝑟 -restricted MaintainCluster problem follows the high-level
approach of [6] and [9]. However, this additional strict requirement
on the efficiency of the algorithm for the RouteAndCut problem,
in addition to the requirement that the algorithm should work for
arbitrary values of the congestion parameter 𝜂, make the reduction
more challenging and technical.

Assume now that we are given an algorithmA for RouteAndCut,
that, on an instance (𝐺,𝐴, 𝐵,Δ, 𝜂) has running time 𝑛1+𝑜 (1) · (𝑛 −
|𝐵 |), where 𝑛 = |𝑉 (𝐺) |. As described above, in order to imple-
ment our algorithm for the ConnectToCenters problem, whenever
we are given a collection𝑈 ′ of vertices that are currently discon-
nected from 𝑇 , we can now employ Algorithm A to construct a
collection Q of paths connecting them to the vertices of 𝑈 (the
set of currently connected vertices), and then compose Q with the
collection {𝑃 (𝑣) | 𝑣 ∈ 𝑈 } of paths to obtain the desired collection
{𝑃 (𝑣) | 𝑣 ∈ 𝑈 ′} of paths that reconnects the vertices of 𝑈 ′ to 𝑇 .
Unfortunately, if we follow this approach, and keep appending
paths to each other iteration after iteration, we may obtain paths
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whose lengths are prohibitively large. Instead, we follow a layered
approach. For a parameter 𝜆 = 𝑂 (log𝑛), we maintain at all times a
partition (𝑈0, . . . ,𝑈𝜆) of the vertices of𝐺 into layers, where𝑈0 = 𝑇 ,
and 𝑈𝜆 contains all vertices that are currently disconnected. For
all 1 ≤ 𝑖 < 𝜆, we also maintain a collection Q𝑖 = {𝐾 (𝑣) | 𝑣 ∈ 𝑈𝑖 } of
paths, where each path 𝐾 (𝑣) connects a vertex 𝑣 ∈ 𝑈𝑖 to a vertex
in

⋃𝑖−1
𝑖′=0𝑈𝑖′ . The paths in each set Q𝑖 have length at most 𝑑

4𝜆
, and

cause congestion 𝑂̃ (𝑑) in 𝐺 . By composing the paths from differ-
ent sets Q𝑖 , we can obtain, for every vertex 𝑣 ∈ 𝑉 (𝐺), a path that
connects it to some vertex of𝑇 . At a high level, for all 1 ≤ 𝑖 < 𝜆, we
reconstruct layer𝑈𝑖 and the set Q𝑖 of paths from scratch every time
that roughly 2

𝜆−𝑖 new vertices become disconnected, and we also
ensure that |𝑈𝑖 | ≤ 2

𝜆−𝑖 holds. So when we employ the algorithm
for the RouteAndCut problem in order to reconnect the vertices of
𝑈𝑖 , in the resulting instance of RouteAndCut, 𝑛 − |𝐵 | ≤ 2

𝜆−𝑖 holds,
and the running time of the algorithm is roughly 𝑛1+𝑜 (1) · 2𝜆−𝑖 .
Therefore, as index 𝑖 becomes smaller, the running time of the
RouteAndCut algorithm that is used to reconnect the vertices of
𝑈𝑖 increases. However, for smaller values of index 𝑖 , we need to
reconstruct the set𝑈𝑖 of vertices and the set Q𝑖 of paths less often.
This eventually leads to the desired 𝑛2+𝑜 (1) running time.

Edge-deletion versus edge-length-increase updates. We would like
to highlight here what we feel is a somewhat surprising insight
from our work, that may appear minor at first sight, but we believe
that it may be useful in other problems. Consider the following
two settings for dynamic graphs: the first one is the standard decre-
mental setting, where edges are deleted from the input graph 𝐺
as the time progresses. The second setting is a somewhat more
unusual one, where the only updates that are allowed in the input
graph 𝐺 is the doubling of the lengths of its edges; we refer to this
type of updates as edge-length-increases. Generally, it is not hard
to see that both models are roughly equivalent. Indeed, in order to
simulate edge-length-increases in the standard decremental set-
ting, we can simply create a large number of copies of each edge
𝑒 of various lengths, and then, as the length of 𝑒 increases, some
of these copies are deleted. The reduction in the other direction is
also immediate: we can simulate the deletion of an edge 𝑒 from 𝐺

by repeatedly doubling its length, until it becomes very high.
The dynamic graphs that arise from using the MWU framework

typically only undergo edge-length-increase updates, which are
then typically implemented as edge-deletions, in order to reduce
the problem to the more standard decremental SSSP, as described
above. However, the edge-length-increases that the input graph
𝐺 undergoes under this implementation of the MWU method are
rather well-behaved: specifically, the lengths of the edges are only
increased moderately, and all length increases occur on the edges
that participate in the paths that the algorithm returns in response
to queries. We observe that the resulting SSSP problem appears to
be easier if we work with edge-length-increase updates directly,
instead of the more traditional approach of transforming them into
edge-deletion updates.

