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Abstract

The maximum bipartite matching problem is among the most fundamental and well-studied problems in
combinatorial optimization. A beautiful and celebrated combinatorial algorithm of Hopcroft and Karp [26]
shows that maximum bipartite matching can be solved in O(m

√
n) time on a graph with n vertices and

m edges. For the case of very dense graphs, a different approach based on fast matrix multiplication was
subsequently developed [27, 39], that achieves a running time of O(n2.371). For the next several decades, these
results represented the fastest known algorithms for the problem until in 2013, a ground-breaking work of
Madry [36] gave a significantly faster algorithm for sparse graphs. Subsequently, a sequence of works developed
increasingly faster algorithms for solving maximum bipartite matching, and more generally directed maximum
flow, culminating in a spectacular recent breakthrough [9] that gives an m1+o(1) time algorithm for maximum
bipartite matching (and more generally, for min cost flows). These more recent developments collectively
represented a departure from earlier combinatorial approaches: they all utilized continuous techniques based
on interior-point methods for solving linear programs.

This raises a natural question: are continuous techniques essential to obtaining fast algorithms for
the bipartite matching problem? Our work makes progress on this question by presenting a new, purely
combinatorial algorithm for bipartite matching, that, on moderately dense graphs outperforms both Hopcroft-
Karp and the fast matrix multiplication based algorithms. Similar to the classical algorithms for bipartite
matching, our approach is based on iteratively augmenting a current matching using augmenting paths in the
(directed) residual flow network. A common method for designing fast algorithms for directed flow problems
is via the multiplicative weights update (MWU) framework, that effectively reduces the flow problem to
decremental single-source shortest paths (SSSP) in directed graphs. Our main observation is that a slight
modification of this reduction results in a special case of SSSP that appears significantly easier than general
decremental directed SSSP. Our main technical contribution is an efficient algorithm for this special case of
SSSP, that outperforms the current state of the art algorithms for general decremental SSSP with adaptive
adversary, leading to a deterministic algorithm for bipartite matching, whose running time is Õ(m1/3n5/3).

This new algorithm thus starts to outperform the Hopcroft-Karp algorithm in graphs with m = ω(n7/4),
and it also outperforms the fast matrix multiplication based algorithms on dense graphs. We believe that
this framework for obtaining faster combinatorial algorithms for bipartite matching by exploiting the special
properties of the resulting decremental SSSP instances is one of the main conceptual contributions of our work
that we hope paves the way for even faster combinatorial algorithms for bipartite matching.

Finally, using a standard reduction from the maximum vertex-capacitated s-t flow problem in directed
graphs to maximum bipartite matching, we also obtain an Õ(m1/3n5/3) time deterministic algorithm for
maximum vertex-capacitated s-t flow when all vertex capacities are identical.

1 Introduction.

In the maximum bipartite matching problem, the input is a bipartite graph G with n vertices and m edges, and
the goal is compute a matching of maximum size in G. This problem is among the most extensively studied
in computer science, combinatorial optimization, and operations research, and holds a central place in graph
algorithms with intimate connections to many other fundamental graph optimization problems (see e.g.[42]).

A standard textbook application of the maximum s-t flow problem shows that the task of finding an optimal
bipartite matching can be reduced to finding a maximum s-t flow in a directed graph with unit edge capacities.
This connection immediately gives an O(mn)-time algorithm for bipartite matching by simply invoking the basic
Ford-Fulkerson algorithm [19] on the resulting flow network. The resulting algorithm is based on a simple idea:
as long as the current matching is not optimal, it can be augmented by finding an s-t path in the residual flow

∗Toyota Technological Institute at Chicago, IL. Email: cjulia@ttic.edu. Supported in part by NSF award CCF-2006464 and

NSF HDR TRIPODS award 2216899.
†University of Pennsylvania, Philadelphia, PA. Email: sanjeev@cis.upenn.edu. Supported in part by NSF awards CCF-1934876

and CCF-2008305.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



network in O(m) time. A celebrated result of Hopcroft and Karp [26] showed an elegant way to speed up this
simple algorithm. Instead of finding a single s-t path at a time, the Hopcroft-Karp (HK) algorithm finds a maximal
collection of internally disjoint augmenting s-t paths of shortest possible length in the residual flow network, using a
combination of breadth-first search (BFS) and depth-first search (DFS). This modification improves the runtime
to O(m

√
n). For the ensuing several decades, the HK algorithm remained the fastest algorithm for bipartite

matching except for the case of very dense graphs. For dense graphs, a subsequent work based on fast matrix
multiplication was shown to give an O(nω) time algorithm for bipartite matching, beating HK algorithm in the
dense regime [27, 39].

After many decades of no further progress on bipartite matching, starting in the 2000s, a new paradigm started
to emerge for solving combinatorial problems like bipartite matching and maximum s-t flows, using continuous
techniques. A breakthrough result of Spielman and Teng [43], achieving a near-linear time algorithm for solving
Laplacian systems, paved the way for this new method, called the Laplacian paradigm. As a first illustration of
this paradigm, Daitch and Spielman [13] showed that the task of computing maximum s-t flow in a directed graph

can be reduced to solving Õ(m1/2) Laplacian systems, thus obtaining an Õ(m3/2) time algorithm for directed
max flow. Later, Madry [36] showed that maximum flow in directed graphs, and hence bipartite matching, can
be computed in Õ(m10/7) time using this paradigm. Exactly 40 years after the discovery of the HK algorithm,
this became the first algorithm to substantially outperform it at least on sparse graphs. The following decade
saw a sequence of remarkable improvements [37, 32, 12, 33, 4] with another big milestone arriving when van
den Brand et al. [44] gave an Õ(m + n1.5) time algorithm for bipartite matching. Finally, in another major
breakthrough, Chen et. al. [9], gave an m1+o(1)-time algorithm for solving maximum flow in directed graphs,
thereby obtaining an almost linear time algorithm for bipartite matching in all edge-density regimes. At a high
level, these developments are all based on formulating a directed flow problem as a linear program, solving the
resulting linear program by efficiently utilizing interior-point methods (IPM), whereby each iteration of IPM
reduces the directed graph problem to either solving a Laplacian system, or another efficiently solvable problem
on undirected graphs (e.g., min ratio cycle in [9]). This general approach is then further combined with dynamic
graph data structures to avoid re-computation from scratch in each successive IPM iteration, resulting in highly
efficient new algorithms for problems like bipartite matching and maximum s-t flow.

This history of algorithmic developments for bipartite matching and related problems raises a natural question:
are continuous techniques essential to obtaining fast algorithms for maximum bipartite matching? On one hand,
the use of continuous techniques based on IPMs have led to an almost linear time algorithm for bipartite matching,
strongly outperforming the HK algorithm in all edge density regimes. On the other hand, these improvements
come at the expense of the simplicity and the transparent nature of the augmenting path based combinatorial
algorithms. In fact, this question can be asked more broadly for many other graph problems, where significant
recent advances have come by strongly utilizing continuous techniques.

We make progress on the above-mentioned question for bipartite matching by presenting a new, purely
combinatorial, augmenting path based algorithm, which on moderately dense graphs outperforms the Hopcroft-
Karp algorithm, and on dense graphs outperforms the fast matrix multiplication based algorithms.

Theorem 1.1. There is a deterministic combinatorial algorithm for maximum bipartite matching that, on a graph
G with n vertices and m edges, has running time Õ(m1/3n5/3).

We note that for moderately dense graphs with m = ω(n7/4), our algorithm outperforms the Hopcroft-Karp
algorithm [26]. Furthermore, since the best current upper bound on the matrix multiplication exponent ω is
roughly 2.371866 [16], on dense graphs, our algorithm also considerably outperforms the matrix multiplication
based approach for bipartite matching.

Using a standard reduction from vertex-capacitated flow in directed graphs to maximum bipartite matching (see

Theorem 16.12 in [42], for instance), we also obtain an Õ(m1/3n5/3) time deterministic algorithm for maximum
vertex-capacitated flow when all vertex capacities are identical.

Corollary 1.1. There is a deterministic combinatorial algorithm for directed maximum s-t flow problem with
uniform vertex capacities that runs in Õ(m1/3n5/3) time on a graph G with n vertices and m edges.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



Similar to the classical algorithms for maximum bipartite matching, our approach for proving Theorem 1.1 is based
on iteratively augmenting a current matching using augmenting paths in the residual flow network. We do
so by using the multiplicative weights update (MWU) framework, that effectively reduces the underlying flow
problem to decremental single-source shortest paths (SSSP) in directed graphs, a connection first observed by
Madry [35]. Our main observation is that a slight modification of this reduction results in a special case of SSSP
that appears significantly easier than general decremental directed SSSP. As typical for such reductions, we need
the algorithm for decremental directed SSSP to work against an adaptive adversary ; in other words, the sequence
of edge deletions from the graph may depend on past behavior of the algorithm, including its responses to queries.

While there is an extensive body of work on the decremental SSSP problem in undirected graphs, with the best
current algorithms even against an adaptive adversary achieving essentially optimal parameters (see [7]), our
understanding of the same problem in directed graphs is still far from complete. For simplicity, in this discussion
we assume that all edge lengths are integers that are bounded by poly(n). For the special case where the input
graph G is a directed acyclic graph (DAG), [8], building on the results of [5, 23], provided a deterministic (1 + ε)-

approximation algorithm with total update time Õ(n2/ε). They also introduced the Approximate Topological
Order (AT O) framework, whose purpose is to reduce the decremental SSSP problem in general directed graphs to
that in graphs that are “close” to DAG’s1. Using this approach, they provided a (1 + ε)-approximation algorithm

for decremental SSSP in directed graphs with total update time Õ(n2), but only for the oblivious adversary setting,
where the sequence of edge deletions is fixed in advance and may not depend on algorithm’s past behavior. To
the best of our knowledge, the best current algorithm for directed decremental SSSP in the adaptive setting, due
to Bernstein et al. [6], obtains a (1 + ε)-approximation with total update time n8/3+o(1). This total update time
however is prohibitively high for our purposes.

Our main technical contribution is a deterministic algorithm for directed decremental SSSP for the special family
of instances that arise in the reduction from maximum bipartite matching. Our work builds on the algorithm of
[6], and exploits the special properties of the instances that we obtain in order to both significantly improve the
running time, and simplify the algorithm itself and its analysis.

We believe that the general framework for obtaining faster combinatorial algorithms for bipartite matching
presented in this paper is one of our main conceptual contributions, and we hope that it will lead to further
improvements in the running times of combinatorial algorithms for the problem. In what follows, we provide an
overview of the main ideas in our approach.

1.1 Our Techniques. It is well known that the maximum bipartite matching problem in a bipartite graph G
can be equivalently cast as the problem of computing an integral maximum s-t flow in a directed flow network
G′ with unit edge capacities. We can view any given matching M in G as defining an s-t flow f in G′ of value
is |M |. We let H = G′f be the corresponding residual flow network, that we refer to as the residual flow network
with respect to matching M . The residual network H contains an integral s-t flow of value ∆ = OPT − |M |,
where OPT is the value of the maximum bipartite matching. Moreover, any integral s-t flow f ′ in H that respects
edge capacities, can be transformed into a collection Q of val(f ′) internally disjoint s-t paths (augmenting paths),
which can then in turn be used in order to obtain a new matching M ′ in G, of cardinality |M | + val(f ′). The
task of augmenting M to a larger matching is then equivalent to recovering a large flow in H.

One standard approach for obtaining fast algorithms for various flow problems, due to [21, 18, 3], is via the
Multiplicative Weight Update (MWU) method. It was further observed by Madry [35] that this approach can be
viewed as reducing a given flow problem to a variant of decremental SSSP or APSP. While strong lower bounds
are known for exact algorithms for decremental SSSP and APSP (see, e.g. [15, 40, 24, 2, 1]), for our purposes, it is
sufficient to only approximately solve the resulting decremental SSSP problem, and recover an approximate max
flow in H. Specifically, we will iteratively augment the current matching, where the goal of a single iteration is
to augment M to a new matching M ′ that satisfies |M ′| ≥ |M |+ Ω(∆/ poly log n), where ∆ = OPT− |M |. This
will ensure that the number of iterations is bounded by O(poly log n). We now focus on the implementation of a
single iteration.

1According to [8], while the AT O technique was first explicitly defined in [8], the work of [23] can be viewed as (implicitly) using
this technique.
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In a single iteration, we use the MWU framework to find an s-t flow in the residual flow network H of value
Ω(∆/ poly log n) with O(log n) congestion. By scaling down, we may equivalently view this as giving a fractional
s-t flow in the residual flow network H of value Ω(∆/ poly log n) with no congestion. The support of this flow

is Õ(n) edges, and we can now use the blocking flow approach of Hopcroft-Karp [26] algorithm to recover an

integral s-t flow of value Ω(∆/ poly log n) in deterministic Õ(n3/2) time. We note that it is possible to round

the fractional flow into an integral flow in Õ(n) time using the random walk technique of [22, 31]. However, the
improved runtime for this step does not improve our overall runtime and comes at the expense of making the
algorithm randomized, so we will rely on the deterministic rounding scheme. The remaining challenge is in the
efficient implementation of the MWU framework, which in turn reduces to solving a special case of decremental
SSSP in directed graphs.

At a high level, we follow the approach of [6], who designed a (1 + ε)-approximation algorithm for directed

decremental SSSP, with total update time O
(
n8/3+o(1)

ε

)
(assuming that all edge lengths are poly-bounded). This

running time is prohibitively high for our purposes, so we cannot use their algorithm directly. Instead, we observe
that we only need to solve a restricted special case of directed decremental SSSP; by adapting their algorithm to
this setting, we obtain the desired faster running time. Unlike the general SSSP problem, the special case that we
need to solve has some useful properties. First, all shortest-path queries are asked between a pre-specified pair
(s, t) of vertices. Additionally, we slightly modify the MWU method, so that the task of responding to shortest-
path queries is even easier. Specifically, we can assume that we are given two parameters d and ∆. In response
to a shortest-path query, the algorithm needs to either return an s-t path of length at most d, or return “FAIL”.
The latter can only be done if the largest number of internally disjoint s-t paths of length at most d/8 in the
current graph is bounded by O(∆/ poly log n). In other words, our algorithm only needs to support approximate
shortest-path queries as long as there is a large number of short and internally disjoint s-t paths in the current
graph H. This property is crucially used by our algorithm to obtain a faster running time. Additionally, due to
the specific setup provided by the MWU method, the only edges that are deleted from H are those appearing on
the paths that the algorithm returns in response to queries. Moreover, unlike the standard setting of the dynamic
SSSP problem, where it is crucial that the time the algorithm takes to respond to each individual query is short,
we only need to ensure that the total time the algorithm takes to respond to all queries is suitably bounded. We
exploit all these advantages of the special case of the SSSP problem that we obtain in order to design an algorithm
for it that is significantly faster than the algorithm of [6] for general decremental SSSP.

We now provide additional details of our algorithm for restricted decremental SSSP. We follow the high-level
approach of [6], that consists of two parts. First, they maintain a partition X of graph H \ {s, t} into a collection
of expander-like graphs; we abstract the problem of maintaining each such graph, that we call MaintainCluster
problem, below. Second, they apply the Approximate Topological Order (AT O) framework of [8] (which is in
turn based on the works of [23] and [5]), together with the algorithm of [8] for decremental SSSP on “almost”
DAG’s to the graph Ĥ, that is obtained from H by contracting every almost-expander X ∈ X into a single vertex.
We now discuss each of these components in turn, and point out the similarities and the differences between our
algorithm and that of [6].

We start by defining the MaintainCluster problem, that, intuitively, is used to manage a single expander-like graph.
We will eventually apply it to every subgraph X ∈ X of H. The input to the problem is a subgraph X ⊆ H \{s, t},
and a parameters d ≥ poly log n and ∆ > 0. We will treat all edges of X as unweighted, so the length of each edge
is 1. The algorithm consists of at most ∆ iterations. In each iteration, the algorithm is given a pair x, y ∈ V (X)
of vertices, and it needs to output a simple path P of length at most d connecting x to y in X. Some of the edges
of P may then be deleted from H, and the iteration ends. The algorithm can, at any time, compute a cut (A,B)

in X, whose sparsity is at most O
(

poly logn
d

)
. After that, if |A| ≥ |B|, then vertices of B are deleted from X, and

otherwise the vertices of A are deleted from X. In either case, the algorithm must continue with the new graph
X. Our goal is to provide an algorithm for the MaintainCluster problem, whose total running time is small. In
particular, unlike a similar problem that was considered in [6], we do not need to ensure that the time that the
algorithm takes in order to respond to each query is low. Instead, we only need to ensure that the total update
time of the algorithm, together with the total time spent on responding to queries, is low. The setting that is
considered in [6] is more general in several other ways: there is no bound on the number of queries, and edges may
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be deleted from X as part of update sequence2 arbitrarily (in our setting, only edges that appear on the paths that
the algorithm returns in response to queries may be deleted). The algorithm of [6] for this more general version

of the MaintainCluster problem has total update time Ô(|E(X)| · d2), and the time to respond to each query is
roughly proportional to the number of edges on the path that the algorithm returns. We provide an algorithm for

the MaintainCluster problem, whose total running time is bounded by Õ(|E(X)| · d+ |V (X)|2) ·max
{

1, ∆·d2
|V (X)|

}
,

which, for the setting of parameters that we employ becomes Õ(|E(X)| · d + |V (X)|2). Our algorithm for the
MaintainCluster problem uses a rather standard approach: we embed a large Ω(1)-expander W into the graph X,
and then use two Even-Shiloach tree (ES-Tree) data structures in X, that are rooted at the vertices of W ; in one
of the resulting trees the edges are directed away to the root, and in the other they are directed towards the root.
However, due to the specifics of the setting that we have described, we obtain an algorithm that is significantly
simpler than that of [6], and other similar algorithms. For example, we use a straightforward (although somewhat
slower) algorithm for the cut player in the Cut-Matching game, that is used in order to embed an expander into
X, and our algorithm for the variant of APSP in expanders that we obtain is quite elementary; it avoids both the
recursion that was used in previous works (see [11, 10, 6]), and the expander pruning technique of [41, 6]. While
some parts of our algorithm can be optimized, for example, by using the faster algorithm for the Cut Player due
to [6], this would not affect our final running time, and we believe that the simple self-contained proofs provided
in this paper are of independent interest.

We now briefly describe the second component of our algorithm – the use of the Approximate Topological Order
(AT O) framework of [8], that can be viewed as reducing the decremental SSSP problem on general directed graphs
to decremental SSSP on “almost DAG’s”. This part is almost identical to the algorithms of [8, 6]. The main
difference is that we save significantly on the running time of the algorithm due to the fact that we only need to
support approximate shortest-path queries between s and t, as long as graph H contains many short s-t paths. We
start with the decremental graph H that serves as the input to the restricted decremental SSSP problem, and we
maintain a partition X of the vertices of H\{s, t} into subsets. At the beginning of the algorithm, we let X contain
a single set V (H) \ {s, t}, and, as the algorithm progresses, the only allowed updates to the collection X of vertex
subsets is a partition of a given set X ∈ X into two subsets, A and B. Intuitively, whenever a set X of vertices
is added to X , we view it as an instance of the MaintainCluster problem on the corresponding graph H[X], with
an appropriately chosen distance parameter dX . We then apply the algorithm for the MaintainCluster problem to
this instance. Whenever the algorithm produces a cut (A,B) in H[X], we let Z be the smaller-cardinality set of
vertices from among A, B. Recall that the algorithm for the MaintainCluster problem then deletes the vertices
of Z from X. We add the set Z as a new vertex set to X , and initialize the algorithm for the MaintainCluster
problem on H[Z]. Additionally, we update the set X of vertices in X , by deleting the vertices of Z from it. For
convenience, we will also add to X two additional subsets: S = {s}, T = {t}, so that X becomes a partition of
the vertices of H into subsets.

In order to define Approximate Topological Order (AT O) on graph H, with the partition X of the vertices of
V (H) \ {s, t} into subsets, we associate, with every set X ∈ X , a contiguous collection IX of |X| integers from
{1, . . . , n}, that we refer to as an interval. We always let IS = {1}, IT = {n}, and we require that all resulting
intervals are mutually disjoint. Notice that the resulting collection {IX | X ∈ X} of intervals naturally defines an
ordering of the sets in X , that we denote by σ, and for convenience, we call it a left-to-right ordering. Consider
now some edge e = (u, v), and let X,Y ∈ X be the sets containing u and v, respectively. Assume further that
X 6= Y . If X appears before Y in the ordering σ, then we say that e is a left-to-right edge, and otherwise, we say
that it is a right-to-left edge.

Recall that, at the beginning of the algorithm, we let X contain three vertex sets: S = {s} , T = {t}, and
R = V (H) \ {s, t}. We also set IS = {1}, IT = {n}, and IR = {2, . . . , n− 1}. As the algorithm progresses,
whenever a set X of vertices is split into two sets A and B, we partition the interval IX into two subintervals IA
and IB , of cardinalities |A| and |B|, respectively. Recall that we only partition X into sets A and B if (A,B)
defines a sparse cut in graph H[X]. This means that either |EH(A,B)|, or |EH(B,A)| is small relatively to

2Like [6], we distinguish between edges that are deleted from X by “adversary”, as part of the online update sequence, and edges

that are deleted by the algorithm itself, when it computes a sparse cut (A,B) in X, and deletes all vertices of the smaller side of the
cut from X.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



min {|A|, |B|}. In the former case, we ensure that interval IB appears before interval IA, while in the latter case,
we ensure that interval IA appears before interval IB . This placement of intervals ensures that there are relatively
few right-to-left edges.

Lastly, we consider the contracted graph H ′ = H|X , that is obtained from H by contracting every set
X ∈ X \ {S, T} into a single vertex. As the time progresses, graph H ′ undergoes edge deletions and vertex-
splitting updates. The latter type of updates reflects the partitioning of the sets X ∈ X of vertices into smaller
subsets. At all times, the ordering σ of the intervals in {IX | X ∈ X} that is maintained by the AT O naturally
defines an ordering of the vertices of H ′, that we denote by σ′. Notice that, if we could ensure that no right-to-left
edges are present, then graph H ′ would be a DAG, and σ′ would define a topological ordering of its vertices. We
could then use the algorithm of [8] for decremental SSSP in DAG’s, whose total update time is Õ(n2). In [8] it was
further observed that, if we could ensure that the number of right-to-left edges with respect to the AT O structure
is low, and the average length of each such edge (with respect to the ordering σ′ of the vertices of H ′) is small, one
can apply an algorithm similar to that for SSSP in DAG’s to the contracted graph H ′. The total update time of
the resulting algorithm depends on the number of the right-to-left edges, and on their length with respect to σ′.
Exactly this approach was used in [6] in order to obtain an algorithm for decremental SSSP in general directed
graphs. We also employ the same approach, but we use the advantages of our setting, specifically, that all queries
are between a pre-specified pair s, t of vertices, and that we only need to support the queries as long as there are
many short internally disjoint s-t paths, in order to obtain a faster algorithm. Intuitively, since we can assume
that the current graph H contains Ω̃(∆) short internally disjoint s-t paths, and since the right-to-left edges must
be distributed among such paths, at least one short s-t path must contain a very small number of right-to-left
edges. It is this observation that leads to a faster running time of this part of our algorithm.

1.2 Organization. We start with preliminaries in Section 2. We then provide a high-level overview of our
algorithm in Section 3, which includes the reduction of the maximum bipartite matching problem to a special
case of decremental SSSP via a modification of the MWU framework, and the statement of our main result for
this special case of SSSP. In Section 4 we provide an overview of the Approximate Topological Order (AT O)
framework of [8], and in Section 5 we discuss their algorithm for SSSP in DAG-like graphs. In Section 6 we
develop technical tools for maintaining a decomposition of the input graph G into expander-like subgraphs, with
the proof of the main result of this section – an algorithm for the MaintainCluster problem – deferred to Section 8.
Lastly, in Section 7 we combine all these tools to obtain the desired algorithm for the special case of decremental
directed SSSP that we consider, completing the algorithm for maximum bipartite matching.

2 Preliminaries.

In this paper we work with both directed and undirected graphs. By default graphs are allowed to contain parallel
edges but they may not contain loops. Graphs with no parallel edges are explicitly referred to as simple graphs.

We use standard graph theoretic notation. Given a graph G (that may be directed or undirected), and two
disjoint subsets A,B of its vertices, we denote by EG(A) the set of all edges of G with both endpoints in A, and
by EG(A,B) the set of all edges connecting a vertex of A to a vertex of B. The degree of a vertex v in G, denoted
by degG(v), is the number of edges incident to v in G; if graph G is directed, this includes both outgoing and
incoming edges. Given a subset A of vertices of G, its volume, denoted by VolG(A), is

∑
v∈A degG(v). When

graph G is clear from context, we may omit the subscript.

Congestion of Paths and Flows. Let G be a graph with capacities c(e) ≥ 0 on edges e ∈ E(G), and let P be
a collection of simple paths in G. We say that the paths in P cause edge-congestion η, if every edge e ∈ E(G)
participates in at most η · c(e) paths in P. When edge capacities are not explicitly given, we assume that they
are unit. If every edge of G belongs to at most one path in P, then we say that the paths in P are edge-disjoint.

Similarly, if we are given a flow value f(e) ≥ 0 for every edge e ∈ E(G), we say that flow f causes edge-congestion
η, if for every edge e ∈ E(G), f(e) ≤ η · c(e) holds. If f(e) ≤ c(e) holds for every edge e ∈ E(G), we may say that
f causes no edge-congestion.

Assume now that we are given a graph G, a pair s, t of its vertices, and a collection P of simple paths connecting
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s to t. We say that the paths in P cause vertex-congestion η, if every vertex v ∈ V (G) \ {s, t} participates in at
most η paths. If the paths in P cause vertex-congestion 1, then we say that they are internally vertex-disjoint.

Embedding of Graphs. Let H,G be two graphs with V (H) ⊆ V (G). An embedding of H into G is a collection
P = {P (e) | e ∈ E(H)} of paths in G, where for every edge e = (u, v) ∈ E(H), path P (e) connects u to v in
G. The congestion of the embedding is the maximum, over all edges e′ ∈ E(G), of the number of paths in P
containing e′; equivalently, it is the edge-congestion that the set P of paths causes in G.

Cuts, Sparsity and Expanders for Directed Graphs. Let G be a directed graph. A cut in G is a an ordered
pair (A,B) of subsets of vertices of G, such that A ∩B = ∅, A ∪B = V (G), and A,B 6= ∅. Note that we do not
require that |A| ≤ |B| in this definition. The sparsity of the cut is:

ΦG(A,B) =
|E(A,B)|

min {|A|, |B|}
.

We say that a directed graph G is a ϕ-expander, for a given value 0 < ϕ < 1, if the sparsity of every cut in G is
at least ϕ. Notice that, if G is a ϕ-expander, then for every cut (A,B), both |E(A,B)| ≥ ϕ ·min {|A|, |B|} and
|E(B,A)| ≥ ϕ ·min {|A|, |B|} hold.

We also use the following theorem that provides a fast algorithm for an explicit construction of an expander, that
is based on the results of Margulis [38] and Gabber and Galil [20]. The proof for undirected graphs was shown in
[10].

Theorem 2.1. (Theorem 2.4 in [10]) There is a constant α0 > 0 and a deterministic algorithm, that we call
ConstructExpander, that, given an integer n > 1, in time O(n) constructs a directed graph Hn with |V (Hn)| = n,
such that Hn is an α0-expander, and every vertex in Hn has at most 9 incoming and at most 9 outgoing edges.

The above theorem was proved in [10] for undirected expanders, with maximum vertex degree in the resulting
graph bounded by 9, but it is easy to adapt it to directed expanders. This is since, if a graph G is an undirected
ϕ-expander, and a directed graph G′ is obtained from G by replacing every edge with a pair of bi-directed edges,
then G′ is a directed ϕ-expander.

The following simple observation follows from the standard ball-growing technique. We provide its proof for
completeness in Section A of Appendix.

Observation 2.1. There is a deterministic algorithm, that, given a directed n-vertex graph G = (V,E) with unit
edge lengths and maximum vertex degree at most δmax, and two vertices x, y ∈ V with distG(x, y) ≥ d for some
parameter d ≥ 64δmax log n, computes a cut (A,B) of sparsity at most ϕ = 32δmax logn

d in G. The running time
of the algorithm is O(δmax ·min {|A|, |B|}).

We will use the following simple observation a number of times. Intuitively, the observation allows us to convert
a sequence of small sparse cuts into a single balanced sparse cut.

Observation 2.2. There is a deterministic algorithm, whose input consists of a directed n-vertex graph G,
parameters 0 < α < 1 and 0 < ϕ < 1, and a sequence X = (X1, X2, . . . , Xk) of non-empty subsets of vertices of
G, such that the following hold:

• Every vertex of V (G) lies in exactly one set in {X1, . . . , Xk};

• maxi {|Xi|} = αn; and

• for all 1 ≤ i < k, if we denote by X ′i =
⋃k
j=i+1Xj, then either |E(Xi, X

′
i)| ≤ ϕ·|Xi|, or |E(X ′i, Xi)| ≤ ϕ·|Xi|.

The algorithm computes a cut (A,B) in G with |A|, |B| ≥ min
{

1−α
2 · n, n4

}
, and |EG(A,B)| ≤ ϕ ·

∑k−1
i=1 |Xi|. The

running time of the algorithm is O(|E(G)|).
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Proof. We will gradually construct an ordering O of the sets in X , that will allow us to compute the cut. We
compute the ordering in k− 1 iterations, where for all 1 ≤ i < k, in iteration i, we compute an ordering Oi of the
sets in {X1, . . . , Xi, X

′
i}; notice that these sets of vertices partition V (G). We will also gradually construct a set

E′ of edges, will ensure that, at the end of every iteration i, if an edge e ∈ E(G) \ E′ connects a vertex in set Z
to a vertex in set Z ′, with Z,Z ′ ∈ {X1, . . . , Xi, X

′
i} and Z 6= Z ′, then Z appears before Z ′ in the ordering Oi (in

other words, the edge is directed from left to right with respect to the ordering). We will also ensure that, at the

end of each iteration i, |E′| ≤ ϕ ·
∑i
j=1 |Xj |.

We start by constructing the first ordering O1 of the sets X1, X
′
1. If |E(X1, X

′
1)| ≤ ϕ · |X1|, then we place X ′1

before X1 in the ordering, and we set E′ = E(X1, X
′
1). Otherwise, we place X1 before X ′1 in the ordering (in

this case, |E(X ′1, X1)| ≤ ϕ · |X1| must hold), and we set E′ = E(X ′1, X1). Notice that, after the first iteration,
|E′| ≤ ϕ · |X1| holds, and, if e is an edge of E(G) \E′ whose endpoints lie in different sets of {X1, X

′
1}, then e is

directed from left to right with respect to the ordering O1.

We now assume that the ith iteration successfully computed an ordering Oi of sets X1, . . . , Xi, X
′
i, together with

a set E′ of edges, such that |E′| ≤ ϕ ·
∑i
j=1 |Xj |, and moreover, if an edge e ∈ E(G) \E′ connects a vertex in set

Z to a vertex in set Z ′, with Z,Z ′ ∈ {X1, . . . , Xi, X
′
i} and Z 6= Z ′, then Z appears before Z ′ in the ordering. We

now consider the partition (Xi+1, X
′
i+1) of set X ′i. If |E(Xi+1, X

′
i+1)| ≤ ϕ · |Xi+1|, then we obtain ordering Oi+1

of X1, . . . , Xi+1, X
′
i+1 by replacing X ′i in the ordering Oi with the sets X ′i+1, Xi+1 in this order. We then add the

edges of E(Xi+1, X
′
i+1) to E′. Otherwise, |E(X ′i+1, Xi+1)| ≤ ϕ · |Xi+1| must hold, and we obtain ordering Oi+1

of X1, . . . , Xi+1, X
′
i+1 by replacing X ′i in the ordering Oi with the sets Xi+1, X

′
i+1 in this order. We then add the

edges of E(X ′i+1, Xi+1) to E′. Notice that, in either case, |E′| ≤ ϕ ·
∑i+1
j=1 |Xj | now holds, and moreover, if an edge

e ∈ E(G)\E′ connects a vertex in set Z to a vertex in set Z ′, with Z 6= Z ′ and Z,Z ′ ∈
{
X1, . . . , Xi, Xi+1, X

′
i+1

}
,

then Z appears before Z ′ in the ordering Oi+1.

We consider the ordering O′ of {X1, . . . , Xk} obtained after the last iteration. For convenience, we denote the sets
X1, . . . , Xk by Y1, . . . , Yk, so that their indices are consistent with the ordering O′. We are now guaranteed that
|E′| ≤ ϕ ·

∑k−1
i=1 |Xi| (since set Xk did not contribute any new edges to E′), and that for every edge e ∈ E(G)\E′,

if e connects a vertex of set Yj to a vertex of set Yj′ with j 6= j′, then j < j′.

Let i be the index of largest-cardinality set Yi. Consider first the case where α ≥ 1
4 . Since |Yi| = α · n, either∣∣∣⋃i−1

j=1 Yj

∣∣∣ ≥ 1−α
2 n, or

∣∣∣⋃kj=i+1 Yj

∣∣∣ ≥ 1−α
2 · n must hold.

In the former case, we define a cut (A,B) by setting B =
⋃i−1
j=1 Yj and A = V (G) \B, while in the latter case, we

define a cut (A,B) by setting A =
⋃k
j=i+1 Yj and B = V (G) \ A. Notice that in either case, one of the sides of

the cut is guaranteed to contain at least 1−α
2 ·n vertices, while the other side contains Yi and thus has cardinality

at least αn ≥ n/4. Moreover, all edges in EG(A,B) must lie in E′, so |EG(A,B)| ≤ ϕ ·
∑k−1
i′=1 |Xi′ | must hold.

We return the cut (A,B).

Assume now that α < 1
4 . Then we compute the smallest index a, such that

∑a
j=1 |Yj | ≥ n/4. Let B =

⋃a
j=1 Yj ,

and let A = V (G) \ B. Since for all 1 ≤ i ≤ k, |Yi| ≤ n/4, it must be the case that |A|, |B| ≥ n/4. Moreover, all

edges in EG(A,B) must lie in E′, so |EG(A,B)| ≤ ϕ ·
∑k−1
i′=1 |Xi′ | must hold. We return the cut (A,B).

Even-Shiloach Tree for Weighted Directed Graphs. We use the generalization of the Even-Shiloach data
structure of [17, 14] to weighted directed graphs, due to [30], who extended similar results of [25] for unweighted
directed graphs.

Theorem 2.2. ([30], see Section 2.1) There is a deterministic algorithm, whose input consists of a directed
graph H with integral lengths `(e) ≥ 1 for edges e ∈ E(H), that undergoes an online sequence of edge deletions,
a source vertex s ∈ V (H), and a distance parameter d ≥ 1. The algorithm maintains a shortest-path tree T ⊆ H
rooted at s, up to depth d. In other words, for every vertex v ∈ V (H) with distH(s, v) ≤ d, vertex v lies in the
tree T , and the length of the shortest s-v path in T is equal to that in H. The data structure also maintains, for
all v ∈ V (T ), the current value distH(s, v). The total update time of the algorithm is O(m · d), where m is the
number of edges in the initial graph H.
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We will sometimes refer to the data structure from Theorem 2.2 as ES-Tree(H, s, d).

3 High-Level Overview of the Algorithm.

In this section we provide a high-level overview of our algorithm, define the main technical tool that we use, namely
the restricted SSSP problem, state our main result for this problem, and show that the proof of Theorem 1.1
follows from it.

Recall that, in the maximum bipartite matching problem, the input is a simple undirected n-vertex bipartite graph
G = (L,R,E), and the goal is to compute a matching of maximum cardinality in G. It is enough to design an
algorithm, that, given an integer 0 < C∗ ≤ OPT, computes a matching of cardinality C∗ in G. This is since we
can perform a binary search over the value OPT. Given the current guess C∗ on OPT, we run the algorithm with
this target value C∗. If the algorithm successfully returns a matching of cardinality at least C∗, then we adjust
our guess C∗ to a higher value, and otherwise we adjust it to a lower value. For convenience, we will denote this
target value C∗ by OPT. Therefore, we assume from now on that we are given an integer OPT, such that the
input graph G contains a matching of value at least OPT, and our goal is to find a matching of value OPT.

It is well known that the maximum bipartite matching problem can be reduced to computing maximum flow in a
directed graph with unit edge capacities. In order to do so, we start with the graph G, and direct all its edges
from vertices of L towards vertices of R. We then add a source vertex s that connects with an edge to every
vertex of L, and a destination vertex t, to which every vertex of R is connected. All edge capacities are set to
1. Let G′ denote the resulting directed flow network. It is easy to verify that the value of the maximum s-t flow
in G′ is equal to the cardinality of maximum matching in G. Moreover, given an integral flow f in G′, we can
compute a matching M of cardinality val(f) in G, in time O(n): we simply include in M all edges of G that carry
1 flow unit.

As observed by [21, 18, 3], the Multiplicative Weight Update (MWU) framework can be adapted in order to
efficiently compute approximate solutions for various flow problems. Later, Madry [35] observed that an efficient
implementation of this framework can be reduced to solving a special case of decremental SSSP or APSP. However,
the use of this technique typically leads to algorithms that compute approximate and not exact maximum flow.
Since our goal is to compute exact maximum matching, we cannot employ this technique directly. Instead, we
will carefully combine the augmenting paths based approach for maximum flow with the MWU framework.

Our algorithm maintains a matching M in the input graph G, whose cardinality grows over time, starting with
M = ∅. Given the current matching M , we denote ∆ = OPT− |M |. Once ∆ becomes sufficiently small, we can
use augmenting paths-based approach in a straightforward way, to compute a matching of cardinality OPT in G
in time O(∆ ·m); we provide the details later. As long as ∆ remains sufficiently large, we perform iterations. If M
is the matching that the algorithm maintains at the beginning of an iteration, and M ′ is the matching obtained
at the end of the iteration, then we will ensure that |M ′| ≥ |M |+ Ω(∆/ poly log n), where ∆ = OPT− |M |. This
will ensure that the number of iterations is bounded by O(poly log n).