In order to illustrate this, consider the following simple scenario:
we are given a graph 𝐺 , and initially the length of every edge in
𝐺 is 1. Assume also that we have computed another graph 𝑋 (it
may be convenient to think of 𝑋 as an expander), and embedded 𝑋
into𝐺 via paths of length at most 𝑑 , that cause edge-congestion at

most 𝜂. If some edge 𝑒 is deleted from𝐺 , then every edge 𝑒 ∈ 𝐸 (𝑋 ),
whose embedding path𝑄 (𝑒) uses 𝑒 , must be deleted from𝑋 as well.
Therefore, the deletion of a single edge from 𝐺 may lead to the
deletion of 𝜂 edges from 𝑋 . Assume now that, instead, the edges
of 𝐺 only undergo increases in their lengths, where the length of
each edge may be iteratively doubled, but the total increase in the
lengths of all edges is moderate. If the length of an edge 𝑒 ∈ 𝐸 (𝐺)
is doubled, then for every edge 𝑒 ∈ 𝐸 (𝑋 ) whose embedding path
𝑄 (𝑒) uses 𝑒 , the length of𝑄 (𝑒) increases only slightly, and so there
is no need to delete 𝑒 from 𝐸 (𝑋 ). We can usually wait until the
length of the path 𝑄 (𝑒) increases significantly before edge 𝑒 needs
to be deleted from 𝑋 . As mentioned already, in instances arising
from the MWU framework, the total increase in the lengths of
all edges in 𝐺 over the course of the entire algorithm is usually
not very large, and in particular most edges whose lengths are
doubled are short. This allows us to maintain the expander 𝑋 and
its embedding into𝐺 over the course of a much longer sequence of
updates to 𝐺 . This is one of the insights that allowed us to obtain
a more efficient algorithm for the MaintainCluster problem.

To summarize, our algorithm departs from the algorithm of [9]
in the following key aspects. First, we use the MWU method to
reduce the RouteAndCut problem to 𝑠-𝑡-SP in dynamic graphs that
undergo edge-length-increases instead of edge-deletion updates.
Second, our algorithm for the RouteAndCut problem has running
time that significantly decreases when the set 𝐵 of vertices contains
almost all vertices of 𝐺 ; in some cases the running time may even
be lower than |𝐸 (𝐺) |. We extend the MaintainCluster problem
to handle arbitrary edge lengths, but unlike [9] we only allow
edge-length-increases, instead of edge-deletion updates. We design
an algorithm for the ConnectToCenters problem, that we believe
is of independent interest, and that can be viewed as reducing
the MaintainCluster problem to RouteAndCut. Lastly, we use a
recursive approach, in which algorithms for RouteAndCut rely on
algorithms for MaintainCluster and vice versa, by parametrizing
both problems with an auxiliary parameter 𝑟 , and then inductively
develop algorithms for both problems for the entire range of 𝑟 .

Organization. We start with preliminaries in Section 2, and then
provide a high-level overview of our algorithm in Section 3, where
we also formally define the RouteAndCut problem, state our main
result for it, and describe how our algorithm for the RouteAndCut
problem implies the main result of this paper. We defer the com-
plete proofs to the full version of the paper.

2 PRELIMINARIES
In this paper we work with both directed and undirected graphs.
By default graphs do not contain parallel edges or self-loops.

Let 𝐺 be a graph with capacities 𝑐 (𝑒) ≥ 0 on edges 𝑒 ∈ 𝐸 (𝐺),
and let P be a collection of simple paths in 𝐺 . We say that the
paths in P cause edge-congestion 𝜂, or just congestion 𝜂, if every
edge 𝑒 ∈ 𝐸 (𝐺) participates in at most 𝜂 · 𝑐 (𝑒) paths in P. When
edge capacities are not explicitly given, we assume that they are
unit. If every edge of 𝐺 belongs to at most one path in P, then we
say that the paths in P are edge-disjoint. Similarly, if we are given
a flow value 𝑓 (𝑒) ≥ 0 for every edge 𝑒 ∈ 𝐸 (𝐺), we say that flow
𝑓 causes congestion 𝜂 if, for every edge 𝑒 ∈ 𝐸 (𝐺), 𝑓 (𝑒) ≤ 𝜂 · 𝑐 (𝑒)
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holds. If 𝑓 (𝑒) ≤ 𝑐 (𝑒) holds for every edge 𝑒 ∈ 𝐸 (𝐺), we may say
that 𝑓 causes no congestion.

3 HIGH-LEVEL OVERVIEW OF THE
ALGORITHM

Throughout the paper we will work with special kinds of directed
graphs that we refer to as well-structured graphs, and define below.

Definition 3.1 (Well-Structured Graphs). Let 𝐺 = (𝐿, 𝑅, 𝐸)
be a bipartite directed graph. We call the edges of 𝐸𝐺 (𝐿, 𝑅) regular
and the edges of 𝐸𝐺 (𝑅, 𝐿) special. We say that𝐺 is a well-structured
graph, if every vertex of 𝐺 is incident to at most one special edge.

If𝐺 is a well-structured graph, then we assume that the partition
(𝐿, 𝑅) of its vertices is given as part of the description of 𝐺 .

In the remainder of this section, we define a new problem, called
RouteAndCut, which is one of the main building blocks of our
algorithm. We then state the main theorem for this section, that
provides an efficient algorithm for the RouteAndCut problem, and
show that our main result – the proof of Theorem 1.1 follows from
it. We also provide a high-level overview of the algorithm for the
RouteAndCut problem.

3.1 The RouteAndCut problem
In this subsection we define the RouteAndCut problem, which is
one of the main building blocks of our algorithm. Before we do so,
we need to define the notion of routing.

Definition 3.2 (Routing). Let 𝐺 = (𝑉 , 𝐸) be a directed graph,
and let 𝐴, 𝐵 be two disjoint subsets of its vertices. A routing from 𝐴 to
𝐵 is a collection Q of paths in 𝐺 , such that every path in Q connects
a vertex of 𝐴 to a vertex of 𝐵, and the endpoints of the paths in Q are
all disjoint. The congestion of the routing is the edge-congestion that
the set Q of paths causes in graph𝐺 . Vertices of𝐴∪𝐵 may serve both
as endpoints and as inner vertices of the paths in Q simultaneously.

We are now ready to define the RouteAndCut problem, and its
special case, called 𝑟 -restricted RouteAndCut. Intuitively, we use
the notion of the 𝑟 -restricted RouteAndCut problem in order to
discretize the problem instances: our algorithm for RouteAndCut
will consider, by induction, 𝑟 -restricted instances of the problem,
from smaller to larger values of 𝑟 .

Definition 3.3. The input to RouteAndCut problem is a well-
structured 𝑛-vertex graph𝐺 = (𝐿, 𝑅, 𝐸), that is given in the adjacency-
list representation, parameters 𝑁 ≥ 𝑛, Δ ≥ 1, and 1 ≤ 𝜂 ≤ Δ, and
two disjoint subsets 𝐴, 𝐵 of vertices of 𝐺 , with |𝐴|, |𝐵 | ≥ Δ.

The output of the problem is a routing Q from 𝐴 to 𝐵, whose
congestion is bounded by 4𝜂 log𝑁 . Additionally, if |Q| < Δ, the
output must contain a cut (𝑋,𝑌 ) in 𝐺 with |𝐸𝐺 (𝑋,𝑌 ) | ≤ 64Δ

𝜂 log
4 𝑛

+
256 |Q |

𝜂 , such that, if𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵 denote the subsets of vertices that
do not serve as endpoints of the paths in Q, then 𝐴′ ⊆ 𝑋 and 𝐵′ ⊆ 𝑌
hold. The algorithm for the RouteAndCut problem is also allowed to
return “FAIL” without producing any output, but the probability of the
algorithm doing so must be bounded by 1/2. We say that an instance
(𝐺,𝐴, 𝐵,Δ, 𝜂, 𝑁 ) of the RouteAndCut problem is 𝑟 -restricted, for an

integer 1 ≤ 𝑟 ≤
⌈√︁

log𝑁

⌉
, iff (𝑛−|𝐵 |) ·𝜂

Δ ≤ 2
𝑟 ·
√
log𝑁 holds.

To get some intuition about the definition of 𝑟 -restricted in-
stances, suppose we compute a routing from 𝐴 to 𝐵 in graph 𝐺
of cardinality Δ that causes edge-congestion at most 𝜂. Assume
w.l.o.g. that, if 𝑏 ∈ 𝐵 is an inner vertex on some path of the routing,
then it serves as an endpoint of some other path of the routing.
Then it is not hard to show that most of the paths in the rout-

ing must have length at most 𝑑 = 𝑂

(
(𝑛−|𝐵 |) ·𝜂

Δ

)
. The definition

or 𝑟 -restricted instances requires that this parameter 𝑑 is roughly

bounded by 2
𝑟
√
log𝑁 . It is easy to see that our starting instance

must be 𝑟∗-restricted, for 𝑟∗ =

⌈√︁
log𝑁

⌉
. In order to solve this

problem instance, we will need to solve the problem recursively
on smaller subgraphs𝐺 ′ of 𝐺 , but it is important for us to ensure
that the resulting instances are 𝑟 ′-restricted, for 𝑟 ′ < 𝑟∗. In order
to do so, we will let the parameter 𝑁 in the resulting subinstances
correspond to the number of vertices in the original graph 𝐺 (we
may need to slightly adjust it for technical reasons but the adjust-
ments are minor). By appropriately setting the parameters Δ and 𝜂
for the resulting subinstances, we can then ensure that they are
indeed 𝑟 ′-restricted, for some 𝑟 ′ < 𝑟∗. Overall, the parameter 𝑁
can be thought of as roughly the number of vertices in the original
instance of the RouteAndCut problem that we try to solve, and it
is used mostly to define the notion of 𝑟 -restricted instances. The
notion of 𝑟 -restricted instances allows us to construct algorithms
for RouteAndCut inductively, from smaller to larger values of 𝑟 .
The following theorem provides one of our main technical results,
namely an efficient algorithm for the RouteAndCut problem.

Theorem 3.4. There is a randomized algorithm for RouteAndCut
problem, that, on an input (𝐺,𝐴, 𝐵,Δ, 𝜂, 𝑁 ), has running time at most

𝑂

(
𝑛 · (𝑛 − |𝐵 |) · 2𝑂 (

√
log𝑁 ·log log𝑁 )

)
, where 𝑛 = |𝑉 (𝐺) |.

We next show that the proof of Theorem 1.1 follows from the
above theorem.

3.2 Completing the Proof of Theorem 1.1
Recall that in the Maximum Bipartite Matching problem, the input
is an undirected 𝑛-vertex bipartite graph𝐺 = (𝐿, 𝑅, 𝐸), and the goal
is to compute a matching of maximum cardinality in 𝐺 .

We can assume w.l.o.g. that we are given a target integral value
𝐶∗ > 0. If 𝐶∗ ≤ OPT, then our algorithm must either produce
a matching of cardinality 𝐶∗, or terminate with a “FAIL”, but
we require that the latter only happens with probability at most
1/poly(𝑛) in this case. If 𝐶∗ > OPT, then our algorithm may re-
turn an arbitrary matching, or terminate with a “FAIL”. We can
then use binary search to compute the optimal solution with high
probability. From now on, we assume that we are given a target
value 𝐶∗, and that 𝐺 contains a matching of cardinality 𝐶∗. Our
algorithm must either compute a matching of cardinality 𝐶∗, or
to return “FAIL”, but the probability for returning “FAIL” must be
bounded by 1/poly(𝑛). For convenience, we denote𝐶∗ by OPT. We
can assume that 𝑛 is greater than a large enough constant, since
otherwise the problem can be solved in 𝑂 (1) time.