We now proceed to describe a single iteration. We assume that M is the matching that is given at the beginning
of the iteration, and let ∆ = OPT − |M |. Note that matching M naturally defines an s-t flow f in G′, of value
|M |: for every edge e = (u, v) ∈ M , we set the flow on edges (s, u), (u, v) and (v, t) to 1; the flow on all other
edges is set to 0. We then consider the residual flow network G′f , that we denote for convenience by H. We will
sometimes say that H is the residual graph of G associated with the matching M . It is well known that the value
of the maximum s-t flow in a residual flow network G′f is equal to the value of the maximum flow in the original
flow network G′ minus the value of the flow f . In other words, the value of the maximum s-t flow in graph H
is at least ∆. Equivalently, there is a collection P of ∆ edge-disjoint s-t paths in graph H. We note that graph
H has a special structure that our algorithm will exploit extensively. Specifically, for every edge e = (u, v) of G
with u ∈ L and v ∈ R, if e ∈ M , then edges (u, s), (v, u), and (t, v) are present in H, and otherwise edge (u, v)
is present in H. Therefore, if x is a vertex of L, then the in-degree of x in H is 1: if x is an endpoint of some
edge (x, y) in M , then the only edge entering x in H is (y, x), and otherwise the only edge entering x in H is
(s, x). Similarly, if y is a vertex of R, then its out-degree in H is 1. This ensures that, for any collection Q of
edge-disjoint s-t paths in H, the paths in Q are also internally vertex-disjoint. Our goal in the current iteration
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is to compute a collection P of edge-disjoint s-t paths in H, of cardinality at least Ω(∆/poly log n). From our
discussion, in graph H \ {s, t}, the out-degree of every vertex in R is at most 1, and the in-degree of every vertex
in L is at most 1; we use this fact later.

In order to compute the desired collection of paths in H, we perform two steps. In the first step, we compute an
initial collection P ′ of Ω(∆/ poly log n) paths in graph H that cause an edge-congestion at most O(log n). This
is done by employing the MWU framework, and reducing the problem to a special case of decremental SSSP in
directed graphs, that we call restricted SSSP.

In the second step, we construct a directed graph H ′ ⊆ H, that consists of all vertices and edges that participate in
the paths of P ′. Since the paths in P ′ cause edge-congestion O(log n), due to the special structure of graph H, they
also cause vertex-congestion O(log n). Therefore, |E(H ′)| ≤ O(n log n). Additionally, by sending Θ(1/ log n) flow
units on every path in P ′, it is easy to verify that maximum s-t flow in H ′ has value at least Ω(∆/ poly log n) even
if no congestion is allowed (the capacity of every edge in H ′ remains unit – the same as its capacity in H). We then

compute a maximum integral s-t flow in H ′ via standard Ford-Fulkerson algorithm, in time Õ(|E(H ′)|·n) ≤ Õ(n2);
we provide the details below. We thus recover a collection P of Ω(∆/ poly log n) edge-disjoint and vertex-disjoint
paths in H. We summarize our algorithm for Step 1 of each iteration in the following theorem. The majority of
the remainder of this paper is dedicated to proving it.

Theorem 3.1. There is a deterministic algorithm, whose input consists of a simple bipartite n-vertex graph
G = (L,R,E), an integer OPT > 0, such that G contains a matching of cardinality at least OPT, and a matching
M in G with |M | < OPT. Let ∆ = OPT− |M |, and let H be the residual graph of G with respect to M . Assume
further that ∆ ≥ 256 log(|E|). The algorithm computes a collection P of Ω(∆/ poly log n) s-t paths in H, that

cause edge-congestion at most O(log n), in time Õ
(
n2.5
√

∆

)
.

As discussed above, we now obtain the following immediate corollary; a complete proof appears in Appendix B.

Corollary 3.1. There is a deterministic algorithm, whose input consists of a simple bipartite n-vertex graph
G = (L,R,E), an integer OPT > 0, such that G contains a matching of cardinality at least OPT, and a matching
M in G with |M | < OPT. Let ∆ = OPT− |M |, and let H be the residual graph of G with respect to M . Assume
further that ∆ ≥ 256 log(|E|). The algorithm computes a collection P of Ω(∆/poly log n) s-t paths in H, that are

internally vertex-disjoint, in time Õ
(
n2.5
√

∆

)
.

Before we proceed to prove Theorem 3.1, we first show that the proof of Theorem 1.1 follows from it.

3.1 Completing the Proof of Theorem 1.1. We fix a threshold 256 log(|E(G)|) < ∆∗ ≤ n that we will define
later. Recall that we can assume that we are given a value OPT, such that the input graph G contains a matching
of size at least OPT. Throughout the algorithm, we maintain a matching M , and we denote ∆ = OPT−|M |. We
start with M = ∅, and then perform iterations, as long as ∆ ≥ ∆∗. In every iteration, we apply the algorithm
from Corollary 3.1 to graph G and the current matching M , to obtain a collection P of Ω(∆/ poly log n) s-t
paths in the residual graph H of G corresponding to M , that are internally vertex-disjoint. We then augment

the matching M via these paths, and obtain a new matching M ′ with |M ′| ≥ |M | + Ω
(

∆
poly logn

)
. Therefore,

OPT−M ′ ≤ ∆−Ω
(

∆
poly logn

)
, and so the parameter ∆ decreases by at least factor

(
1− Ω

(
1

poly logn

))
in every

iteration. We replace M with M ′, and continue to the next iteration. Notice that the number of such iterations

must be bounded by O(poly log n), and the running time of every iteration is bounded by Õ
(
n2.5
√

∆

)
≤ Õ

(
n2.5
√

∆∗

)
.

Once ∆ ≤ ∆∗ holds, we use a straightforward algorithm that iteratively computes an augmenting path in the
current residual graph H, and then augments the matching M using this path. The number of such iterations is
bounded by ∆∗, and each iteration can be executed in time O(m). Overall, the running time of the algorithm is

bounded by O(∆∗m) + Õ
(
n2.5
√

∆∗

)
. Setting ∆∗ = n5/3

m2/3 gives running time Õ(m1/3 · n5/3).
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In the remainder of this paper we focus on proving Theorem 3.1. In order to prove Theorem 3.1, we use the
MWU framework. We start by describing the standard application of this framework, and later present our slight
modification of this framework.

3.2 The MWU Framework. Consider the residual flow graph H of G with respect to the current matching
M . We consider the problem of computing a largest cardinality collection P of edge-disjoint paths connecting s
to t in H. Let P∗ denote the collection of all simple s-t paths in H. Then the problem can be expressed in a
linear program, where every path P ∈ P∗ is associated with a variable f(P ); we also provide its dual LP.

Primal
Max

∑
P∈P∗ f(P )

s.t. ∑
P∈P∗:
e∈E(P )

f(P ) ≤ 1 ∀e ∈ E(H)

f(P ) ≥ 0 ∀P ∈ P∗

Dual
Min

∑
e∈E(H) `(e)

s.t. ∑
e∈E(P ) `(e) ≥ 1 ∀P ∈ P∗

`(e) ≥ 0 ∀e ∈ E(H)

In the dual LP, there is a variable `(e) for every edge e ∈ E(H), that we will refer to as the length of the edge. We
now consider the standard application of the MWU framework, that can be viewed as a primal-dual algorithm.
The algorithm that we describe below is a simplified version of the original algorithm of [21, 18]; this variant
achieves a slightly weaker approximation, but its analysis is much simpler and the higher approximation factor
does not affect the overall performance of our algorithm.

Standard MWU-Based Algorithm. For simplicity, in this informal description of the standard MWU-based
algorithm, we assume that m = |E(H)| is an integral power of 2. We start with the graph H, and set the length
of every edge e in H to `(e) = 1/m. We initialize P = ∅, and set f(P ) = 0 for all P ∈ P∗. Next, we perform
iterations. In every iteration, we compute a simple s-t path P in H, whose length is bounded by 1. We then add
P to P, set f(P ) = 1, double the length of every edge on P , and continue to the next iteration. The algorithm
terminates once every s-t path in H has length greater than 1. It is immediate to see that the final collection P
of paths is guaranteed to cause congestion at most O(logm). Indeed, whenever an edge e is used by a path in P,
we double its length, and once the length becomes greater than 1, the edge may no longer be used in any paths
that are subsequently added to P. Since initially we set `(e) = 1/m, at most O(logm) paths in P may use e.
Moreover, if OPT′ is the cardinality of the largest collection of edge-disjoint s-t paths in H, then at the end of the
algorithm, |P| ≥ Ω(OPT′) holds. This is since, at the beginning of the algorithm, the value of the dual solution
is 1, and the value of the primal solution is 0. In every iteration, the value of the primal solution increases by 1,
and the value of the dual solution increases by at most 1 (since the total length of all edges whose lengths are
being doubled is at most 1). Therefore, if we denote by C the cost of the dual solution obtained at the end of
the algorithm, then C ≤ 1 + |P| ≤ 2|P| holds. Since the algorithm terminates once the length of every s-t path
in P∗ is at least 1, we obtain a valid solution to the dual LP of value C at the end of the algorithm. Since the
paths in P define a valid solution to the primal LP of value |P| ≥ C/2, we get that |P| ≥ OPT′/2 holds. In our
case, since OPT′ ≥ ∆, we are guaranteed that |P| ≥ Ω(∆).

In order to implement this framework, it is sufficient to implement an oracle that, in every iteration, computes a
simple s-t path of length at most 1 in H, or correctly establishes that no such path exists, while the lengths of
the edges in H increase over time. As observed by Madry [35], the problem that the oracle needs to solve can
be viewed as a special case of decremental SSSP. Indeed, the increase in edge lengths can be easily implemented
as edge-deletion updates. This is done by constructing another graph Ĥ, that is obtained from graph H, by
replacing every edge e = (u, v) ∈ E(H) with logm parallel copies of lengths 1/m, 2/m, . . . , 1. Every time the
length of e in graph H doubles, we delete the shortest copy of e that lies in Ĥ. Implementing the oracle now
reduces to solving the resulting instance of decremental SSSP. Unfortunately, this remains a challenging problem,
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Alg-MWU

• Set P = ∅, and, for each edge e ∈ E(H), set `(e) = 1/N . Then iterate.

• In every iteration:

– either compute a simple s-t path P in H of length at most 1; add P to P; double the
length of every edge e ∈ E(P );

– or correctly establish that Condition C1 no longer holds and halt.

Figure 1: Alg-MWU

since exact decremental SSSP is known to be a difficult problem, and it seems unlikely that one can get a fast
algorithm even for the restricted special case that we obtain.

Modified MWU Framework. We start with some intuition for the modified MWU framework. In order to
overcome the difficulty mentioned above, we will slightly relax the requirements from the oracle: we still require
that the paths that the oracle returns have lengths at most 1, but now the oracle is allowed to terminate once
distH(s, t) ≥ 1

32 logm holds (intuitively, this corresponds to solving the SSSP problem approximately). Even with

this relaxed setting, we are still guaranteed that, at the end of the algorithm, |P| ≥ Ω
(

∆
logm

)
holds, and as before,

the paths in P cause congestion at most O(logm): the bound on congestion follows from the same reasoning as

before. In order to establish that |P| ≥ Ω
(

∆
logm

)
, we scale the final length of every edge in the dual LP up by

factor 32 logm, thereby obtaining a feasible dual solution. This proves that the final primal solution is within
factor O(logm) from the optimal one.

We can relax the requirements from the oracle even more, and this relaxation will be crucial in reducing the
running time of our algorithm. Specifically, we allow the algorithm to terminate, once the following condition is
violated:

C1. Let Q be the largest-cardinality collection of s-t paths in the current graph H, such that the paths in Q are
edge-disjoint and every path has length at most 1

8 . Then |Q| ≥ ∆
256 log2m

.

In addition to this relaxation, we will also slightly change the initial lengths that are assigned to every edge. We
use a parameter N = 64m logm

∆ . In our algorithm, we will set the initial length `(e) of every edge e ∈ E(H) to
1/N . The resulting algorithm, denoted by ALG-MWU (excluding the implementation of the oracle), appears in
Figure 1.

In the following claim we prove that Algorithm ALG-MWU is indeed guaranteed to compute a large enough
collection of s-t paths.

Claim 3.1. Let P be the set of paths obtained at the end of Algorithm ALG-MWU, and assume that ∆ ≥
128 logm. Then |P| ≥ ∆

128 logm , and every edge of H belongs to at most O(logm) paths of P.

Proof. Recall that we initially set the length of each edge e of H to be 1
N . Since N = 64m logm

∆ , and ∆ ≥ 128 logm,
we get that the initial length of every edge e of H is 1

N ≥
2
m . For each such edge e, whenever a path that contains

e is added to P, we double the length of e. Since every path that is added to P has length at most 1, once `(e) > 1
holds, the edge may no longer be used by paths that are newly added to P. Therefore, the length of e may be
doubled at most logm times, and at most logm paths in P may use e.

It now remains to prove that |P| ≥ ∆
128 logm . Consider the following thought experiment. We start with the set

P of paths, and the edge lengths that were obtained at the end of Algorithm ALG-MWU. Let H ′ denote the
resulting graph (which is identical to H but may have different edge lengths).
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Next, we will construct another set P ′ of paths, as follows. Initially, we let P ′ = ∅, and we let H ′′ be the copy of
the graph H ′. Then we iterate, as long as there is an s-t path in H ′′ whose length is at most 1

32 logm . In every

iteration, we select an arbitrary simple s-t path P in H ′′ of length at most 1
32 logm , add it to P ′, and then double

the length of every edge e ∈ E(P ) in graph H ′′. This algorithm terminates when every s-t path in H ′′ has length
at least 1

32 logm . We show that, at the end of the above algorithm, |P|+ |P ′| ≥ ∆
64 logm must hold.

Observation 3.1. At the end of the algorithm described above, |P|+ |P ′| ≥ ∆
64 logm .

Proof. In every iteration of the algorithm, we added one path P to P ∪P ′, thereby increasing |P|+ |P ′| by 1. At
the same time, we doubled the lengths of all edges in P , thereby increasing the value of the dual solution by at
most 1 (since the total length of all edges on P before the doubling step was at most 1).

When the algorithm starts, every edge is assigned length 1
N , so

∑
e∈E(H) `(e) = m

N = ∆
64 logm , since N = 64m logm

∆ .

Therefore, at the beginning of the algorithm, the value of the dual solution is at most ∆
64 logm , and |P|+ |P ′| = 0.

After that, in every iteration |P|+ |P ′| grows by 1, while the value of the dual solution grows by at most 1. So if
we denote by C the value of the dual solution at the end of the algorithm, then C ≤ |P|+ |P ′|+ ∆

64 logm .

Since at the end of the algorithm every s-t path in H ′′ has length at least 1
32 logm , by multiplying the lengths of the

edges by 32 logm, we obtain a feasible dual solution, whose value is C ′ = C ·32 logm ≤ (32 logm)(|P|+ |P ′|)+ ∆
2 .

Since the value of the optimal solution to the primal LP, denoted by OPT′, is at least ∆, so is the value of the

optimal dual solution. Therefore, C ′ ≥ ∆ must hold, and so |P|+ |P ′| ≥ ∆−∆/2
32 logm ≥

∆
64 logm .

Assume now for contradiction that |P| < ∆
128 logm , so that |P ′| ≥ ∆

128 logm holds. We will show that Condition C1
must have held when Algorithm ALG-MWU was terminated, reaching a contradiction.

Recall that each path in P ′ has length at most 1
32 logm in graph H ′. Consider a new graph H∗, that is obtained

by taking the union of all edges and vertices that appear on the paths in P ′. The length of every edge in
H∗ is set to be its length in H ′. Denote |P ′| = k. Since every path in P ′ has length at most 1

32 logm in H ′,∑
e∈E(H∗) `(e) ≤

k
32 logm .

Using the same arguments that we applied to the set P of paths, it is easy to see that the paths in P ′ cause
edge-congestion at most logm in H ′′ and hence in H∗. From the integrality of flow, there is a collection Q of at
least k

logm edge-disjoint s-t paths in H∗. We say that a path Q ∈ Q is long, if its length is greater than 1
8 . Since∑

e∈E(H∗) `(e) ≤
k

32 logm , the number of long paths in Q is bounded by k
4 logm , and the remaining paths must be

short. But then we obtain a collection of at least k
2 logm ≥

∆
256 log2m

edge-disjoint s-t paths of length at most 1
8

each in H ′, so when Algorithm ALG-MWU terminated, Condition C1 still held, a contradiction.

In order to complete the proof of Theorem 3.1, it is now sufficient to provide an efficient implementation of the
oracle, that, in every iteration, either produces a simple s-t path of length at most 1 in the current graph H,
or correctly establishes that Condition C1 is violated. In order to implement the oracle, we will reduce it to a
special case of the decremental SSSP problem, that we call restricted SSSP, and then provide an algorithm for
that problem. But first it will be convenient for us to slightly adjust the lengths of the edges in graph H.

Rescaling the Edge Lengths. Recall that we have set N = 64·m logm
∆ . Initially, the length of every edge in H

is set to be 1/N , and after that, in every iteration, the lengths of some edges are doubled. When the length of
an edge becomes greater than 1, it may not be doubled anymore. Let H ′ be the graph that is identical to H,
except that we multiply all edge lengths by factor N . Then, at the beginning of the algorithm, the length of every
edge in H ′ is 1, and, as the algorithm progresses, some edge lengths may be doubled. However, throughout the
algorithm, all edge lengths remain at most 2N . Throughout, we denote Λ = N/8. Once the length of an edge
becomes greater than N = 8Λ, it may no longer be doubled. Clearly, at all times τ , if P is an s-t path in graph
H ′, whose length is ρ, then the length of P in H is exactly ρ/N . Similarly, if the length of P in H is ρ′, then the
length of P in H ′ is ρ′ ·N = 8ρ′ · Λ. Consider now the following new stopping condition.
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C2. Let Q′ be the largest-cardinality collection of s-t paths in the current graph H ′, such that the paths in Q′
are edge-disjoint, every path has length at most Λ in the current graph. Then |Q′| ≥ ∆

256 log2m
holds.

Clearly, Condition C2 holds in graph H ′ if and only if Condition C1 holds in graph H.

As mentioned already, we will reduce the problem of designing the oracle to a special case of the SSSP problem. In
order to avoid increases in edge lengths, we replace the initial graph H ′ with a graph Ĥ. Let N ′ be the smallest
integral power of 2 that is greater than N . Graph Ĥ is obtained from H ′ by replacing every edge e = (u, v)
with logN ′ parallel edges, of lengths 1, 2, 4, . . . , N ′, that we view as copies of e. Whenever the length of e is
doubled, we delete the shortest-length copy of e from Ĥ. Therefore, Ĥ is a dynamic graph that only undergoes
edge-deletion updates.

In order to implement the oracle, it is now sufficient to solve the following instance of the SSSP problem:
we are given a graph Ĥ with n vertices and O(m logm) edges, and a parameter ∆. Let N = 64m logm

∆ and

Λ = N/8 = 8m logm
∆ . For every edge e ∈ E(Ĥ), we are given a length `(e), that is an integral power of 2 between 1

and 16Λ. The algorithm consists of at most ∆ iterations. At the beginning of every iteration, we need to compute
a simple s-t path in the current graph Ĥ of length at most 8Λ, or to correctly establish that the largest-cardinality
collection Q of s-t paths in the current graph Ĥ, such that the paths in Q are edge-disjoint and every path has
length at most Λ, is less than ∆

256 log2m
. In the latter case, the algorithm terminates. In the former case, if P is

the s-t path that the algorithm returned, we assume that for every edge e ∈ E(P ), it is the shortest among its
parallel edges in Ĥ. The edges of E(P ) are then deleted from Ĥ and we proceed to the next iteration.

To summarize, we reduced Theorem 3.1 (and generally the maximum bipartite matching problem) to a special
case of (decremental) SSSP problem in directed graphs. Observe that the algorithm for this special case must be
able to withstand an adaptive adversary, since the edges that are deleted from the graph depend on the paths
that the algorithm returned in response to prior queries. While current state of the art algorithms for SSSP in
directed graphs with an adaptive adversary are not so efficient, this special case of SSSP has some nice additional
properties that we can exploit, as listed below:

• A special structure of the input graph Ĥ \ {s, t} (for every vertex, either its in-degree or its out-degree is at
most 1, if we ignore parallel edges);

• The algorithm is only required to return a short s-t path as long as there are many short s-t paths, and
once this is not the case, it can be terminated;

• We only need to respond to shortest-path query between a specific pair of vertices s and t that is known in
advance. Moreover, the only edges that are deleted from the graph are edges that appear on the paths that
the algorithm returns.

• The number of times we are required to respond to shortest-path queries is not too large, and we only need
to bound the total time required to both maintain the data structures and respond to queries.

• Generally in the (decremental) SSSP problem we require that the time required to return a path in response
to a short-path query (called query time) is proportional to the number of the edges on the path. In our
case we could afford a higher query time.

• While much of the work on SSSP focuses on factor (1 − ε) approximation, we can sustain a much higher
approximation factor (the reduction we presented requires approximation factor 8, but it can be easily
adjusted to allow higher approximation factors, that may be as large as polynomial in n).

The algorithm that we present does not exploit all of the advantages listed above; this may suggest avenues for
obtaining even faster algorithms for maximum bipartite matching via this general approach.

We abstract the special case of SSSP problem that we need to solve, that we call restricted SSSP, in the following
subsection.
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3.3 The Restricted SSSP Problem.

Well-Structured Graphs. Throughout, we will work with graphs that have a special structure. Let G be the
given instance of the Bipartite Matching problem. All graphs that we consider are subgraphs of the residual graph
of G with respect to some matching M (except that we may add some parallel edges). Such graphs have special
structural properties that we summarize in the following definition.

Definition 3.1. (Well-Structured Graph) Let H be a directed graph, and let m be a parameter. We say
that H is a well-structured graph of size m, if |E(H)| ≤ m logm, and H has two special vertices s and t.
Additionally, if we denote H ′ = H \ {s, t}, then the following hold.

• V (H ′) is partitioned into two subsets L and R, and every edge of H ′ has one endpoint in L and another in
R. Edges directed from vertices of R to vertices of L are called special edges (they correspond to the edges
of the current matching M), and the remaining edges of H ′ are called regular edges.

• Every vertex of L ∪ R is incident to at most logm special edges in H ′ and all of them are parallel to each
other, so the out-degree of every vertex in R (ignoring parallel edges) is at most 1, and the in-degree of every
vertex in L (also ignoring parallel edges) is at most 1 in H ′.

• In graph H, vertex s has no incoming edges, and all edges leaving s connect it to vertices of L.

• Similarly, in graph H, vertex t has no outgoing edges, and all edges entering t connect vertices of R to it.

• Every edge of H ′ has at most logm− 1 edges that are parallel to it.

(We note that strictly speaking, a residual graph corresponding to a matching may contain edges entering s
and/or edges leaving t, but since such edges will never be used in any augmenting path, we can delete them from
the residual network).

Whenever an algorithm is given a well-structured graph as an input, we assume that it is also given the vertices s
and t and the corresponding partition (L,R) of V (H ′). We are now ready to define the restricted SSSP problem.

Definition 3.2. (Restricted SSSP problem) The input to the restricted SSSP problem is a well-structured
graph G of size m, where m is a given parameter, together with another parameter 0 < ∆ ≤ |V (G)|. We denote
|V (G)| = n and Λ = 8m logm

∆ . For every edge e ∈ E(G), we are also given a length `(e), that is an integral power
of 2 between 1 and 16Λ.

The algorithm consists of at most ∆ iterations. At the beginning of every iteration, the algorithm must compute
a simple s-t path P in the current graph G of length at most 8Λ (we sometimes informally say that the algorithm
responds to a short-path query between s and t). We assume that for each edge e ∈ E(P ), it is the shortest from
among its parallel copies. Every edge of E(P ) is then deleted from G, and the iteration ends.

The algorithm is allowed, at any time, to halt and return FAIL, but it may only do so if the largest-cardinality
collection Q of s-t paths in the current graph G, such that the paths in Q are edge-disjoint, and every path has
length at most Λ, is less than ∆

256 log2m
.

One of the main technical contributions of our paper is the proof of following theorem.

Theorem 3.2. There is a deterministic algorithm for the Restricted SSSP problem, that, given a well-structured

graph G with n vertices and parameters ∆ and m, has running time Õ
(
n2.5
√

∆

)
.

We note that the running time of the algorithm from Theorem 3.2 includes both the time that is needed in order
to maintain its data structures (total update time), and the time it takes to compute and return s-t paths (total
query time).
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The proof of Theorem 3.1 immediately follows from Theorem 3.2: we use the algorithm from Theorem 3.2 in
order to implement the oracle for ALG-MWU. In order to do so, we first construct a graph Ĥ from graph H, as
described above. In every iteration, we use the algorithm for the restricted SSSP problem in order to compute a
simple s-t path P in graph Ĥ of length at most 8Λ, which immediately defines a simple path in graph H of length
at most 1. The doubling of the length of every edge on P is implemented by deleting the shortest copy of each
such edge from graph Ĥ. When the algorithm from Theorem 3.2 terminates, we are guaranteed that Condition
C2 is violated in Ĥ, and so Condition C1 is violated in H. It is easy to verify that the total running time of
the algorithm is bounded by O(m logm) plus the running time of the algorithm for the restricted SSSP problem,

which is, in turn, bounded by Õ
(
n2.5
√

∆

)
. Since ∆ ≤ n, we can bound the total running time of the algorithm by

Õ
(
n2.5
√

∆

)
.

In the remainder of this paper we focus on the proof of Theorem 3.2. At a high level, the proof of the theorem
follows the framework of [6] for decremental SSSP in directed graphs. But since we only need to deal with a
restricted special case of the problem, we obtain a faster running time, and also significantly simplify some parts
of the algorithm and analysis. In the following two sections, we present the two main tools that are used in
the proof of Theorem 3.2: the AT O framework, together with SSSP in “DAG-like” graphs, and expander-based
techniques. We then provide the proof of Theorem 3.2 in Section 7.

4 Overview of the AT O Framework.

We now provide an overview of the Approximate Topological Order (AT O) framework that was developed in [8]
and later used in [6].

Let G = (V,E) be a directed n-vertex graph with two special vertices s and t, that undergoes edge deletions during
a time interval T . Throughout, we refer to a collection I ⊆ {1, . . . , n} of consecutive integers as an interval. The
size of the interval I, denoted by |I|, is the number of distinct integers in it.

An AT O consists of the following components:

• a partition X of the set V of vertices of G, such that there is a set S = {s} and T = {t} in X ; and

• a map ρ, that maps every set X ∈ X to an interval IX ⊆ {1, . . . , n} of size |X|, such that all intervals in
{IX | X ∈ X} are mutually disjoint.

For convenience, we will denote an AT O by (X , ρ). Both the partition X and the map ρ evolve over time. We
denote by X (τ) the partition X at time τ , and by ρ(τ) the map ρ at time τ . For every set X ∈ X (τ), we denote

by I
(τ)

X the interval IX associated with X at time τ .

We start initially with the collection X of vertex subsets containing three sets, S = {s}, T = {t}, and J = V \{s, t}.
We set their corresponding intervals to IS = {1}, IT = {n}, and IJ = {2, . . . , n− 1}. The only type of changes
that are allowed to the AT O over time is the splitting of the sets X ∈ X . In order to split a set X ∈ X , we select
some partition Π of X, and replace the set X in X with the sets in Π. Additionally, for every set X ′ ∈ Π, we
select an interval IX′ ⊆ IX of size |X ′|, such that the resulting intervals in {IX′ | X ′ ∈ Π} are mutually disjoint,
and we set ρ(X ′) = IX′ for all X ′ ∈ Π.

Notice that an AT O (X, ρ) naturally defines a left-to-right ordering of the intervals in {IX | X ∈ X}: we will say
that interval IX lies to the left of interval IX′ , and denote IX ≺ IX′ iff every integer in interval IX is smaller
than every integer in IX′ . We will also sometimes denote X ≺ X ′ in such a case. Notice also that, if we are given
an ordering σ = (X1, X2, . . . , Xk) of the sets in X , then this ordering naturally defines the map ρ, where for all

1 ≤ i ≤ k, the first integer in IXi is
∑i−1
j=1 |Xj | + 1, and the last integer is

∑i
j=1 |Xj |. For convenience, we will

denote the map ρ associated with the ordering σ by ρ(σ).

Given a vertex v ∈ V , we will sometimes denote by Xv the set of X that contains v. Consider now some edge
e = (u, v) in graph G, and assume that Xu 6= Xv. We say that e is a left-to-right edge if Xu ≺ Xv, and we say
that it is a right-to-left edge otherwise.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



Lastly, we denote by H = G|X the contracted graph associated with G and X – the graph that is obtained from
G by contracting every set X ∈ X into a vertex vX , that we may call a supernode, to distinguish it from vertices
of G. We keep parallel edges but discard loops.

Intuition. For intuition, we could let X be the set of strongly connected components of the graph G. The
corresponding contracted graph H = G|X is then a DAG, so we can define a topological order of its vertices. This
order, in turn, defines an ordering σ of the sets in X , and we can then let the corresponding AT O be (X , ρ(σ)).
Notice that in this setting, all edges of G that connect different sets in X are left-to-right edges. However, we will
not follow this scheme. Instead, like in [6], we will ensure that every set X ∈ X corresponds to some expander-like
graph, and we will allow both left-to-right and right-to-left edges. It would still be useful to ensure that the
corresponding contracted graph H is close to being a DAG, since there are efficient algorithms for decremental
SSSP on DAG’s and DAG-like graphs. Therefore, we will try to limit both the number of right-to-left edges, and
their “span”, that we define below.

Skip and Span of Edges. For every edge e = (u, v) ∈ E(G) we define two values: the skip of edge e, denoted
by skip(e), and the span of e, denoted by span(e). Intuitively, the skip value of an edge (u, v) will represent the
“distance” between the intervals IXu and IXv . Non-zero span values are only assigned to right-to-left edges. The
span value also represents the distance between the corresponding intervals, but this distance is defined differently.
We now formally define the span and skip values for each edge, and provide an intuition for them below.

Consider some edge e = (x, y) ∈ E(G), and let X,Y ∈ X be the sets containing x and y, respectively. If X = Y ,
then skip(e) = span(e) = 0. Assume now that X ≺ Y , that is e is a left-to-right edge. In this case, we set
span(e) = 0, and we let skip(e) be the distance between the last endpoint of IX and the first endpoint of IY . In
other words, if the largest integer in IX is zX , and the smallest integer in Y is aY , then skip(e) = aY − zX . Note
that, as the algorithm progresses, sets X and Y may be partitioned into smaller subsets. It is then possible that
skip(e) may grow over time, but it may never decrease.

Lastly, assume that Y ≺ X, so e is a right-to-left edge. In this case, we set skip(e) to be the distance between the
right endpoint of IY and the left endpoint of IX , and we let span(e) be the distance between the left endpoint
of IY and the right endpoint of IX . In other words, if aX and zX are the smallest and the largest integers
in X respectively, and similarly aY and zY are the smallest and the largest integers in Y respectively, then
skip(e) = aX − zY and span(e) = zX − aY . Notice that, as the algorithm progresses, and sets X and Y are
partitioned into smaller subsets, the value span(e) may only decrease, while the value skip(e) may only grow.
Moreover, skip(e) ≤ span(e) always holds.

For intuition, consider again the setting where X represents the strongly connected components ofG, and ρ = ρ(σ),
where σ is an ordering of the sets in X corresponding to a topological ordering of the vertices of H = G|X . Then
for any path P in G,

∑
e∈E(P ) skip(e) ≤ n must hold. This is because the path must traverse the sets of X in

their left-to-right order. Consider now inserting a single right-to-left edge e = (x, y) into G, so x ∈ X, y ∈ Y ,
and Y ≺ X. In this case, path P will generally traverse the sets in X from left to right, but it may use the edge
e in order to “skip” back. It is not hard to see that

∑
e′∈E(P ) skip(e′) ≤ n + skip(e) + span(e) now holds, since,

by traversing the edge e, path P is ‘set back’ by at most span(e) units. In other words, path P traverses the sets
in X in their left-to-right order, except when it uses the edge e to “skip” to the left. The length of the interval it
“skips” over is bounded by span(e), so this skip adds at most skip(e) + span(e) ≤ 2 span(e) to

∑
e′∈E(P ) skip(e′).

Using the same intuitive reasoning, if we allow graph G to contain an arbitrary number of right-to-left edges, then
for any simple path P ,

∑
e∈E(P ) skip(e) ≤ n +

∑
e∈E(G) 2 span(e) holds. However, if we are given any collection

P of edge-disjoint paths in G, then there must be some path P ∈ P with
∑
e∈E(P ) skip(e) ≤ n+

∑
e∈E(G) 2 span(e)

|P| ,

since every edge e ∈ E(G) may contribute the value 2 span(e) to at most one path in P. We will use this fact
extensively.

Overview of the Algorithm. Like the algorithm of [6] for decremental SSSP, our algorithm relies on two main
technical tools. The first tool allows us to maintain the partition X of V (G) over time. Intuitively, we will ensure
that, for every set X ∈ X , the corresponding induced subgraph G[X] of G is in some sense expander-like. In
particular, we will be able to support short-path queries between pairs of vertices of X efficiently. When G[X]
is no longer an expander-like graph, we will compute a sparse cut (A,B) in this graph, and we will replace X
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with A and B in X . Some of the edges connecting the sets A and B may become right-to-left edges with respect
to the current AT O (X , ρ) that we maintain. We will control the number of such edges and their span values
by ensuring that the cut is ϕ-sparse, for an appropriately chosen parameter ϕ. This part is related to extensive
past work on embedding expanders, maintaining expander embeddings in decremental graphs, and decremental
APSP in expanders. However, due to the specifics of our setting, we obtain algorithms that are both significantly
simpler than those used in past work, and lead to faster running times.

Given a dynamically evolving AT O (X , ρ) for graph G, we can now construct the corresponding contracted graph
H = G|X . For convenience, the supernodes of H representing the sets S = {s} and T = {t} of X are denoted by s
and t, respectively. Notice that, as the time progresses, graph H undergoes, in addition to edge-deletion, another
type of updates, that we call vertex-splitting : whenever some set X ∈ X is split into a collection Π of smaller
subsets, we need to insert supernodes corresponding to the sets Y ∈ Π into H. We will always identify one of
the sets in Π with X itself (so the supernode vX corresponding to X may continue to serve as the supernode
representing this one new set). We will say that the new supernodes corresponding to the remaining sets in Π
were split off from vX . Consider now any edge e = (x, y) ∈ E(G), and assume that x ∈ X and y ∈ Y for some
X,Y ∈ X with X 6= Y . The length of the edge e in graph H remains the same, namely, `(e). But we will also
set the weight of the edge e to be the smallest integral power of 2 that is at least skip(e). As observed already, as
the algorithm progresses, the value skip(e) may grow. In order to avoid inserting edges into H overtime, we will
create a number of parallel edges with different weight values corresponding to every edge of G whose endpoints
lie in different sets of X . Specifically, let e = (x, y) be any edge, with x ∈ X, y ∈ Y , and X 6= Y . For every integer
0 ≤ i ≤ dlog ne, such that 2i ≥ skip(e), we add an edge (vX , vY ) to H, with length `(e) and weight 2i. It is easy
to verify that this construction ensures that, for every vertex v of H and integer 0 ≤ i ≤ dlog ne, the number of
vertices in the set

{
u ∈ V (H) | (v, u) ∈ E(H) and w(v, u) = 2i

}
is bounded by 2i+2. Additionally, by carefully

controlling the total span of all right-to-left edges in graph G, and using the fact that throughout the algorithm
G contains a large number of edge-disjoint s-t paths, we will ensure that there is always a short s-t path P in
H, such that

∑
e∈E(P ) w(e) is relatively small. These two properties are crucial for obtaining a fast algorithm

for computing short s-t paths in H, as it undergoes updates. The AT O framework, combined with an algorithm
for maintaining expander-like graphs, can now be viewed as reducing our problem to the problem of repeatedly
computing short s-t paths in graph H, as it undergoes the updates that we have outlined above. We abstract this
problem, that we call DAG-like SSSP, in Section 5 , and provide an algorithm for it, that is essentially identical
to the algorithm of [8], and which was also used in exactly the same fashion by [6].

Overall, our algorithm departs from that of [6] in two ways. First, we exploit the fact that H contains a large
number of short s-t paths, in order to obtain better bounds on the running time of the algorithm of [8] for
DAG-like SSSP. Second, our more relaxed setting allow us to obtain significantly simpler and faster algorithms for
maintaining expander-like graphs, than, for example, those presented in [6]. In particular, we do not need to use
expander pruning, the recursive algorithm for APSP in expanders, and the recursive algorithm for the cut player
in the cut-matching game. We provide simple implementation for the latter two algorithms.

We next describe the two main technical tools that we use: an algorithm for DAG-like SSSP and algorithms for
maintaining expander-like graphs in the following two sections. We then complete the proof of Theorem 3.2, by
providing an efficient algorithm for the Restricted SSSP problem, that exploits both these tools.

5 SSSP in DAG-like Graphs.

In this section we define a problem that can be thought of as an abstraction for the types of SSSP instances that
we obtain via AT O. We call this problem DAG-like SSSP, and we provide an algorithm for this problem, that is
essentially identical to the algorithm of [8].

The input to the DAG-like SSSP problem is a directed graph G = (V,E), with two designated vertices s and t, a
distance parameter d > 0, a precision parameter 0 < ε ≤ 1/8, such that 1/ε is an integer, and another parameter
Γ > 0. The graph G may have parallel edges, but no self-loops. Every edge e ∈ E of G is associated with an
integral length `(e) > 0, and an additional weight w(e), that must be an integral power of 2 between 1 and 2dlogne.
The graph undergoes the following two types of updates:
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• Edge deletion: given an edge e ∈ E, delete e from G; and

• Vertex splitting: in this operation, we are given as input a vertex v 6∈ {s, t} in the current graph, and new
vertices u1, . . . , uk that need to be inserted into G; we may sometimes say that vertices u1, . . . , uk are split-off
from v. In addition to vertex v and vertices u1, . . . , uk, we are given a new collection E′ of edges that must
be inserted into G, and for every edge e ∈ E′, we are given an integral length `(e) > 0 and a weight w(e)
that must be an integral power of 2 between 1 and 2dlogne. For each such edge e ∈ E′, either both endpoints
of e lie in {u1, . . . , uk, v}; or one endpoint lies in {u1, . . . , uk}, and the other in V (G) \ {v, u1, . . . , uk}. In
the latter case, if e = (ui, x), then edge e′ = (v, x) must currently lie in G, and both w(e′) = w(e) and
`(e′) = `(e) must hold. Similarly, if e = (x, ui), then edge e′ = (x, v) must currently lie in G, and both
w(e′) = w(e) and `(e′) = `(e) must hold.

We let T be the time horizon of the algorithm – that is, the time interval during which the graph G undergoes all
updates. We denote by n and by m the total number of vertices and edges, respectively, that were ever present
in G during T . We assume w.l.o.g. that for every vertex v that was ever present in G, some edge was incident to
v at some time during the update sequence, so n ≤ O(m).

For every vertex v ∈ V (G) and integer 0 ≤ i ≤ dlog ne, we define a set:

Ui(v) =
{
u ∈ V (G) | ∃e = (v, u) ∈ E(G) with w(e) = 2i

}
.

Note that as the algorithm progresses, each such set Ui(v) may change, with vertices both leaving and joining the
set. We require that the following property must hold at all times τ ∈ T :

P1. For every vertex v, for every integer 0 ≤ i ≤ dlog ne, |Ui(v)| ≤ 2i+2.