It is well known that the Maximum Bipartite Matching problem
can be reduced to computing maximum 𝑠-𝑡 flow in a directed flow
network with unit edge capacities. In order to do so, we start with
the graph 𝐺 = (𝐿, 𝑅, 𝐸), and direct all its edges from the vertices
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of 𝐿 towards the vertices of 𝑅. We then add a source vertex 𝑠 , that
connects with an edge to every vertex of 𝐿, and a destination vertex
𝑡 , to which every vertex of 𝑅 is connected. All edge capacities are
set to 1. Let 𝐺 ′ denote the resulting directed flow network. It is
easy to verify that the value of the maximum 𝑠-𝑡 flow in𝐺 ′ is equal
to the cardinality of maximum matching in 𝐺 . Moreover, given an
integral flow 𝑓 in𝐺 ′, we can compute a matching𝑀 of cardinality
val(𝑓 ) in 𝐺 , in time 𝑂 (𝑛): we simply include in 𝑀 all edges of 𝐺
that carry 1 flow unit.

Our algorithm consists of 𝑂 (log3 𝑛) phases. Throughout the
algorithm, we maintain a matching 𝑀 in 𝐺 , starting with 𝑀 = ∅,
and we denote Δ∗ = OPT − |𝑀 |. If 𝑀 is the matching at the be-
ginning of a phase, and 𝑀 ′ is the matching obtained at the end
of the phase, then we require that |𝑀 ′ | ≥ |𝑀 | + Ω(Δ∗/log2 𝑛).
We show a combinatorial algorithm, that, given an initial match-
ing 𝑀 , either returns “FAIL”, or computes such a matching 𝑀 ′,

in time 𝑂
(
𝑛2 · 2𝑂 (

√
log𝑛 log log𝑛)

)
, where the probability that the

algorithm returns “FAIL” is bounded by 1/poly(𝑛). This will ensure
that the number of the phases is bounded by 𝑂 (log3 𝑛), and the

total running time of the algorithm is 𝑂
(
𝑛2 · 2𝑂 (

√
log𝑛 log log𝑛)

)
.

From now on we focus on the description of a single phase.

Implementation of a Single Phase. We assume that we are given
some matching 𝑀 in the input graph 𝐺 , and we denote Δ∗ =

OPT− |𝑀 |. Our goal is to compute a matching𝑀 ′ of cardinality at
least |𝑀 | +Ω(Δ∗/log2 𝑛). As observed already, matching𝑀 defines
a flow 𝑓 of value |𝑀 | in the directed flow network𝐺 ′ with unit edge
capacities. We denote by 𝐻 = 𝐺 ′

𝑓
the corresponding residual flow

network, and we say that 𝐻 is the residual flow network of 𝐺 with
respect to matching𝑀 . Observe that 𝐻 is a directed flow network
with unit edge capacities, and that the value of the maximum 𝑠-𝑡
flow in 𝐻 is at least OPT − |𝑀 | = Δ∗.

Next, we will define an instance of the RouteAndCut problem.
Consider first the graph 𝐻 ′ = 𝐻 \ {𝑠, 𝑡}. Notice that, for every edge
𝑒 = (𝑢, 𝑣) of 𝐺 with 𝑢 ∈ 𝐿 and 𝑣 ∈ 𝑅, if 𝑒 ∈ 𝑀 , then edge (𝑣,𝑢) is
present in 𝐻 ′, and otherwise edge (𝑢, 𝑣) is present in 𝐻 ′. Therefore,
all edges of 𝐻 ′ that are directed from vertices of 𝑅 to vertices of 𝐿
correspond to the edges of the current matching𝑀 . Clearly, every
vertex of 𝐻 ′ may be incident to at most one edge of 𝐸𝐻 ′ (𝑅, 𝐿), and
so graph 𝐻 ′ is a well-structured graph.

We let 𝐴 ⊆ 𝐿 be the set of vertices 𝑣 , such that edge (𝑠, 𝑣) is
present in graph 𝐻 , and we let 𝐵 ⊆ 𝑅 be the set of vertices 𝑢, such
that edge (𝑢, 𝑡) is present in 𝐻 . We also define parameters 𝜂 = 1,
𝑁 = 𝑛, and Δ = Δ∗. It is easy to verify that (𝐻 ′, 𝐴, 𝐵,Δ, 𝜂, 𝑁 ) is
a valid input to the RouteAndCut problem, and we can compute
an adjacency-list representation of 𝐻 ′ in time 𝑂 ( |𝐸 (𝐺) |). Recall
that there is an 𝑠-𝑡 flow 𝑓 of value Δ∗ in graph 𝐻 , and, from the
integrality of maximum flow in integer-capacity networks, we
can assume that this flow is integral. This flow naturally defines
a routing Q∗ from 𝐴 to 𝐵, that causes congestion 𝜂 = 1, with
|Q∗ | = Δ∗.