As graph G undergoes edge-deletion and vertex-splitting updates, at any time the algorithm may be asked a
query path-query. It is then required to return a simple path P connecting s to t, whose length

∑
e∈E(P ) `(e) is

bounded by (1 + 10ε)d, in time O(|E(P )|).

Lastly, the algorithm may return FAIL at any time and halt. It may only do so if the current graph G does not
contain any s-t path P with

∑
e∈E(P ) `(e) ≤ d, and

∑
e∈E(P ) w(e) ≤ Γ.

The following theorem is one of the main technical tools that we use; it follows almost immediately from the results
of [8]. Specifically, Theorem 5.1 of [8] provides a similar result with a slightly different setting of parameters, but
their arguments can be easily extended to prove the theorem below. We provide the proof for completeness in
Section C of Appendix.

Theorem 5.1. There is a deterministic algorithm for the DAG-like SSSP problem with total update time

Õ
(
n2+Γ·n
ε2

)
.

6 Tools for Expander-Like Graphs.

Well-Structured Cuts. Suppose we are given a simple unweighted directed bipartite graph H = (L,R,E),
such that every vertex in R has out-degree at most 1 and every vertex in L has in-degree at most 1. We call the
edges that are directed from R to L special edges, and the remaining edges are regular edges.

We say that a cut (A,B) in H is well-structured iff all edges of EH(A,B) are special edges.

Observation 6.1. Suppose we are given a simple directed bipartite graph H = (L,R,E) with no isolated vertices,
such that every vertex in R has out-degree at most 1 and every vertex in L has in-degree at most 1, together with
and a cut (A,B) in H of sparsity at most ϕ ≤ 1

4 . Then there is a well-structured cut (A′, B′) in H of sparsity at
most 2ϕ, such that A′ ⊆ A, |A′| ≥ (1−ϕ)|A|, and VolH(A′) ≥ Ω(VolH(A)) hold. Moreover, there is an algorithm,
that, given cut (A,B), computes such a cut (A′, B′), in time O(min {VolH(A),VolH(B)}).
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Proof. We start with cut (A,B) and inspect every vertex in A. If v is any such vertex, and there is an edge
(v, u) in EH(A,B) that is a regular edge, we move v from A to B. Note that the only new edge that this move
introduces into the cut (A,B) is a special edge that enters v, if such an edge exists. Vertex v is removed from A,
and we say that edge (v, u) is responsible for this move. Notice that every regular edge of EH(A,B) is responsible
for moving at most 1 vertex from A to B.

Let (A′, B′) denote the final cut obtained at the end of this procedure. For convenience, denote z = min {|A|, |B|}.
It is easy to verify that |B′| ≥ z continues to hold, and |A′| ≥ |A| − |EH(A,B)| ≥ |A| − ϕ · z ≥ |A|2 . Therefore,

min {|A′|, |B′|} ≥ min{|A|,|B|}
2 . From the above discussion, |A′| ≥ |A| − ϕ · z ≥ (1− ϕ)|A| also holds.

Notice also that |EH(A′, B′)| ≤ |EH(A,B)|, since every regular edge e ∈ E(A,B) may cause at most one additional
special edge to be added to the cut. Putting together, we get that:

|EH(A′, B′|)
min {|A′|, |B′|}

≤ 2|EH(A,B)|
min {|A|, |B|}

≤ 2ϕ.

Notice that for every edge e ∈ EH(A), at least one endpoint of e must remain in A′. Indeed, consider any such
edge e = (x, y). The only way that x is moved from A to B is if there is a regular edge (x, y′) ∈ EH(A,B),
which, in turn may only happen if x ∈ L. Using the same reasoning, y may only be moved to B if y ∈ L.
But since (x, y) are connected by an edge, it is impossible that both vertices lie in L. Let A1 ⊆ A \ A′ be the
set of vertices v ∈ A, such that v was moved to B′ and v had no neighbors in A, and let A2 = A \ A1. Then

|A1| ≤ |EH(A,B)| ≤ ϕ · |A| ≤ |A|4 , so in particular, |A1| ≤ O(|A2|). Since |EH(A,B)| < |A|, we get that:

VolH(A′) ≥ Ω(|EH(A)|+ |A2|) ≥ Ω(|EH(A)|+ |A|) ≥ Ω(|EH(A)|+ |EH(A,B)|) ≥ Ω(VolH(A)).

(we have used the fact that H has no isolated vertices).

The running time of the algorithm is bounded by O(VolH(A)). If VolH(B) < VolH(A), then we can instead
scan all vertices of B, and for each such vertex u try to identify a regular edge (v, u) ∈ E(A,B). In
this case, the running time is bounded by O(VolH(B)). Notice that we can establish whether VolH(A) ≤
VolH(B) in time O (min {VolH(A),VolH(B)}), and so the total running time of the algorithm is bounded by
O (min {VolH(A),VolH(B)}).

6.1 MaintainCluster Problem. We now define a new problem, called MaintainCluster problem. Intuitively, the
goal in this problem is to maintain an expander-like subgraph of a given input graph, and to support short-path
queries between pairs of its vertices.

Definition of MaintainCluster Problem. The input to the problem is a simple directed bipartite graph
H = (L,R,E), such that every vertex in R has out-degree at most 1 and every vertex in L has in-degree at
most 1, together with integral parameters d∗ > 0 and ∆ > 0. All edge lengths in H are unit. The algorithm
consists of at most ∆ iterations. At the beginning of every iteration, the algorithm is given some pair x, y ∈ V (H)
of vertices, and it must return a simple path P connecting x to y in H, whose length is at most d∗. After that,
some edges of P may be deleted from H. At any time, the algorithm may provide a well-structured cut (X,Y )

in H, whose sparsity is at most O
(

log6 n
d∗

)
. If |X| ≤ |Y |, then the cut must be provided by listing the vertices of

X, and otherwise it must be provided by listing the vertices of Y . After that the vertices of the smaller side of
the cut are deleted from H. In other words, if |X| ≤ |Y |, then we continue with the graph H[Y ], and otherwise
we continue with the graph H[X]. Once the number of vertices in H falls below half the original number, the
algorithm halts, even if fewer than ∆ iterations occurred.

We emphasize that the only updates that graph H undergoes are the deletion of some edges on the paths that the
algorithm returns in response to queries; we think of these updates as performed by the adversary. Additionally,
whenever the algorithm produces a sparse well-structured cut (X,Y ), it deletes the vertices of the smaller of the
two sets from H. We think of this type of update as being performed by the algorithm itself. These are the only
updates that graph H may undergo.
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Below is our main theorem for the MaintainCluster problem; its proof is deferred to Section 8.

Theorem 6.1. There is an algorithm for the MaintainCluster problem, that, given an n-vertex graph H as in the
problem definition and parameters c∗ log6 n ≤ d∗ ≤ n, and 1 ≤ ∆ ≤ n, where c∗ is a large enough constant, has
running time at most:

Õ(m · d∗ + n2) ·max

{
1,

∆ · (d∗)2

n

}
,

where m is the number of edges in H at the beginning of the algorithm.

We note that the running time of the algorithm in the above theorem includes both the total update time of the
data structure and the time needed to respond to queries. We also note that some of the results from [6] can be
viewed as providing an algorithm for the MaintainCluster problem. In particular, by combining their Theorem 4.3
with Theorem 4.4 and Theorem 4.5, one can obtain such an algorithm (except for minor technical differences,
e.g. the algorithm produces sparse vertex cuts and not edge cuts). The total update time of their algorithm is

roughly Ô(|E(H)| · (d∗)2). Our algorithm achieves both a better running time for the specific setting that we

consider, where ∆ · (d∗)2 ≤ Õ(n), and is also significantly simpler.

7 Algorithm for Restricted SSSP: Proof of Theorem 3.2.

In this section we provide an algorithm for the restricted SSSP problem, proving Theorem 3.2. Recall that we are
given as input a well-structured graph G of size m (see Definition 3.1), where m is a given parameter, together
with another parameter ∆ > 0. We denote |V (G)| = n and Λ = 8m logm

∆ . For every edge e ∈ E(G), we are also
given a length `(e), that is an integral power of 2 between 1 and 16Λ.

The algorithm consists of at most ∆ iterations. At the beginning of every iteration, the algorithm is required to
return an s-t path P in the current graph G of length at most 8Λ. We assume that for each edge e ∈ E(P ), edge
e is the shortest among all its parallel copies. Every edge on P is then deleted from G, and the iteration ends.

The algorithm is allowed, at any time, to halt and return FAIL, but it may only do so if the following condition
is violated:

C3. Let Q be the largest-cardinality collection of s-t paths in the current graph G, such that the paths in Q are
edge-disjoint, every path has length at most Λ in the current graph. Then |Q| ≥ ∆

256 log2m
holds.

We use a parameter d =
√
n/∆. We say that an edge e ∈ E(G) is long if `(e) ≥ Λ

64d logm , and otherwise we say

that it is short. We denote the set of all long edges by E long.

Our algorithm consists of two parts. The first part is responsible for maintaining an AT O (X , ρ) of graph G, and
the second part essentially executes the algorithm from Theorem 5.1 on the corresponding contracted graph G|X .
We now describe each of the two parts in turn.

7.1 Part 1: Maintaining the AT O. In this part we will work with a graph Ĝ that is obtained from G\E long,
by setting the length of every edge to 1, and removing parallel edges. Notice that Ĝ is a dynamic graph that
undergoes online edge deletions. We will maintain an AT O (X , ρ) for this graph (that will naturally also define
an AT O for G).

We start with a partition X of V (Ĝ), containing three sets: S = {s} , T = {t}, and J = V (Ĝ) \ {s, t}. Their
corresponding intervals are initialized to IS = {1}, IT = {n}, and IJ = {2, . . . , n− 1}. For convenience, we call
the sets of vertices in X clusters.

Whenever a new cluster X joins X (excluding the sets S and T ), we set dX = |X|
n · d. If dX ≥ c∗ log6 |X|,

where c∗ is the constant from Theorem 6.1, then we say that X is a non-leaf cluster. We then immediately
initialize the algorithm for the MaintainCluster problem from Theorem 6.1 on the corresponding graph Ĝ[X], with
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distance parameter d∗ = dX , and parameter ∆ remaining unchanged. Notice that, since d =
√
n/∆, we get that

dX = |X|
n ·d = |X|√

n·∆ ≤ |X|, and, since dX = |X|√
n·∆ ≥ c

∗ log6 |X|, we get that |X| ≥
√
n ·∆, and so ∆ ≤ |X|

2

n ≤ |X|,
as required from the definition of the MaintainCluster problem and the conditions of Theorem 6.1.

If dX < c∗ log6 |X|, then we say that X is a leaf cluster. In this case, we replace X in set X with |X| new clusters,
each of which consists of a single distinct vertex of X. For each such new cluster {v}, we assign an interval
I{v} ⊆ IX , that consists of a single integer arbitrarily, but we ensure that the intervals assigned to vertices of

L appear before intervals assigned to vertices of R. This ensures that all regular edges of Ĝ[X] are left-to-right
edges, and the special edges are right-to-left edges. We call all special edges of Ĝ[X] bad edges, and we say that X
owns these edges. Clearly, X owns at most |X| bad edges, and each such bad edge e has span(e) ≤ |X|. Observe

that, since dX = |X|
n · d and dX < c∗ log6 |X| ≤ c∗ log6 n, it must be the case that |X| ≤ c∗n log6 n

d .

For convenience, for every cluster X, we denote by X0 the set X of vertices at the time when it first joined X , and
by m0(X0) the number of edges in graph Ĝ[X0] at the time when X0 joined X . We will also sometimes denote
dX by dX0

.

Consider now some non-leaf cluster X. Recall that the algorithm from Theorem 6.1, when applied to X, has
running time at most:

Õ(m0(X0) · dX0
+ |X0|2) ·max

{
1,

∆ · (dX0
)2

|X0|

}
.

Since dX0
= |X0|

n · d and d =
√

n
∆ , we get that

∆·d2X0

|X0| = ∆·|X0|d2
n2 = |X0|

n ≤ 1. Therefore, the running time of the

algorithm is bounded by:

Õ(m0(X0) · dX0 + |X0|2).

Once the number of vertices in X falls below |X0|/2, the algorithm from Theorem 6.1 terminates, and we update

the distance parameter dX = |X|
n · d. If dX ≥ c∗ log6 |X|, then we apply the algorithm from Theorem 6.1 to this

new cluster X again, with the updated parameter dX ; otherwise cluster X becomes a leaf cluster and is treated
as such. In either case, we will think of X as a set that newly joined X .

Whenever the algorithm for the MaintainCluster problem on graph Ĝ[X] produces a cut (A,B) in Ĝ[X] of sparsity

at most O
(

log6 n
dX0

)
, we proceed as follows. We partition inteval IX into two intervals: interval IA ⊆ IX of size |A|

and interval IB ⊆ IX of size |B|, so that IB appears to the left of IA. We say that set X0 owns the edges in both
EĜ(A,B) and EĜ(B,A). Notice that edges of EĜ(B,A) are directed from left to right, and edges of EĜ(A,B)
are directed from right to left. We will say that the edges of EĜ(A,B) are bad edges. Recall that, if |A| ≤ |B|,
the algorithm for the MaintainCluster problem deletes A from X and continues with the new set X = B. We then
assign interval IB to the new set X = B, and we add the set A to the collection X of vertex subsets that we
maintain (after which the algorithm for the MaintainCluster problem is applied to Ĝ[A] if it is a non-leaf cluster,
or it is processed as a leaf cluster otherwise). We say that set X of vertices just underwent splitting, and that
cluster A was split off from it. Similarly, if |B| < |A|, the algorithm for the MaintainCluster problem deletes B
from X and continues with the new set X = A. We then assign interval IA to the new set X = A, and we add
the set B to the collection X of vertex subsets that we maintain. We say that set X of vertices just underwent
splitting, and that cluster B was split off from it.

It is easy to verify by a simple charging argument that the total number of bad edges that cluster X0 owns at the

end of the algorithm is bounded by Õ
(
|X0|
dX0

)
. It is also easy to verify that each such bad edge e has span(e) ≤ |X0|

when it first becomes a bad edge, and from that point onward span(e) may only decrease. This completes the
description of the first part of the algorithm. We now bound its total update time and the total span of all bad
edges.

Bounding the Total Update Time of Part 1. Let X ∗ be the collection of all non-leaf sets X0 that were
ever added to X , excluding S and T . For all 0 ≤ i ≤ blog nc, let Xi ⊆ X ∗ be the collection of all sets X0 with
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2i ≤ |X0| < 2i+1. It is easy to verify that all sets in the collection Xi are mutually disjoint, and so |Xi| ≤ n
2i .

Recall that for each set X0 ∈ Xi, the total update time of the algorithm for the MaintainCluster problem on Ĝ[X]
from Theorem 6.1 is most:

Õ(m0(X0) · dX0 + |X0|2).

Since dX0 = |X0|
n · d and |X0| ≤ 2i+1, we get that this time is bounded by:

Õ(m0(X0) · dX0
+ |X0|2) ≤ Õ

(
m0(X0) · |X0|

n
· d+ |X0|2

)
≤ Õ

(
2i ·m0(X0)

n
· d+ 22i

)

Since |Xi| ≤ n
2i , the total running time for all clusters X0 ∈ Xi is bounded by:

Õ

(
2i ·m · d

n
+ n · 2i

)
,

where m is the number of edges in G at the beginning of the algorithm.

Summing over 0 ≤ i ≤ blog nc, we get that the total update time over all invocations of the algorithm for the

MaintainCluster problem is bounded by Õ
(
md+ n2

)
. The remaining time that is required in order to maintain

the AT O is subsumed by this time.

Bounding the Total Span of All Bad Edges. We partition the set of all bad edges into two subsets. The
first subset, E1, contains all edges that are owned by non-leaf clusters.

Recall that for all 0 ≤ i ≤ blog nc, every cluster X0 ∈ Xi may own at most Õ
(
|X0|
dX0

)
bad edges. Initially, when an

edge e is added to the set of bad edges, it has span(e) ≤ |X0|, and after that its span(e) value may only decrease.
In our calculations, for each bad edge e, we consider the initial value span(e), when the edge was just added to the
set of bad edges. The summation of all span(e) values of all bad edges owned by clusters in Xi is then bounded
by:

∑
X0∈Xi

Õ

(
|X0|2

dX0

)
≤
∑
X0∈Xi

|X0| · Õ(n)

d

≤ Õ
(
n2

d

)
,

since dX0
= |X0|

n · d. Summing over 0 ≤ i ≤ blog nc, we conclude that
∑
e∈E1

span(e) ≤ Õ
(
n2

d

)
.

We denote by E2 the set of all bad edges that are owned by leaf clusters. Recall that each leaf cluster X owns at
most |X| bad edges, and the span(e) value of each such edge is bounded by |X| ≤ Õ

(
n
d

)
. Since all leaf clusters

that were ever added to X are disjoint, we get that
∑
e∈E2

span(e) ≤ Õ
(
n2

d

)
. Overall, we get that the total span

value of all bad edges is bounded by Õ
(
n2

d

)
.

So far we viewed (X , ρ) as an AT O in the graph Ĝ. It equivalently defines an AT O in the original graph G.
However, for each right-to-left edge e of Ĝ, we may now have up to logm parallel copies of e in G, and additionally,
for every long edge e, it is possible that the edge is a right-to-left edge.
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Observe first that, from our discussion so far,
∑
e∈E(G)\E long span(e) ≤ Õ

(
n2

d

)
holds at all times (recall that E long

is the set of the long edges).

As long as Condition C3 holds, since the paths in Q are edge-disjoint, there must be some s-t path Q whose

length is at most Λ in the current graph, and
∑
e∈E(Q)\E long span(e) ≤ Õ

(
n2

d ·
256 log2m

∆

)
= Õ

(
n2

d·∆

)
.

Since every edge e ∈ E long has length at least Λ
64d logm , and the length of Q is at most Λ, we get that at most

64d logm edges of E long may lie in Q. Since for each such edge e ∈ E long, span(e) ≤ n, we conclude that:∑
e∈E(Q) span(e) ≤ Õ

(
n2

d·∆ + n · d
)

.

It is then immediate to verify that, for this path Q,
∑
e∈E(Q) skip(e) ≤ Õ

(
n2

d·∆ + n · d
)

. By selecting an

appropriate parameter Γ = Õ
(
n2

d·∆ + n · d
)

, we ensure that, as long as Condition C3 holds, there is an s-t

path Q in G with
∑
e∈E(Q) skip(e) ≤ Γ/4, such that the length of Q is at most Λ.

7.2 Part 2: Solving DAG-like SSSP on the Contracted Graph. The second part of our algorithm maintains
the contracted graph H = G|X . Once this graph is intialized, it is easy to verify that all changes to this graph
can be implemented via vertex-splitting and edge-deletion updates. Whenever a cluster A is split off from some
cluster X ∈ X , we perform a vertex splitting operation, in which vertex vA is split off from vX . We include in
the corresponding set E′ all edges that have one endpoint in A and another outside of A. Notice that each such
edge either connects a vertex of A and a vertex of X; or it has one endpoint in A and another in V (G) \{A ∪X}.
In the latter case, if e = (a, b) with a ∈ A and b 6∈ A ∪ X, then edge (vX , vY ), where Y is the cluster of X
containing b, was already present in H. After the vertex-splitting update is complete, we delete this edge from
H via standard edge-deletion update if needed. Similarly, if the edge is e = (b, a) with a ∈ A and b 6∈ A ∪ X,
then edge (vY , vX), where Y is the cluster of X containing b, was already present in H. After the vertex-splitting
update is complete, we delete this edge from H via standard edge-deletion update. Similarly, if X is a leaf cluster
that was just added to X , then we implement the splitting of X into clusters that consist of individual vertices
of X via the vertex-splitting update, applied to supernode vX . Notice that this introduces a number of extra
edges in graph H. For every edge e, whenever a cluster containing one endpoint a of e is split, if a belongs to the
smaller side of the partition, then a new copy of e is introduced into H, and the older copy is deleted from it.
But it is easy to verify that for each edge e of G, at most O(log n) copies may be introduced, so the number of
edges ever present in H is still bounded by O(m log2m).