We now apply the algorithm from Theorem 3.4 to the instance
(𝐻 ′, 𝐴, 𝐵,Δ, 𝜂, 𝑁 ) of the RouteAndCut problem. As long as the al-
gorithm returns “FAIL”, we keep executing it, for up to ⌈100 log𝑛⌉
iterations. If the algorithm from Theorem 3.4 returned “FAIL” in
all ⌈100 log𝑛⌉ consecutive iterations, we terminate our algorithm

and return “FAIL”. It is easy to verify that this may happen with
probability at most 1/𝑛100. Otherwise, the algorithm from Theo-
rem 3.4 must return a routing Q from 𝐴 to 𝐵 with congestion at
most 4 log𝑛. It is not hard to see that |Q| ≥ Δ∗

log𝑛
must hold; a

formal proof of this fact can be found in the full version of the
paper.

Notice that the paths in Q naturally define a collection Q ′ of
at least Δ∗

log𝑛
𝑠-𝑡 paths in graph 𝐻 (the residual flow network with

respect to 𝐺 and the current matching 𝑀), and they cause con-
gestion at most 4 log𝑛 (since the endpoints of the paths in Q are
disjoint). Next, we show an algorithm that computes a collection

Q ′′ of Ω
(

Δ∗

log
2 𝑛

)
edge-disjoint 𝑠-𝑡 paths in graph 𝐻 . We will then

use the paths inQ ′′ in order to augment the current flow 𝑓 in graph
𝐺 ′, which, in turn, will allow us to compute the new augmented
matching𝑀 ′.

In order to compute the collection Q ′′ of paths, we construct a
directed graph 𝐻 ′′ ⊆ 𝐻 , that consists of all vertices and edges that
participate in the paths of Q ′. The capacity of every edge in 𝐻 ′′

remains unit – the same as its capacity in𝐻 . The observation below
summarizes some useful properties of the graph 𝐻 ′′; its proof is
deferred to the full version.

Observation 3.5. |𝐸 (𝐻 ′′) | ≤ 𝑂 (𝑛 log𝑛), and there is an 𝑠-𝑡 flow
of value at least Δ∗

4 log
2 𝑛

in 𝐻 ′′.

Next, we compute an integral maximum 𝑠-𝑡 flow in 𝐻 ′′ that
obeys the edge capacities in𝐻 ′′, using the standard Ford-Fulkerson
algorithm. Each iteration of the Ford-Fulkerson algorithm takes
𝑂 ( |𝐸 (𝐻 ′′) |) = 𝑂 (𝑛) time, and, since there can be at most 𝑛 itera-

tions, in𝑂 (𝑛2) timewe recover a collectionQ ′′ of at leastΩ
(

Δ∗

log
2 𝑛

)
edge-disjoint paths connecting 𝑠 to 𝑡 in𝐻 ′′. Since𝐻 ′′ ⊆ 𝐻 , we have

now obtained the desired collection Q ′′ of at least Ω
(

Δ∗

log
2 𝑛

)
edge-

disjoint 𝑠-𝑡 paths in 𝐻 . We note that we could also directly round
the initial fractional 𝑠-𝑡 flow in𝐻 ′′, in expected time𝑂 ( |𝐸 (𝐻 ′′) |) =
𝑂 (𝑛), e.g. by using the algorithm from Theorem 5 in [23], that
builds on the results of [17]. But since the bottlenecks in the run-
ning time of our algorithm lie elsewhere, we instead use the above
simple deterministic algorithm.

We can now augment the current flow in 𝐺 ′ via the collection
Q ′′ of augmenting paths, obtaining a new integral flow in graph
𝐺 ′ of value |𝑀 | + |Q ′′ |, which, in turn, defines a new matching𝑀 ′

with |𝑀 ′ | ≥ |𝑀 | + |Q ′′ | ≥ |𝑀 | + Ω
(

Δ∗

log
2 𝑛

)
.

We now bound the running time of a single phase. Recall that
we may execute the algorithm from Theorem 3.4 at most 𝑂 (log𝑛)
times per phase. The running time of a single such execution

is 𝑂
(
𝑛2 · 2𝑂 (

√
log𝑁 ·log log𝑁 )

)
≤ 𝑂

(
𝑛2 · 2𝑂 (

√
log𝑛 ·log log𝑛)

)
. Addi-

tionally, the time required to compute the graph 𝐻 ′′, and to com-
pute the maximum flow in it is bounded by 𝑂 (𝑛2). Overall, the

running time of a single phase is 𝑂
(
𝑛2 · 2𝑂 (

√
log𝑛 ·log log𝑛)

)
. Since

the number of phases is bounded by 𝑂 (log3 𝑛), the total running
time of the algorithm is bounded by 𝑂

(
𝑛2 · 2𝑂 (

√
log𝑛 ·log log𝑛)

)
,

and the probability that the algorithm ever returns “FAIL” bounded
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by 1/poly(𝑛). In the remainder of the paper, we focus on the proof
of Theorem 3.4.

3.3 Proof of Theorem 3.4 – High Level Overview
To prove Theorem 3.4, we use two large enough constants 𝑐1 ≫ 𝑐2,
whose values we set later, and we employ the following theorem.

Theorem 3.6. For all 𝑟 ≥ 1, there is a randomized algorithm for the
𝑟 -restrictedRouteAndCut problem, that, on an input (𝐺,𝐴, 𝐵,Δ, 𝜂, 𝑁 )
with |𝑉 (𝐺) | = 𝑛, runs in time at most 𝑐1 · 𝑛 · (𝑛 − |𝐵 |) · 2𝑐2

√
log𝑁 ·

(log𝑁 )16𝑐2 (𝑟−1)+8𝑐2 .

Note that, if (𝐺,𝐴, 𝐵,Δ, 𝜂, 𝑁 ) is an instance of the RouteAndCut
problem, and |𝑉 (𝐺) | = 𝑛, then, from the problem definition, 𝜂 ≤ Δ

and (𝑛−|𝐵 |) ·𝜂
Δ ≤ 𝑛 holds. Therefore, any instance of the problem

is also an instance of 𝑟∗-restricted RouteAndCut problem, for 𝑟∗ =⌈√︁
log𝑛

⌉
. By using Theorem 3.6 with parameter 𝑟∗ =

⌈√︁
log𝑛

⌉
, we

obtain an algorithm for the general RouteAndCut problem whose

running time is 𝑂
(
𝑛 · (𝑛 − |𝐵 |) · 2𝑂 (

√
log𝑁 ·log log𝑁 )

)
.

Therefore, in order to prove Theorem 3.4, it is enough to prove
Theorem 3.6. At a high level, the proof of Theorem 3.6 proceeds
by induction on 𝑟 , and it relies on a slight modification of the
Multiplicative Weight Update (MWU) framework of [13, 16], that
essentially reduces the 𝑟 -restricted RouteAndCut problem to a
special case of the directed SSSP problem, that we call 𝑟 -Restricted
𝑠-𝑡-SP. Before we describe this approach, we summarize a useful
transformation, that allows us to reduce the number of edges in
the input graph, in the following claim, whose proof appears in the
full version of the paper.

Claim 3.7. There is a deterministic algorithm, that, given an in-
stance (𝐺,𝐴, 𝐵,Δ, 𝜂, 𝑁 ) of the 𝑟 -restricted RouteAndCut problem
(where graph 𝐺 is given as an adjacency list), constructs another
instance (𝐺 ′, 𝐴, 𝐵,Δ, 𝜂, 𝑁 ) of the 𝑟 -restricted RouteAndCut problem
with 𝐺 ′ ⊆ 𝐺 , such that |𝐸 (𝐺 ′) | ≤ 𝑂 (𝑛 · (𝑛 − |𝐵 |)), and moreover, if
(Q, (𝑋,𝑌 )) is a valid solution to instance (𝐺 ′, 𝐴, 𝐵,Δ, 𝜂, 𝑁 ), then it is
also a valid solution to instance (𝐺,𝐴, 𝐵,Δ, 𝜂, 𝑁 ). The running time
of the algorithm is 𝑂 (𝑛 · (𝑛 − |𝐵 |)).

In our algorithms for the RouteAndCut problem, we will use
Claim 3.7 in order to ensure that the number of edges in the input
graph is bounded by 𝑂 (𝑛 · (𝑛 − |𝐵 |)). We now turn to describe the
MWU-based approach for solving 𝑟 -restricted RouteAndCut.

3.4 Solving 𝑟 -Restricted RouteAndCut
In this subsection we provide a high-level description of our al-
gorithm for the 𝑟 -restricted RouteAndCut problem, including the
modified MWU framework that we use, and a reduction to a spe-
cial case of the SSSP problem, that we call 𝑟 -restricted 𝑠-𝑡-SP. We
show that an algorithm for the latter problem implies an algorithm
for 𝑟 -restricted RouteAndCut, via the modified MWU framework.

Let (𝐺,𝐴, 𝐵,Δ, 𝜂, 𝑁 ) be the input to the 𝑟 -restricted RouteAndCut
problem instance, where 𝐺 = (𝐿, 𝑅, 𝐸) is a well-structured graph
with |𝑉 (𝐺) | = 𝑛, that is given as an adjancency list, 𝐴 and 𝐵 are
disjoint subsets of 𝑉 (𝐺), and 𝑁 ≥ 𝑛, Δ ≥ 1, and 1 ≤ 𝜂 ≤ Δ are
parameters, with |𝐴|, |𝐵 | ≥ Δ. Since the instance is 𝑟 -restricted,
(𝑛−|𝐵 |) ·𝜂

Δ ≤ 2
𝑟 ·
√
log𝑁 holds. By using the algorithm fromClaim 3.7,

we convert this instance into another instance (𝐺 ′, 𝐴, 𝐵,Δ, 𝜂, 𝑁 )
of 𝑟 -restricted RouteAndCut with |𝐸 (𝐺 ′) | ≤ 𝑂 (𝑛 · (𝑛 − |𝐵 |)), in
time 𝑂 (𝑛 · (𝑛 − |𝐵 |)). From now on we focus on solving instance
(𝐺 ′, 𝐴, 𝐵,Δ, 𝜂, 𝑁 ), and, for convenience, we denote 𝐺 ′ by 𝐺 .

A Preprocessing Step. We start with a simple preprocessing step.
We greedily construct a maximal collection Q0 of disjoint paths,
where every path connects a distinct vertex of𝐴 to a distinct vertex
of 𝐵, and consists of a single regular edge. This can be done in time
𝑂 ( |𝐸 (𝐺) |) ≤ 𝑂 (𝑛 · (𝑛 − |𝐵 |)). Let 𝐴1 ⊆ 𝐴 and 𝐵1 ⊆ 𝐵 be the sets
of vertices that do not serve as endpoints of any path in Q0. This
step ensures that there is no regular edge in 𝐺 connecting a vertex
of 𝐴1 to a vertex of 𝐵1, so every path connecting a vertex of 𝐴1 to
a vertex of 𝐵1 must contain at least one special edge.