For every edge e of H, the weight w(e) is set to be the smallest integral power of 2 that is at least skip(e). Recall
that the value skip(e) of an edge may grow overtime. In order to avoid having to insert edges into H outside of
the vertex-splitting updates, for every edge e, for every integer dlog(skip(e))e ≤ i ≤ dlog ne, we add a copy of e
whose weight is 2i. As the value skip(e) grows, we simply remove copies of e as needed. The total number of
edges ever present in H is now bounded by O(m log3m).

Consider now some vertex v = vX ∈ V (H), and some integer 0 ≤ i ≤ dlog ne. Recall that we have denoted
by Ui(v) =

{
u ∈ V (H) | ∃e = (v, u) ∈ E(H) with w(e) = 2i

}
. Equivalently, set Ui(v) contains all nodes vY , such

that some edge e of H connects a vertex of X to a vertex of Y , and has value skip(e) ≤ 2i. In particular, the
distance between intervals IX and IY is at most 2i, and so at most 2i other intervals may lie between them.
Therefore, it is immediate to verify that |Ui(v)| ≤ 2i+2 always holds, establishing Property P1.

We apply the algorithm from Theorem 5.1 to the resulting instance of the DAG-like SSSP problem, with the
parameter Γ that we defined above, distance parameter d = Λ, and ε = 1/20. Recall that the algorithm
may only return FAIL if the current graph H does not contain any s-t path P with

∑
e∈E(P ) `(e) ≤ Λ, and∑

e∈E(P ) w(e) ≤ Γ. From our discussion, this may only happen when Condition C3 is violated. Recall that the
running time of the algorithm is bounded by:

Õ
(
n2 + Γ · n

)
≤ Õ

(
n2 · d+

n3

d ·∆

)
.
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The total running update time of both parts of the algorithm is bounded by:

Õ

(
n2d+

n3

d ·∆

)
Substituting the value d =

√
n/∆, we obtain total update time:

Õ

(
n2.5

√
∆

)
Completing the Algorithm. At the beginning of every iteration, we use the algorithm from Theorem 5.1 to
compute a simple s-t path P in graph H, whose length is at most (1+8ε)Λ ≤ 1.5Λ. Let (vS = vX1 , vX2 , . . . , vXk =
vT ) be the sequence of supernodes on this path. For all 1 ≤ j < k, let ej = (xj , yj) be the corresponding edge in
graph G, with xj ∈ Xj and yj ∈ Xj+1.

For all 1 < j < k, if |Xj | = 1, then we let Qj be a path that consists of a single vertex yj = xj+1. Otherwise,
we use the data structure from the MaintainCluster problem on graph G[Xj+1] in order to compute a path Qj ,
connecting yj to xj+1. Recall that the path contains at most dXj+1 edges, and, since each such edge is short, the

length of the path in G is bounded by dXj+1
· Λ

64d logm .

We let P ′ be the path obtained by concatenating e1, Q2, e2, . . . , Qk−1, ek−1. It is easy to see that P ′ is an s-t
path in the current graph G. Next, we bound its length. Recall that the length of the original path P was at
most 1.5Λ. For convenience, for 1 < j < k, if |Xj | = 1, then we denote dXj = 0. The total lengths of all paths in
{Q2, . . . , Qk−1} can be bounded by:

Λ

64d logm
·
k−1∑
j=2

dXj ≤
Λ

64d logm
·
∑

X0∈X∗
dX0

≤ Λ

64d logm
·
blognc∑
i=0

∑
X0∈Xi

dX0

=
Λ

64d logm
·
blognc∑
i=0

∑
X0∈Xi

|X0|
n
· d

≤ Λ

64d logm
· d log n

≤ Λ

64
,

since for all X0 ∈ X , dX0 = |X0|
n · d, and for all 0 ≤ i ≤ blog nc,

∑
X0∈Xi |X0| ≤ n. Altogether, the length of

the final path P ′ is bounded by 2Λ as required. Note that the initial path P , returned by the algorithm from
Theorem 5.1 is a simple path. From the definition of the MaintainCluster problem, each of the paths Q2, . . . , Qk−1

are also simple paths. Moreover, since all clusters in X are disjoint, and since path P is simple, it is easy to verify
that the final path P ′ is simple as well.

After our algorithm returns a path Q, the edges of Q are deleted from G. We then update the MaintainCluster
algorithms for clusters X ∈ X with the edges that were deleted from Ĝ[X], and then update graph H = G|X with
edge deletions and any vertex splits that may have resulted from splitting of clusters of X .

Let q denote the number of iterations in the algorithm, and recall that q ≤ ∆. In each iteration i, the time
required to compute the initial path Pi in graph H is bounded by O(|E(Pi)|). The time that is required to
respond to short-path queries within the clusters Xj is already accounted for as part of total running time of the

MaintainCluster algorithm on Ĝ[Xj ]. Let P ′i denote the final path that the algorithm returns in iteration i, so
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E(Pi) ⊆ E(P ′i ). Then the additional time required to respond to queries is bounded by
∑q
i=1O(|E(Pi)|). Since,

for all 1 ≤ i ≤ q, the edges of P ′i are deleted from G at the end of iteration i, the edges of Pi are also deleted

from G at the end of iteration i. Therefore, we get that
∑q
i=1O(|E(Pi)|) ≤ Õ(|E(G)|) ≤ Õ(n2). Since ∆ ≤ n,

the total running time of the algorithm is then bounded by Õ
(
n2.5
√

∆

)
+ Õ(n2) ≤ Õ

(
n2.5
√

∆

)
.

8 Algorithm for the MaintainCluster Problem – Proof of Theorem 6.1.

We will use the following theorem as a subroutine. The theorem provides an efficient algorithm that either
embeds a large expander into the input graph H, or computes a sparse cut in H, with both sides of the cut
being sufficiently large. The proof of the theorem uses standard techniques (namely the Cut-Matching Game),
though we provide a simpler algorithm for one of the ingredients (algorithm for the Cut Player), and an algorithm
achieving slightly better parameters for another ingredient (algorithm for the Matching Player). The theorem
uses parameter α0 from Theorem 2.1; its proof is deferred to Section 8.1.

Theorem 8.1. There is a deterministic algorithm, whose input consists of a directed n-vertex bipartite graph
G = (L,R,E), such that every vertex in R has out-degree at most 1 and every vertex in L has in-degree at most
1, and a parameter d′ ≥ 4. The algorithm returns one of the following:

• Either a cut (X,Y ) in G with |EG(X,Y )| ≤ 2n
d′ + 1 and |X|, |Y | ≥ Ω

(
n

log3 n

)
; or

• A directed graph W ∗ with |V (W ∗)| ≥ n/8 and maximum vertex degree at most 18, such that W ∗ is an
α0-expander, together with a subset F ⊆ E(W ∗) of at most α0·n

500 edges of W ∗, and an embedding P∗ of

W ∗ \F into G via paths of length at most O(d′ log2 n), that cause congestion at most O(d′ log4 n), such that
every path in P∗ is simple.

The running time of the algorithm is Õ(md′ + n2).

Note that in the above theorem we assume that all edge lengths in the input graph G are unit.

We will also use the following simple observation that uses the standard ball-growing technique. The proof is
deferred to Section D of Appendix.

Observation 8.1. There is a deterministic algorithm, that receives as input a directed bipartite n-vertex graph
H = (L,R,E), where the edges in EH(L,R) are called regular and the edges in EH(R,L) are called special. Every
vertex of H may be incident to at most one special edge. Additionally, the algorithm is given a set X ⊆ V (H)
of at least n

32 vertices, and a vertex v, such that distH(v,X) ≥ d, for some given parameter d ≥ 211 log n. The
algorithm computes a well-structured cut (A,B) in H, with v ∈ A, X ⊆ B, and |EH(A,B)| ≤ ϕ ·min {|A|, |B|},
for ϕ = 211 logn

d . The running time of the algorithm is O(VolH(A)).

We are now ready to complete the proof of Theorem 6.1. Recall that we are given as input a simple bipartite
n-vertex graph H = (L,R,E), such that every vertex in R has out-degree at most 1 and every vertex in L has
in-degree at most 1, together with integral parameters c∗ log6 n ≤ d∗ ≤ n, where c∗ is a large enough constant
and 1 ≤ ∆ ≤ n. Recall that we refer to the edges of EH(R,L) as special, and the edges of EH(L,R) as regular.
Recall also that a cut (X,Y ) in H is well-structured iff all edges in EH(X,Y ) are special.

The algorithm is required to respond to at most ∆ short-path queries: given a pair x, y ∈ V (H) of vertices, it
must return a simple path P connecting x to y in H, whose length is at most d∗. Once the algorithm responds
to a query, it receives a set of edges that need to be deleted from H, with all the deleted edges lying on path P .

At any time, the algorithm may provide a well-structured cut (X,Y ) of H, whose sparsity is at most O
(

log6 n
d∗

)
.

If |X| ≤ |Y |, then the cut must be provided by listing the vertices of X, and otherwise it must be provided by
listing the vertices of Y . After that the vertices of the smaller side of the cut are deleted from H.
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Note that, over the course of the algorithm, vertices may be deleted from H. We denote by n the initial number
of vertices in H. Once |V (H)| falls below n/2, the algorithm terminates, even if fewer than ∆ queries were asked.

Throughout, we use a parameter d = d∗

c′ log3 n
, where c′ is some large enough constant, whose value we will set

later. Since d∗ ≥ c∗ · log6 n for a large enough constant c∗, we can ensure that d ≥ 211 log n.

Our algorithm consists of a number of phases. Let N = α0n
220(d∗)2 logn , where α0 is the constant from Theorem 2.1,

and let ĉ be a large enough contant whose value we choose later. A phase terminates whenever one of the following

two conditions are met: either (i) the number of vertices in H decreased by the factor of at least
(

1− 1
ĉ log5 n

)
over

the course of the current phase (in which case we say that the phase is of type 1 ); or (ii) at least N short-path queries
were responded to during the current phase (in which case the phase is of type 2 ). Clearly, at most O(log5 n)

phases may be of type 1, and the number of type-2 phases is bounded by max
{

1, ∆
N

}
≤ max

{
1, O

(
∆·(d∗)2 logn

n

)}
.

Overall, the number of phases in the algorithm is bounded by O
(

max
{

log5 n, ∆·(d∗)2·log6 n
n

})
. At a high level,

we follow a scheme that is by now quite standard: we embed a large Ω(1)-expander W ∗ into graph H, and then
maintain two ES-Tree data structures in H, both of which are rooted at the vertices of W ∗; in the first tree all
edges are directed away from the root, while in the second tree the edges are directed towards the root. Given a
query (x, y), we use the ES-Tree data structures in order to connect x to some vertex x′ ∈ V (W ∗), and to connect
some vertex y′ ∈ V (W ∗) to y, via short paths. Lastly, we compute a short path connecting x′ to y′ in W ∗ by
performing a BFS, which is then transformed into an x′-y′ path in H by exploiting the embedding of W ∗ into H.
At a high level, we can view each phase as consisting of two steps. In the first step, we embed an expander W ∗

into H, and the second step contains the remainder of the algorithm that allows us to support short-path queries.
We now describe each of the two steps in turn.

Step 1: Embedding an Expander. During the first step of the phase, we will attempt to embed a large
expander into the current graph H via Theorem 8.1. Specifically, we perform a number of iterations. In every
iteration, we apply the algorithm from Theorem 8.1 to the current graph H with parameter d′ = d.

Assume first that the algorithm returned a cut (X,Y ) in H with |EH(X,Y )| ≤ 2n
d + 1 and |X|, |Y | ≥ Ω

(
n

log3 n

)
.

In this case, we say that the current iteration is a bad iteration. Clearly, |EH(X,Y )| ≤ 2n
d + 1 ≤ 4n

d ≤
O
(

log3 n
d

)
· min {|X|, |Y |}. In other words, the sparsity of the cut (X,Y ) is at most O

(
log3 n
d

)
= O

(
log6 n
d∗

)
.

Since d∗ ≥ c∗ log6 n, where c∗ is a large enough constant, we can ensure that the sparsity of the cut, that we
denote by ϕ, is bounded by 1/4. Using the algorithm from Observation 6.1, we compute, in time O(|E(H)|), a

well-structured cut (X ′, Y ′) in H, whose sparsity remains at most O
(

log6 n
d∗

)
.

Denote the sets X and Y by Z and Z ′, so that Z is the smaller set of the two, breaking the tie arbitrarily. Notice

that the algorithm from Observation 6.1 ensures that |Z| ≥ (1− ϕ) ·min {|X|, |Y |} ≥ Ω
(

n
log3 n

)
. We output the

cut (X,Y ) and delete the vertices of Z from graph H. If the number of vertices in H falls below n/2, then we
terminate the algorithm. Otherwise, we continue to the next iteration.

Assume now that the algorithm from Theorem 8.1 returned a directed graph W ∗ with |V (W ∗)| ≥ |V (H)|/8 and
maximum vertex degree at most 18, such that W ∗ is an α0-expander, together with a subset F ⊆ E(W ∗) of at

most α0·|V (H)|
500 edges of W ∗, and an embedding P∗ of W ∗\F into H via simple paths of length at most O(d log2 n)

each, that cause congestion at most O(d log4 n). In this case, we say that the current iteration is a good iteration.
We then terminate the first step of the current phase and continue to the second step.

Since in every bad iteration at least Ω
(

n
log3 n

)
vertices are deleted from H, the total number of iterations in the

first step is bounded by O(log3 n). In every iteration we apply the algorithm from Theorem 8.1, whose running

time is Õ(|E(H)|d+n2) to the current graph H, and then possibly use the algorithm from Observation 6.1, whose

running time is at most O(|E(H)|). Overall, the running time of Step 1 of a single phase is Õ(|E(H)| · d+ n2).
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Step 2: Even-Shiloach Trees and Supporting Short-Path Queries. We denote by n′ the number of
vertices in H at the beginning of Step 2. The purpose of Step 2 is to support short-path queries. Over the course

of Step 2, the number of vertices in H may decrease. Whenever this number falls below n′ ·
(

1− 1
ĉ log5 n

)
, for

a large enough constant ĉ whose value we choose later, we terminate the algorithm for Step 2 and the current
phase. We start by defining additional data structures that we maintain.

Recall that, at the beginning of Step 2, we are given an α0-expander graph W ∗ with |V (W ∗)| ≥ n′/8 and maximum

vertex degree at most 18, together with a subset F ⊆ E(W ∗) of at most α0·n′
500 edges of W ∗, and an embedding

P∗ of W ∗ \ F into H via simple paths of length at most O(d log2 n), that cause congestion at most O(d log4 n).

We denote the number of vertices in W ∗ at the beginning of the phase by n′′, so n′′ ≥ n′/8 ≥ n/16. Over the
course of Step 2, some vertices may be deleted from W ∗, but we will ensure that throughout the algorithm for

Step 2, |V (W ∗)| ≥ n′′/4 ≥ |V (H)|/32 holds. We also use a parameter d̂ = 230 logn
α0

, and we will ensure that at all

times, for every pair x, y of vertices of W ∗, distW∗\F (x, y), distW∗\F (y, x) ≤ d̂.

We maintain two additional graphs: graph H ′ that is obtained from H by adding a source vertex s′, and connecting
it to every vertex in V (W ∗) with an edge of length 1, and graph H ′′ that is obtained from H by adding a vertex
s′′, connecting every vertex in V (W ∗) to it with an edge of length 1, and then reversing the directions of all edges.
Whenever a vertex v leaves the set V (W ∗) of vertices, we delete the edge (s′, v) from H ′, and we also delete the
edge (s′′, v) from H ′′. Additionally, whenever an edge is deleted from graph H due to an update operation, we
delete the corresponding edge from both H ′ and H ′′. When vertices are deleted from graph H (after sparse cuts
are returned by the algorithm), we also update both H ′ and H ′′ with the deletions of these vertices.

We initialize the ES-Tree data structure from Theorem 2.2 for graph H ′, with source vertex s′ and distance
parameter d + 1, and we similarly initialize ES-Tree data structure for H ′′ with source vertex s′′ and distance
parameter d+ 1. We denote the corresponding trees by T ′ and T ′′, respectively.

We will ensure that, throughout the algorithm, every vertex v of H lies in both T ′ and T ′′, so that
distH(V (W ∗), v), distH(v, V (W ∗)) ≤ d always holds. In order to ensure this, we use the ES-Tree data structures
to identify vertices v for which this no longer holds. Whenever we identify a vertex v with distH(v, V (W ∗)) > d,
we use the algorithm from Observation 8.1 in order to compute a well-structured cut (A,B) in H with v ∈ A,

V (W ∗) ⊆ B, and |EH(A,B)| ≤ 211 logn
d ·min {|A|, |B|} ≤ O

(
log6 n
d∗

)
·min {|A|, |B|}. If |A| ≤ |B|, then we delete

the vertices of A from H, (which includes deleting these vertices and their incident edges from graphs H,H ′,
and H ′′, and both ES-Tree data structures T ′ and T ′′), and then continue the algorithm. If |V (H)| falls below

n′
(

1− 1
ĉ log5 n

)
, then the algorithm is terminated. Alternatively, if |A| > |B|, then we delete the vertices of B

from H, and terminate the current phase. Notice that in this case, at least |V (W ∗)| ≥ n′′/4 ≥ n/64 vertices have
been deleted from H in the current phase.

Similarly, whenever we identify a vertex v with distH(V (W ∗), v) > d, we use the algorithm from Observation 8.1
(but with reversed directions of edges) in order to compute a well-structured cut (A,B) in H with V (W ∗) ⊆ A,

v ∈ B, and |EH(A,B)| ≤ 211 logn
d · min {|A|, |B|} ≤ O

(
log6 n
d∗

)
· min {|A|, |B|}. As before, if |B| ≤ |A|, then we

delete the vertices of B from H, and from both ES-Tree data structures. If |V (H)| falls below n′
(

1− 1
ĉ log5 n

)
,

then the algorithm is terminated, and otherwise we continue the algorithm as before. Alternatively, if |B| > |A|,
then we delete the vertices of A from H, and terminate the current phase. In the latter case, at least n/64 vertices
have been deleted from H in the current phase.

In either case, if the set of vertices that was deleted from H is denoted by Z, then the running time of the algorithm
from Observation 8.1 is bounded by O(VolH(Z)). Therefore, the total time that the algorithm ever spends over
the course of Step 2 to cut sparse cuts off from H via Observation 8.1 is bounded by O(m). Additionally, the
algorithms for maintaining the two ES-Tree data structures have total update time O(m · d). Therefore, the total

update time of Step 2 of a single phase is so far bounded by O(m · d) ≤ Õ(m · d∗).

For every edge e ∈ E(H), we maintain a set S(e) of all edges e′ ∈ E(W ∗) \ F whose embedding path P (e′) ∈ P∗
contains e. We can initialize the sets S(e) of edges for all e ∈ E(H) by scanning every edge e′ ∈ E(W ∗) \ F and
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considering all edges on path P (e′). Clearly, the total time required to initialize the sets S(e) of edges for all
e ∈ E(H) is subsumed by the time spent on constructing the embedding P∗ of W ∗ \ F into H in Step 1.