Next, we describe a modified MWU framework that will allow
us to compute a solution to the 𝑟 -restricted RouteAndCut problem
instance. ThemodifiedMWU framework is designed so as to reduce
the 𝑟 -restricted RouteAndCut problem to a special case of SSSP,
that we call 𝑟 -restricted 𝑠-𝑡-SP, which seems more tractable than
the general decremental SSSP problem in directed graphs. We
will then design an algorithm for the 𝑟 -restricted 𝑠-𝑡-SP problem,
that will allow us to obtain the desired algorithm for 𝑟 -restricted
RouteAndCut. The algorithm for 𝑟 -restricted 𝑠-𝑡-SP will in turn rely
on an algorithm for the (𝑟 − 1)-restricted RouteAndCut problem.
The details are deferred to the full version of the paper.

3.4.1 The ModifiedMWU Framework. We now describe an algo-
rithm that is based on the modified MWU framework, but ignore
the issue of the efficient implementation of the algorithm. We ad-
dress this issue later, by reducing the problem to the 𝑟 -restricted
𝑠-𝑡-SP problem.

The algorithm uses a parameter Λ = (𝑛 − |𝐵1 |) · 𝜂 log
5 𝑛

Δ . While
the set 𝐵1 of vertices may change over the course of the algorithm,
the value of the parameterΛ is set at the beginning of the algorithm
and remains unchanged throughout the algorithm. Our algorithm
maintains an assignment ℓ (𝑒) ≥ 0 of lengths to the edges of 𝐺 . At
the beginning of the algorithm, we assign an initial length ℓ (𝑒)
to every edge 𝑒 ∈ 𝐸 (𝐺), as follows. If 𝑒 is a regular edge, we set
ℓ (𝑒) = 0, and if it is a special edge, we set ℓ (𝑒) = 1

Λ . As the algorithm
progresses, the lengths of the special edges may grow, but the
lengths of the regular edges remain unchanged. Whenever we talk
about distances between vertices and lengths of paths, it is always
with respect to the current lengths ℓ (𝑒) of edges 𝑒 ∈ 𝐸 (𝐺).

The algorithm gradually constructs a routing Q from 𝐴1 to 𝐵1
in 𝐺 , starting with Q = ∅. It performs at most Δ iterations, and in
each iteration, a single path 𝑃 , connecting some vertex 𝑎 ∈ 𝐴1 to
some vertex 𝑏 ∈ 𝐵1, is added to Q. We then delete 𝑎 from 𝐴1 and 𝑏
from 𝐵1. Additionally, we may double the lengths of some special
edges on the path 𝑃 . Specifically, our algorithmmaintains, for every
special edge 𝑒 of 𝐺 , a counter 𝑛(𝑒), which, intuitively, counts the
number of paths that were added to Q that contained 𝑒 , since ℓ (𝑒)
was last doubled (or since the beginning of the algorithm, if ℓ (𝑒)
was never doubled yet). At the beginning, we set 𝑛(𝑒) = 0 for every
special edge 𝑒 . Whenever a path 𝑃 is added to Q, we increase the
counter 𝑛(𝑒) of every special edge 𝑒 ∈ 𝐸 (𝑃). If, for any such edge
𝑒 , the counter 𝑛(𝑒) reaches 𝜂, then we double the length of edge 𝑒 ,
and reset the counter 𝑛(𝑒) to be 0.
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The Oracle. At the heart of our algorithm is an oracle – an algorithm
that, in every iteration, either computes a path 𝑃 of length at most 1
in the current graph𝐺 connecting a vertex of𝐴1 to a vertex of 𝐵1, or
produces a new assignment ℓ ′(𝑒) for edges 𝑒 ∈ 𝐸 (𝐺), that we call a
cut-witness, and define next. Intuitively, the cut-witness is designed
in such a way that it can be easily transformed into the desired cut
(𝑋,𝑌 ) in𝐺 with |𝐸𝐺 (𝑋,𝑌 ) | ≤ 64Δ

𝜂 log
4 𝑛

+ 256 |Q |
𝜂 , such that, if𝐴′ and

𝐵′ denote the current sets𝐴1 and 𝐵1 respectively, then𝐴′ ⊆ 𝑋 and
𝐵′ ⊆ 𝑌 hold. Once the oracle produces a cut-witness, the algorithm
terminates.

Definition 3.8 (Cut-witness). A cut-witness is an assignment
of lengths ℓ ′(𝑒) ≥ 0 to every edge 𝑒 ∈ 𝐸 (𝐺), such that, if we denote
by 𝐴′ and 𝐵′ the current sets 𝐴1 and 𝐵1 of vertices respectively, and
by 𝐸∗ the set of all special edges with both endpoints in 𝐵′, then:

• ∑
𝑒∈𝐸 (𝐺) ℓ

′(𝑒) ≤ Δ
2𝜂 log

4 𝑛
+∑

𝑒∈𝐸 (𝐺)\𝐸∗ ℓ (𝑒); and
• the distance in graph𝐺 , with respect to edge lengths ℓ ′(·), from
𝐴′ to 𝐵′ is at least 1

64
.

Next, we define the notion of an acceptable path in 𝐺 , and we
will require that the oracle, in every iteration, either returns an
acceptable path, or returns a cut-witness.

Definition 3.9 (Acceptable Path). A path 𝑃 in the current
graph𝐺 is called acceptable if 𝑃 is a simple path, connecting a vertex
of𝐴1 to a vertex of 𝐵1, the length of 𝑃 with respect to the current edge
lengths ℓ (·) is at most 1, and no inner vertices of 𝑃 belong to 𝐵1.

We are now ready to define the oracle.