A Cleanup Procedure. The purpose of the cleanup procedure is to ensure that every vertex of H lies in both
the trees T ′ and T ′′, and additionally, that for every pair x, y of vertices of W ∗, distW∗\F (x, y), distW∗\F (y, x) ≤ d̂
holds. The cleanup procedure is executed before each query. In other words, we execute the procedure once at
the beginning of Phase 2, before responding to any queries. Then, after every query, once graph H is updated
with the relevant edge deletions, we execute the procedure again.

Consider for example a short-path query, and suppose the algorithm returned a path P ∗ in response to the query.
Recall that some edges of P ∗ may be deleted from H. As a result, it is possible that some vertices of H no longer
belong to one on both of the trees T ′, T ′′. As described already, we will compute a sparse cut in H in order to
fix this issue, but this may in turn affect the expander W ∗. Additionally, the deletion of the edges from H may
lead to the deletion of some edges from the expander W ∗. As a result, it is possible that the diameter of W ∗ \ F
grows beyond d̂. In such a case, we will compute a sparse cut in graph W ∗ \ F , but this may in turn affect the
trees T ′, T ′′, since, whenever a vertex x leaves the set V (W ∗) of vertices, we delete edge (s′, x) from T ′ and we
delete edge (s′′, x) from T ′′. Similarly, it is possible that, at the beginning of Phase 2, not all vertices of H lie in

the trees T ′, T ′′, or that the diameter of W ∗ \ F is greater than d̂. Fixing each of these issues may in turn create
new issues as described above. We now formally describe the cleanup procedure.

At the beginning of the cleanup procedure, we select an arbitrary vertex v ∈ V (W ∗), and compute two shortest-
paths trees T̂ ′ and T̂ ′′ rooted at v in graph W ∗ \ F , where the edges in T̂ ′ are directed away from v, and the
edges in T̂ ′′ are directed towards v. In other words, for every vertex a ∈ V (W ∗), the unique s-a path in T̂ ′ is a
shortest s-a path in W ∗ \F , and the unique a-s path in T̂ ′′ is a shortest a-s path in W ∗ \F . Note that both trees
can be computed in time O(n). We then perform a number of iterations. At the beginning of every iteration,
we assume that we are given some vertex v ∈ V (W ∗), and two shortest-paths trees T̂ ′ and T̂ ′′ in W ∗ \ F that
are both rooted at v, with the edges of T̂ ′ directed away from v, and the edges of T̂ ′ directed towards v. The
iterations are executed as long as at least one of the following two conditions hold: (i) some vertex u ∈ V (H)

does not lie in T ′ or in T ′′; or (ii) the depth of at least one of the trees T̂ ′, T̂ ′′ is greater than d̂. We now describe
the execution of a single iteration.

Assume first that some vertex u ∈ V (H) no longer lies in T ′′; in other words, distH(u, V (W ∗)) > d holds. As we
described already, we use the algorithm from Observation 8.1 in order to compute a well-structured cut (A,B) in

H with u ∈ A, V (W ∗) ⊆ B, and |EH(A,B)| ≤ 211 logn
d ·min {|A|, |B|} ≤ O

(
log6 n
d∗

)
·min {|A|, |B|}. If |A| ≤ |B|,

then we delete the vertices of A from H, (which includes deleting these vertices and their incident edges from

graphs H,H ′, and H ′′, and both ES-Tree data structures T ′ and T ′′). If |V (H)| falls below n′
(

1− 1
ĉ log5 n

)
,

then the algorithm is terminated, and otherwise we continue the algorithm. Alternatively, if |A| > |B|, then
we delete the vertices of B from H, and terminate the current phase. Similarly, if some vertex u ∈ V (H)
no longer lies in T ′, then, as desribed above, we use the algorithm from Observation 8.1 (but with reversed
directions of edges) in order to compute a well-structured cut (A,B) in H with V (W ∗) ⊆ A, u ∈ B, and

|EH(A,B)| ≤ 211 logn
d · min {|A|, |B|} ≤ O

(
log6 n
d∗

)
· min {|A|, |B|}. As before, if |B| ≤ |A|, then we delete the

vertices of B from H, and from both ES-Tree data structures. If |V (H)| falls below n′
(

1− 1
ĉ log5 n

)
, then the

algorithm is terminated, and otherwise we continue the algorithm. Alternatively, if |B| > |A|, then we delete the
vertices of A from H, and terminate the current phase. In the latter case, at least n/64 vertices have been deleted
from H in the current phase. Let Z be the set of all vertices that were deleted from H in the current iteration,
and let Ê =

⋃
e∈EH(A,B) S(e), that is, these are all edges e′ ∈ E(W ∗) \ F whose embedding path contains an

edge of EH(A,B). Since the embedding of W ∗ \ F into H causes congestion at most O(d log4 n), we get that
|Ê| ≤ O(d log4 n) · |EH(A,B)| ≤ O(|Z| · log6 n). We delete the edges of Ê from graph W ∗. If Z ∩ V (W ∗) = ∅,
then we say that the current iteration is a type-(1a) iteration, and we continue to the next iteration. Notice that

in this case, the running time of the current iteration is Õ(VolH(Z) · d∗), and we charge the running time of the
current iteration to the set Z of vertices.
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Assume now that Z ∩ V (W ∗) 6= ∅. In this case, we say that the current iteration is a type-(1b) iteration. Let
X = Z∩V (W ∗). So far the total running time of the iteration is Õ(VolH(Z) ·d∗), and it is charged to the set Z of
vertices. Next, we delete the vertices of X from W ∗. The remainder of the running time of the current iteration
will be charged to set X. Notice that, if Z = A, and we denote Z ′ = B, then graph W ∗ \ F no longer contains
any edges connecting vertices of Z ∩V (W ∗) to vertices of Z ′ ∩V (W ∗). In other words, (Z ∩V (W ∗), Z ′ ∩V (W ∗))
is a cut of sparsity 0 in W ∗ \ F . Similarly, if Z = B, and we denote Z ′ = A, then cut (Z ′ ∩ V (W ∗), Z ∩ V (W ∗))
is a cut of sparsity 0 in W ∗ \ F . Once the vertices of X are deleted from W ∗, we select an arbitrary vertex
v ∈ V (W ∗), and compute two shortest-paths trees T̂ ′ and T̂ ′′ rooted at v in graph W ∗ \F , where the edges in T̂ ′

are directed away from v, and the edges in T̂ ′′ are directed towards v. It is easy to verify that the total running
time of a type-(1b) iteration is bounded by Õ(VolH(Z) · d∗) +O(n). We charge time Õ(VolH(Z) · d∗) to the set Z
of vertices that is deleted from H in the current iteration, and we charge time O(n) to the set X of vertices that
is deleted from W ∗ in the current iteration. Lastly, graphs H ′ and H ′′ need to be updated to reflect the deletion
of the vertices of X from W ∗: namely, for all u ∈ X, we delete the edge (s′, u) from H ′, and we delete the edge
(s′′, u) from H ′′. This, in turn, may require updating the ES-Tree data structures T ′ and T ′′. The time required
to update the two trees is counted as part of the total update time of these data structures, and not as part of
the running time of the current cleanup procedure. This completes the description of a type-(1b) iteration.

If the depth of either of the trees T̂ ′, T̂ ′′ is greater than d̂, then we say that the current iteration is a type-2 iteration.
In this case, we can compute, in time O(1), a pair a, b ∈ V (W ∗) of vertices with distW∗\F (a, b) > d̂. Recall that

d̂ = 230 logn
α0

, and the maximum vertex degree in W ∗ is bounded by D = 18. We can now use the algorithm from

Observation 2.1 to compute, in time O(n), a cut (A,B) in W ∗ \ F of sparsity at most ϕ = 32D logn

d̂
≤ α0

220 . If

|A| ≤ |B|, then we delete from W ∗ the vertices of A, and otherwise we delete from W ∗ the vertices of B. If we
denote by X the set of vertices deleted from W ∗ in the current iteration, then graphs H ′ and H ′′ need to be
updated accordingly (namely, for all u ∈ X, we delete the edge (s′, u) from H ′ and we delete the edge (s′′, u)
from H ′′). This, in turn, may require updating the ES-Tree data structures T ′ and T ′′. The time required to
update the two trees is counted as part of the total update time of these data structures, and not as part of the
running time of the current cleanup procedure. We then select an arbitrary vertex v ∈ V (W ∗), and compute two
shortest-paths trees T̂ ′ and T̂ ′′ rooted at v in graph W ∗ \F , where the edges in T̂ ′ are directed away from v, and
the edges in T̂ ′′ are directed towards v. Clearly, the running time of a type-2 iteration is O(n), and we charge it
to the set of vertices (either A or B) that was deleted from W ∗ over the course of the current iteration.

The algorithm for the cleanup procedure terminates once every vertex of H lies in both T ′ and T ′′, and the depths
of the trees T̂ ′ and T̂ ′′ are both bounded by d̂.

We now bound the total time required to perform the cleanup procedure over the course of the entire Step 2.

Since we only need to respond to at most N = O
(

n
(d∗)2 logn

)
queries, the number of times that the cleanup

procedure is called is bounded by N . The time that is required in order to compute the shortest-path trees T̂ ′, T̂ ′′

in W ∗ \ F for the first time at the beginning of each cleanup procedure is then bounded by O(n ·N) ≤ Õ(n2).

If we denote by Z the set of all vertices that are deleted over the course of the phase from graph H, and by X
the collection of all subsets of vertices that were deleted from V (W ∗) over the course of the phase, then, from our
charging scheme, the remaining running time that is spent on the repeated executions of the cleanup procedure
can be bounded by Õ(VolH(Z) · d∗) +O(|X | · n) ≤ Õ(md∗ + n2). Therefore, the total time spent over the course

of a single phase on executing the cleanup procedure is bounded by Õ(md∗ + n2).

Updates to the Expander W ∗. Recall that, at the beginning of Step 2, we are given an α0-expander W ∗, with
|V (W ∗)| = n′′ ≥ n′/8 and maximum vertex degree at most 18, together with a subset F ⊆ E(W ∗) of at most
α0·n′
500 edges of W ∗, and an embedding P∗ of W ∗ \ F into H via paths of length at most O(d log2 n), that cause

congestion at most O(d log4 n).

Over the course of the algorithm, we may delete some edges from W ∗, and we may also compute sparse cuts in
W ∗ that decompose W ∗ into smaller subgraphs. For convenience, we will maintain a collection X of subsets of
vertices of W ∗ that partition the original set V (W ∗). At the beginning of the algorithm, X contains a single set
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V (W ∗) of vertices. Over the course of the algorithm, if we identify a sparse cut (X,Y ) in the current graph W ∗,
we replace V (W ∗) with X and Y in X , and we delete the vertices of the smaller of the two sets from W ∗. The
key is to ensure that, since the cuts that we compute are sparse, and since the number of edges deleted from W ∗

over the course of the second step is relatively small, |V (W ∗)| ≥ n′′/4 continues to hold throughout Step 2 of the
phase.

There are three types of updates that expander W ∗ may undergo over the course of the algorithm, that we
describe next.

First Type of Updates. Suppose some edge e was deleted from H, as part of the update sequence that graph
H undergoes. In this case, we delete every edge e′ ∈ S(e) from W ∗. For each such edge e′, we also delete e′

from the set S(e′′) of every edge e′′ ∈ E(H) that lies on the embedding path P (e′) ∈ P∗. Recall that, over the
course of the current phase, our algorithm will need to respond to at most N short-path queries. If Q is a path
that is returned in response to such a query, then Q may contain at most d∗ edges, and the only edges that may
be deleted from H over the course of the current phase as part of the update sequence are edges that lie on such
paths. Therefore, the total number of edges that may be deleted from H as part of the update sequence during
a single phase is at most N · d∗. Since the embedding of W ∗ \ F causes congestion at most O(d log4 n) in H, the
number of corresponding edge deletions from W ∗ is bounded by:

O(N · d∗ · d log4 n) ≤ N · (d∗)2 · log n ≤ α0n

220
,

since d = d∗

c′ log3 n
, where c′ can be chosen as a large enough constant and N = α0n

220(d∗)2 logn . Throughout, we

denote by E′ the set of edges that were deleted from W ∗ as the result of this type of updates to W ∗, so |E′| ≤ α0n
220

always holds. The time that is required to update graph W ∗ with this type of updates is subsumed by the time
spent in Step 1 of the algorithm.

Second Type of Updates. The second type of update happens when the algorithm for Step 2 identifies a well-

structured cut (A,B) in H with |EH(A,B)| ≤ 211 logn
d ·min {|A|, |B|}. Denote sets A and B by Z and Z ′, so that Z

is the smaller of the two sets, breaking ties arbitrarily. Recall that our algorithm then deletes the vertices of Z from

H. If, as the result of this deletion, the number of vertices in H falls below
(

1− 1
ĉ log5 n

)
n′, then the current phase

terminates. If this did not happen, then we update graph W ∗ as follows. Let Ê =
⋃
e∈EH(A,B) S(e), that is, these

are all edges e′ ∈ E(W ∗)\F whose embedding path contains an edge of EH(A,B). Since the embedding of W ∗\F
into H causes congestion at most O(d log4 n) in H, we get that |Ê| ≤ O(d log4 n) · |EH(A,B)| ≤ O(|Z| · log6 n).

We start by deleting the edges of Ê from W ∗. Note that, if Z = A and Z ′ = B, then graph W ∗ \ F
no longer contains any edges connecting vertices of Z ∩ V (W ∗) to vertices of Z ′ ∩ V (W ∗). In other words,
(Z ∩ V (W ∗), Z ′ ∩ V (W ∗)) is a cut of sparsity 0 in W ∗ \ F . We replace the set V (W ∗) of vertices in X by two
sets: Z ∩ V (W ∗) and Z ′ ∩ V (W ∗). We also delete the vertices of Z from W ∗. Similarly, if Z = B and Z ′ = A,
then (Z ′ ∩ V (W ∗), Z ∩ V (W ∗)) is a cut of sparsity 0 in W ∗ \ F . We replace the set V (W ∗) of vertices in X by
two sets: Z ∩ V (W ∗) and Z ′ ∩ V (W ∗), and we delete the vertices of Z from W ∗.

We denote by E′′ the set of edges that were deleted from W ∗ as the result of this type of transformation: in other
words, for each sparse cut (A,B) of H that our algorithm computes, we add all edges of

⋃
e∈EH(A,B) S(e) to E′′.

Recall that the number of edges added to E′′ due to such cut (A,B) is bounded by O(log6 n) ·min {|A|, |B|}, and
that the vertices of A or the vertices of B are deleted from H. Since the total number of vertices that may be
deleted from H before the phase terminates is bounded by n′

ĉ log5 n
, where ĉ can be chosen to be a large enough

constant, we can ensure that throughout the phase |E′′| ≤ α0n
220 holds.

Third Type of Updates. Recall that the cleanup procedure may sometimes identify cuts (A,B) in W ∗ \ F ,
with |EW∗\F (A,B)| ≤ α0

220 ·min {|A|, |B|}. Whenever this happens, it replaces the set V (W ∗) of vertices in X with
V (A) and V (B). Denote A and B by Z and Z ′, where Z is the smaller of the two sets, breaking ties arbitrarily.
We then delete the vertices of Z from graph W ∗. Notice that |EW∗\F (A,B)| ≤ α0

220 · |Z|.

Let E′′′ denote the collection of all edges that participate in such cuts. In other words, for each such sparse
cut (A,B) of W ∗ \ F , we include the edges of EW∗\F (A,B) in E′′′. From the above discussion, throughout the
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algorithm, |E′′′| ≤ α0

220 · n′′ ≤ α0

220 · n holds.

Lastly, we denote E∗ = F ∪ E′ ∪ E′′ ∪ E′′′. Recall that |F | ≤ α0·n′
500 ≤

α0·n′′
62 , since n′′ ≥ n′/8. The cardinality

of each of the three sets E′, E′′ and E′′′ is bounded by α0·n
220 ≤ α0·n′

219 ≤ α0·n′′
214 . Overall, we get that |E∗| ≤ α0·n′′

32
holds throughout the algorithm. We now show that, throughout the algorithm, |V (W ∗)| ≥ n′′/4 holds.

Claim 8.1. Throughout the algorithm, |V (W ∗)| ≥ n′′/4.

Proof. Assume otherwise. Consider some time τ at which |V (W ∗)| < n′′/4 holds. For convenience, we denote by
W the original graph W ∗, which is an α0-expander, with n′′ vertices and we denote by W ′ the graph W \ E∗,
with respect to the set E∗ of edges at time τ . We also consider the set X of vertex subsets at time τ . We
denote the sets of X by X1, X2, . . . , Xr, where Xr = V (W ∗) at time τ , and the remaining sets are indexed in
the order in which they were added to X . For all 1 ≤ j < r, let X ′j = Xj+1 ∪ · · · ∪ Xr. At the time when Xj

was added to X , it defined a sparse cut in graph W ∗ \ F . In other words, either |EW ′(Xj , X
′
j)| ≤ α0

220 |Xj |, or
|EW ′(X ′j , Xj)| ≤ α0

220 |Xj | holds. Let α be such that maxXj∈X |Xj | = α ·n′′. Then it is easy to verify that α ≤ 1/2

must hold. From Observation 2.2, there is a cut (A,B) in W ′ with |A|, |B| ≥ n′′/4, and |EW ′(A,B)| ≤ α0·n′′
220 .

Observe that |EW (A,B)| ≤ |E∗| + α0·n′′
220 ≤ α0·n′′

16 . Since |A|, |B| ≥ n′′/4, we obtain a cut (A,B) in W , whose
sparsity is below α0, contradicting the fact that W is an α0-expander.

This completes the description of the data structures that we maintain over the course of Step 2. Next, we
describe an algorithm for responding to a short-path queries.

Responding to short-path Queries. In a short-path query, we are given a pair x, y of vertices of H, and our
goal is to compute a simple path connecting x to y in H of length at most d∗.

In order to respond to the query, we use ES-Tree T ′′ to compute a path P ′ in graph H of length at most d,
connecting x to some vertex x′ ∈ V (W ∗), in time O(d). Similarly, we use ES-Tree T ′ in order to compute a path
P ′′ of length at most d, connecting some vertex y′ ∈ V (W ∗) to y, in time O(d). Next, we perform a BFS in graph
W ∗ \ F , from vertex x′, in order to compute the shortest x′-y′ path Q in W ∗ \ F . Recall that we are guaranteed

that the length of Q in W ∗ \ F is bounded by d̂ = 230 logn
α0

. We then use the embedding of W ∗ \ F into H via

paths of lengths at most O(d log2 n) in order to obtain a path P̂ connecting x′ to y′ in H, whose length is at most
O(d log3 n). Let P ∗ be the path that is obtained by concatenating P ′, P̂ and P ′′. Path P ∗ connects x to y in
graph H, and its length is bounded by 2d+O(d log3 n). Since we have set d = d∗

c′ log3 n
, where c′ is a large enough

constant, the length of P ∗ is bounded by d∗. We transform P ∗ into a simple path in time O(d∗) and return the
resulting path. This finishes the algorithm for responding to the query. Notice that its running time is bounded
by O(n+ d∗), since a BFS search in W ∗ can be performed in time O(n), and the time required to compute paths
P ′ and P ′′ and to transform Q into path P̂ is bounded by O(d∗). Since the number of short-path queries that
we need to process in a single phase is bounded by N = Õ(n/(d∗)2), the total time that is required in order to
respond to short-path queries over the course of a single phase is bounded by Õ(n2).