Definition 3.10 (The Oracle). An oracle for theMWU frame-
work is an algorithm that, in every iteration, either returns an
acceptable path 𝑃 , or returns a cut-witness, or returns “FAIL”. The
probability that the oracle ever returns “FAIL” must be bounded
by 1/2.
TheMWU-Based Algorithm. Wedescribe themodifiedMWU-based
algorithm, denoted by ALG-MWU in Figure 1; the description ex-
cludes the implementation of the oracle.

We now show that we can use the algorithm in order to solve
the 𝑟 -restricted RouteAndCut problem. Observe first that, if the
total running time of the oracle, over the course of all iterations,
is bounded by 𝑇 , then the total running time of Algorithm ALG-

MWU is bounded by𝑂 ( |𝑇 |) +𝑂 ( |𝐸 (𝐺) |) ≤ 𝑂 ( |𝑇 |) +𝑂 (𝑛 · (𝑛− |𝐵 |)).
Moreover, since the probability that the oracle ever returns “FAIL” is
at most 1/2, the probability that algorithm ALG-MWU terminates
with a “FAIL” is bounded by 1/2.

Let Q be the set of paths obtained when Algorithm ALG-MWU

terminates, and let Q ′ = Q ∪ Q0 be the final set of paths that we
obtain. Clearly, every path in Q ′ connects a vertex of 𝐴 to a vertex
of 𝐵. The following simple observation shows that the paths in Q ′

cause congestion at most 4𝜂 log𝑛, and that the endpoints of all
paths in Q ′ are disjoint; the proof is deferred to the full version.

Observation 3.11. The endpoints of the paths in Q ′ are disjoint,
and the congestion caused by the paths in Q ′ in 𝐺 is bounded by
4𝜂 log𝑛.

Let 𝐴′ and 𝐵′ denote the sets 𝐴1 and 𝐵1, respectively, at the
end of Algorithm ALG-MWU. Notice that 𝐴′ is a set of all ver-
tices 𝑎 ∈ 𝐴 that do not serve as endpoints of the paths in Q ′, and

Alg-MWU

• Initialize the data structures:
– Set Q = ∅;
– For every edge 𝑒 ∈ 𝐸 (𝐺), if 𝑒 is a regular edge, set
ℓ (𝑒) = 0, otherwise set ℓ (𝑒) = 1

Λ .
– For every special edge 𝑒 , set 𝑛(𝑒) = 0.

• Perform at most Δ − |Q0 | iterations, where in each
iteration we apply the oracle.
– If the oracle returned “FAIL”, then return “FAIL”
and terminate the algorithm;

– If the oracle returned a cut-witness, return the cut-
witness and terminate the algorithm;

– Otherwise, the oracle must have returned an ac-
ceptable path 𝑃 connecting a vertex 𝑎 ∈ 𝐴1 to a
vertex 𝑏 ∈ 𝐵1.
∗ remove 𝑎 from 𝐴1 and 𝑏 from 𝐵1;
∗ add 𝑃 to Q;
∗ for each special edge 𝑒 ∈ 𝐸 (𝑃), increase 𝑛(𝑒)
by 1, and, if 𝑛(𝑒) reaches 𝜂, double ℓ (𝑒) and set
𝑛(𝑒) = 0.

Figure 1: Alg-MWU

similarly, 𝐵′ contains all vertices 𝑏 ∈ 𝐵 that do not serve as end-
points of the paths in Q ′. The claim below shows an algorithm,
that, given a cut-witness {ℓ ′(𝑒)}𝑒∈𝐸 (𝐺) , computes a cut (𝑋,𝑌 ) in𝐺
with |𝐸𝐺 (𝑋,𝑌 ) | ≤ 64Δ

𝜂 log
4 𝑛

+ 256 |Q |
𝜂 , such that 𝐴′ ⊆ 𝑋 and 𝐵′ ⊆ 𝑌

hold; we defer its proof to the full version.

Claim 3.12. There is a deterministic algorithm, that, given a cut-
witness {ℓ ′(𝑒)}𝑒∈𝐸 (𝐺) for 𝐺 , obtained at the end of Algorithm ALG-

MWU, computes a cut (𝑋,𝑌 ) in 𝐺 with |𝐸𝐺 (𝑋,𝑌 ) | ≤ 64Δ
𝜂 log

4 𝑛
+

256 |Q′ |
𝜂 , such that 𝐴′ ⊆ 𝑋 and 𝐵′ ⊆ 𝑌 hold. The running time of the

algorithm is 𝑂 ( |𝐸 (𝐺) |) ≤ 𝑂 (𝑛 · (𝑛 − |𝐵 |)).
We now discuss an efficient implementation of our algorithm for

the RouteAndCut problem, given an efficient implementation of the
oracle. Recall that the time required for the preprocessing step, and
for computing the final cut (𝑋,𝑌 ) by the algorithm fromClaim 3.12,
is bounded by 𝑂 (𝑛 · (𝑛 − |𝐵 |)). If the running time of the oracle is
bounded by𝑇 , then the running time of Algorithm ALG-MWU and
hence of the algorithm for the RouteAndCut problem, is bounded
by𝑂 (𝑇 +𝑛 · (𝑛−𝐵)). In order to obtain an efficient implementation
of the oracle, we reduce it to a special case of decremented directed
SSSP, that we call 𝑟 -restricted 𝑠-𝑡-SP problem. We then provide an
algorithm for the latter problem, that, in turn, relies on an algorithm
for (𝑟 −1)-restricted RouteAndCut. Due to lack of space, the details
are deferred to the full version of the paper.
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