Final Analysis of the Running Time. We now bound the total running time of a single phase. Recall that
the running time of Step 1 is bounded by O(m · d + n2) ≤ Õ(md∗ + n2). The total time spent on executing

the cleanup procedure over the course of the phase is bounded by Õ(md∗ + n2), and the total time spent on
responding to queries is bounded by Õ(n2). Lastly, and the time spent on maintaining ES-Tree data strucures

T ′ and T ′′ is bounded by Õ(md) ≤ Õ(md∗). Additional time that is required to maintain the expander W ∗ is
bounded by the above running times, and so the running time of a single phase is bounded by Õ(m · d∗ + n2).

Since the number of phases is bounded by Õ
(

max
{

1, ∆·(d∗)2
n

})
, we get that the total running time of the

algorithm is bounded by:
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Õ(m · d∗ + n2) ·max

{
1,

∆ · (d∗)2

n

}
.

8.1 Algorithm AlgEmbedOrCut: Proof of Theorem 8.1. We use the Cut-Matching Game – a framework
that was first proposed by [29]. The specific variant of the game is due to [28]. Its slight modification, that we
also use, was proposed in [10], and later adapted to directed graphs in [6]. We also note that [34] extended the
original cut-matching game of [29] to directed graphs, though we do not use this variation here. We now define
the variant of the game that we use.

The game is played between two players: the Cut Player and the Matching Player. The game starts with a
directed graph W that contains n vertices and no edges, where n is an even integer, and proceeds in iterations. In
the ith iteration, the Cut Player chooses a cut (Ai, Bi) in W with |Ai|, |Bi| ≥ n/10, and |EW (Ai, Bi)| ≤ n/100.
It then computes two arbitrary equal-cardinality sets A′i, B

′
i of vertices with |A′i| ≥ n/4, such that either Ai ⊆ A′i,

or Bi ⊆ B′i. The matching player then needs to return two perfect matchings: a matching Mi ⊆ A′i × B′i, and
a matching M ′i ⊆ B′i × A′i, both of cardinality |A′i|. The edges of Mi ∪M ′i are added to W , and the iteration
terminates. The following bound on the number of iterations in this variant of the Cut-Matching Game was
shown in [6], extending a similar result of [28] for undirected graphs.

Theorem 8.2. (Lemma 7.4 in [6]; see also Theorem 7.3 and the following discussion) The number
of iterations in the above Cut-Matching Game is bounded by O(log n).

From the above theorem, there is an absolute constant cCMG > 0, such that, after cCMG log n iterations of the
game, for every cut (A,B) in W with |A|, |B| ≥ n/10, |EW (Ai, Bi)| > n/100 must hold. Notice that the maximum
vertex degree in the final graph W is bounded by 2cCMG log n.

In order to implement the Cut-Matching Game, we design two algorithms: an algorithm for the Cut Player,
and an algorithm for the Matching Player. We note that previous work, such as, e.g. [6] also designed similar
algorithms, but since we focus here on a more specific setting, we believe that our algorithm for the cut player is
significally simpler, while the algorithm for the Matching Player achieves better parameters.

The algorithm for the Cut Player is summarized in the following theorem, whose proof is deferred to Section 8.2.
The theorem uses the constant α0 from Theorem 2.1.

Theorem 8.3. There is a deterministic algorithm, that, given an n-vertex directed graph W with maximum vertex
degree at most O(log n), returns one of the following:

• Either a cut (A,B) in W with |EW (A,B)| ≤ n/100 and |A|, |B| ≥ n/10; or

• another directed graph W ′ with |V (W ′)| ≥ n/4 and maximum vertex degree at most 18, such that W ′ is an
α0-expander, together with a subset F ⊆ E(W ′) of at most α0·n

1000 edges of W ′, and an embedding P of W ′ \F
into W via paths of length at most d̃ = O(log2 n), that cause congestion at most η = O(log2 n).

The running time of the algorithm is Õ(n2).

We note that [6], generalizing the results of [10] to directed graphs, provided an algorithm for the cut player with

faster running time Ô(n) (see Theorem 7.3 in [6]). We could have used their algorithm as a blackbox instead of
the algorithm from Theorem 8.3. However, the proof of Theorem 8.3 is significantly simpler than that of [6] and
[10], and we can afford this slower running time since other components of our algorithm have slower running
time.

The algorithm for the Matching Player is summarized in the following theorem, whose proof is deferred to
Section 8.3.
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Theorem 8.4. There is a deterministic algorithm, whose input consists of a directed n-vertex bipartite graph
G = (L,R,E), where n is an even integer, such that every vertex in R has out-degree at most 1 and every vertex
in L has in-degree at most 1, together with two disjoint sets A,B of vertices of G of cardinality n/2 each, and
two parameters d′ ≥ 4 and z ≥ 1. The algorithm returns one of the following:

• either a cut (X,Y ) in G with |EG(X,Y )| ≤ 2n
d′ and |X|, |Y | ≥ z; or

• a collection Q of at least (n/2 − z) paths in graph G, with every path Q ∈ Q connecting some vertex of A
to some vertex of B, such that the length of every path in Q is at most 2d′ + 1, the paths cause congestion
at most O(d′ log n), and the endpoints of all paths are distinct.

The running time of the algorithm is Õ(md′).

Note that in the above theorem we assume that all edge lengths in the input graph G are unit.

We are now ready to complete the algorithm for Theorem 8.1. We will assume that n = |V (G)| is an even integer;
otherwise, we temporarily delete an arbitrary vertex v0 from G. We let c be a large enough constant, so that, in
Theorem 8.3 the parameter η ≤ c log2 n.

We start with a graph W that contains n vertices and no edges, and then run the Cut-Matching game on it.
Recall that the number of iterations in the game is bounded by cCMG · log n. This ensures that the graph W that
is maintained over the course of the game has maximum vertex degree O(log n). We now describe the execution
of the ith iteration.

First, we apply the algorithm from Theorem 8.3 to the current graph W . We say that the current iteration is a
type-1 iteration, if the algorithm returns a cut (Ai, Bi) in W with |EW (Ai, Bi)| ≤ n/100 and |Ai|, |Bi| ≥ n/10,
and otherwise we say that it is a type-2 iteration. Assume first that the current iteration is a type-1 iteration.
Then we compute an arbitrary partition (A′i, B

′
i) of V (W ) into two subsets of cardinality n/2 each, such that

either Ai ⊆ A′i or Bi ⊆ B′i, and we treat (A′i, B
′
i) as the move of the cut player.

Next, we twice apply the algorithm from Theorem 8.4 to graph G, with parameter d′ that remains unchanged,
and parameter z = α0

2000c·cCMG·log3 n
· n: once for the ordered pair of sets (A′i, B

′
i), and once for the ordered pair of

sets (B′i, A
′
i).

Assume first that in any of the two applications of the algorithm, it returns a cut (X,Y ) in G with |EG(X,Y )| ≤ 2n
d′

and |X|, |Y | ≥ z ≥ Ω(n/ log3 n). In this case, we terminate the algorithm and return the cut (X,Y ) as its outcome.
If the initial value |V (G)| was odd, then we add vertex v0 to X if v0 ∈ R, and to Y otherwise. In this case, the only
newly added edge to EG(X,Y ) is the special edge incident to v0 (if such an edge exists), and so |EG(X,Y )| ≤ 2n

d′ +1
holds. We also say that the current iteration is of type (1a).

Otherwise, the algorithm computes a collection Q′i of at least (n/2−z) paths in graph G, with every path Q ∈ Qi
connecting a distinct vertex of A′i to a distinct vertex of B′i, and a collection Q′′i of at least (n/2− z) paths in G,
with every path Q′ ∈ Q′i connecting a distinct vertex of B′i to a distinct vertex of A′i. The paths in Q′i ∪Q′′i have
lengths at most 2d′ + 1 each, and they cause congestion at most O(d′ log n). In this case, we say that the current
iteration is of type (1b). The set Q′i of paths naturally defines a matching M ′i ⊆ A′i × B′i, where for every path
Q ∈ Qi whose endpoints are a ∈ A′i, b ∈ B′i, we add an edge e = (a, b) to the matching. We also let P (e) = Q
be its embedding into G. Similarly, the set Q′′i of paths defines a matching M ′′i ⊆ B′i × A′i, together with an
embedding P (e) ∈ Q′′i of each edge e ∈ M ′′. Recall that matching M ′i has cardinality at least n/2 − z, while
|A′| = |B′| = n/2. Therefore, by adding a set F ′i of at most z additional edges (that we refer to as fake edges),
we can turn matching M ′i into a perfect one. Similarly, we add a collection F ′′i of at most z fake edges to M ′′i
in order to turn it into a perfect matching. The edges of M ′i ∪M ′′i are then added to graph W , and the current
iteration terminates.

Finally, assume that the current iteration i is of type 2. In this case, the algorithm for the Cut Player from
Theorem 8.3 computed a graph W ′ with |V (W ′)| ≥ n/4 and maximum vertex degree at most 18, such that W ′ is
an α0-expander, together with a subset F̂ ⊆ E(W ′) of at most α0·n

1000 edges of W ′, and an embedding P of W ′ \ F̂
into W via paths of length at most O(log2 n), that cause congestion at most c log2 n.
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Consider the current graph W . Denote F ∗ =
⋃i−1
i′=1(F ′i′ ∪ F ′′i′ ) – the collection of the fake edges that we have

computed so far. Since for all 1 ≤ i′ < i, |F ′i′ ∪ F ′′i′ | ≤ 2z and i ≤ cCMG log n, we get that |F ∗| ≤ 2cCMGz log n.

We also denote Q∗ =
⋃i−1
i′=1(Q′i ∪ Q′′i ). Note that Q∗ defines an embedding of W \ F ∗ into G. All paths in Q∗

have lengths at most 2d′+ 1. Each set Q′i ∪Q′′i causes congestion at most O(d′ log n), and so the total congestion
caused by the paths in Q∗ is bounded by η∗ = O(d′ log2 n).

Next, we will construct a set F ⊆ E(W ′) of fake edges, and an embedding of the remaining edges of W ′ into G,
by combining the embedding P of W ′ \ F̂ into W with the embedding Q∗ of W \F into G. We start with F = F̂ .
Next, we process every edge e ∈ E(W ′) \ F̂ one by one. When an edge e = (u, v) is processed, we consider the
path P (e) ∈ P, that serves as an embedding of e into graph W . Recall that the length of the path is at most
O(log2 n). Let P (e) = (e1, e2, . . . , er), where r ≤ O(log2 n). If path P (e) contains any edges of F ∗, then we add
e to the set F of fake edges. Otherwise, for all 1 ≤ j ≤ r, we consider the path Q(ej) ∈ Q∗, that serves as the
embedding of the edge ej into graph G. Recall that the length of Q is at most O(d′). By concatenating the paths
Q(e1), . . . , Q(er), we obtain a path P ′(e) connecting u to v in G, whose length is at most O(d′ log2 n). We turn
P ′(e) into a simple path in time O(d′ log2 n), obtaining the final path P ∗(e), that will serve as an embedding of
the edge e.

Once every edge of E(W ′) \ F̂ is processed, we obtain a final set F of fake edges, and, for every remaining edge
e ∈ E(W ′) \ F , a simple path P ∗(e) of length O(d′ log2 n), that serves as the embedding of e in G. Recall
that |V (W ′)| ≥ n/4. If the original value |V (G)| was odd, then |V (W ′)| ≥ (|V (G)| − 1)/4 ≥ |V (G)|/8 holds.
As required, graph W ′ is an α0-expander with maximum vertex degree at most 18. It remains to bound the
congestion caused by the paths in set P∗ = {P ∗(e) | e ∈ E(W ′) \ F}, and the cardinality of the set F .

Consider any edge e ∈ E(G). Recall that e may participate in at most η∗ = O(d′ log2 n) paths in set
Q∗ = {Q(e′) | e′ ∈ E(W ) \ F ∗}. Every edge e′ ∈ E(W ) \ F ∗, whose corresponding path Q(e′) contains the
edge e, may in turn participate in at most O(log2 n) paths of P. Therefore, overall, every edge e of G participates
in at most O(d′ log4 n) paths of P∗.

In order to bound the final number of the fake edges in W ′, recall that |F ∗| ≤ 2cCMGz log n. Since the paths in
P cause congestion at most c log2 n, we get that every edge of F ∗ may participate in at most c log2 n paths of P.
Therefore, |F \ F̂ | ≤ (2cCMGz log n) · (c log2 n) ≤ 2c · cCMG · z · log3 n ≤ α0·n

1000 , since z = α0

2000c·cCMG·log3 n
· n. Since

|F̂ | ≤ α0·n
1000 , we get that |F | ≤ α0·n

500 .

It now remains to bound the running time of the algorithm. The algorithm has O(log n) iterations. In every

iteration we use the algorithm for the Cut Player from Theorem 8.3, whose running time is Õ(n2), and an

algorithm for the Matching Player from Theorem 8.4, whose running time is Õ(md′).

Additionally, when computing the embedding of W ′ \ F into G, we spend time at most Õ(d′) per edge of W ′,
and, since |E(W ′)| ≤ O(n), the computation of the embedding takes time Õ(nd′). Overall, the running time of

the algorithm is Õ(md′ + n2).

8.2 Algorithm for the Cut Player – Proof of Theorem 8.3 The proof of Theorem 8.3 easily follows from
the following slightly weaker theorem.

Theorem 8.5. There is a deterministic algorithm, that, given an n-vertex directed graph W with maximum vertex
degree at most O(log n), returns one of the following:

• either a cut (A,B) in W with |EW (A,B)| ≤ min{|A|,|B|}
128 and |A|, |B| ≥ α0

214 · n; or

• another directed n-vertex graph W ′ with maximum vertex degree at most 18, such that W ′ is an α0-expander,
together with a subset F ⊆ E(W ′) of at most k = α0·n

1000 edges of W ′, and an embedding P of W ′ \F into W

via paths of length at most d̃ = O(log2 n), that cause congestion at most η = O(log2 n).

The running time of the algorithm is Õ(n2).
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We prove Theorem 8.5 below, after we complete the proof of Theorem 8.3 using it. We start with the graph
Ŵ = W , and then perform iterations, as long as |V (Ŵ )| ≥ n/4. We will also construct a collection X of subsets
of vertices of Ŵ , that is initialized to ∅. In every iteration, we may add a single set X to X (that defines a sparse
cut in the current graph Ŵ ), and then delete the vertices of X from Ŵ .

In order to execute a single iteration, we apply the algorithm from Theorem 8.5 to the current graph Ŵ . Let
n′ ≥ n/4 denote the number of vertices that currently belong to Ŵ . If the algorithm returned a directed n′-vertex
α0-expander graph W ′ with maximum vertex degree at most 18, together with a subset F ⊆ E(W ′) of at most

k = α0·n′
1000 ≤

α0n
1000 edges of W ′, and an embedding P of W ′ \ F into Ŵ via paths of length at most d̃, that cause

congestion at most η, then we terminate the algorithm and return W ′, F and P.

Assume now that the algorithm from Theorem 8.5 returned a cut (A′, B′) in Ŵ with |EŴ (A′, B′)| ≤ min{|A′|,|B′|}
128

and |A′|, |B′| ≥ α0

214 · n′ ≥ α0

216n. Denote the sets A′, B′ by X and Y respectively, where X is the set of {A′, B′} of
smaller cardinality, and Y is the other set (if the cardinalities of the two sets are equal, break the tie arbitrarily).
We then add X to X , delete the vertices of X from Ŵ , and continue to the next iteration.

If the above algorithm does not terminate with an expander W ′ that is embedded into W , then it must terminate
once |V (Ŵ )| ≤ n/4 holds. Let X = {X1, X2, . . . , Xr} be the final collection of vertex subsets, where the sets are
indexed in the order in which they were added to X . We also denote by Xr+1 the set V (Ŵ ) obtained at the end
of the algorithm, and we add Xr+1 to X as well. For all 1 ≤ j ≤ r, denote X ′j = Xj+1 ∪ · · · ∪Xr+1. From our
algorithm, for each such index j, either |EW (Xj , X

′
j)| ≤ |Xj |/128, or |EW (X ′j , Xj)| ≤ |Xj |/128. Moreover, for all

1 ≤ j ≤ r + 1, |Xj | ≤ n/2, while |Xr+1| ≥ n
8 . Therefore, if we let α be such that maxXj∈X {|Xj |} = α · n, then

1
8 ≤ α ≤

1
2 .

We can now use the algorithm from Observation 2.2 to compute, in time O(|E(W )|) ≤ Õ(n), a cut (A,B) in W ,
with |EW (A,B)| ≤ n/128, and |A|, |B| ≥ min

{
1−α

2 · n, n4
}
≥ n

10 .

The running time of every iteration of the algorithm is Õ(n2), and the number of iterations is bounded by a

constant. The running time of the algorithm from Observation 2.2 is bounded by Õ(n), and so the total running

time of our algorithm is Õ(n2).

In order to complete the proof of theorem 8.3, it is now enough to prove Theorem 8.5.

Proof of Theorem 8.5. Since we can afford a running time that is as high as Õ(n2), we can use a straightforward
algorithm, that is significantly simpler than other current deterministic algorithms for the cut player (see e.g.
Theorem 7.3 in [6], that generalizes the results of [10] to directed graphs).

We let c be a sufficiently large constant, and we set the parameters d̃ = c log2 n and η = c2 log2 n.

We start by using the algorithm from Theorem 2.1 to construct, in time O(n), a directed n-vertex graph W ′ that
is an α0-expander, with maximum vertex degree at most 18.

Next, we start with a graph Ŵ = W , and then perform |E(W ′)| iterations. In every iteration we will attempt
to embed some edge e ∈ E(W ′) into Ŵ , and we will delete from Ŵ edges that participate in too many of the
embedding paths. We will maintain a partition (E′, E′′, F ) of the edges of E(W ′), where set E′ contains all edges
e ∈ E′ for which an embedding path P (e) was already computed by the algorithm; set F contains all edges e ∈ E′
for which the algorithm failed to compute an embedding path; and E′′ contains all edges of W ′ that were not
considered by the algorithm yet. We also maintain a set P = {P (e) | e ∈ E′} of all embedding paths that the
algorithm computed so far. For every edge e ∈ E(W ) we will maintain a counter µ(e) that counts the number of
paths in P containing e.

Initially, we set E′ = F = ∅, E′′ = E(W ′), and P = ∅. We also set Ŵ = W , and perform iterations as long as
E′′ 6= ∅.

In order to perform an iteration, we consider any edge e = (u, v) ∈ E′′. We compute the shortest path P in the

current graph Ŵ connecting u to v, by peforming a BFS from vertex u, in time O(|E(Ŵ )|) ≤ Õ(n). If the length
of P is greater than d̃, then we move edge e from E′′ to F . Otherwise, we set P (e) = P , move e from E′′ to E′,
and add path P (e) to set P. Additionally, for every edge e′ ∈ E(P ) we increase the counter µ(e′) by 1, and if the
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counter reaches η, we delete e′ from Ŵ .

Once E′′ = ∅ holds, the algorithm terminates. Notice that, since the algorithm spends at most Õ(n) time on

processing every edge of W ′, its running time so far is Õ(n2).

We now consider two cases. Assume first that, at the end of the above procedure, |F | ≤ k holds. In this case, we
terminate the algorithm, and return the α0-expander W ′, the set F of its edges, and the embedding P of W ′ \ F
into W that our algorithm has computed. It is easy to verify that every path in P has length at most d̃ and
causes congestion at most η.

From now on we assume that |F | > k. We now show an algorithm to compute a cut (A,B) in W of sparsity at
most 1

128 , such that |A|, |B| ≥ α0

214 · n.

Let E∗ = E(W ) \ E(Ŵ ). Equivalently, set E∗ contains all edges that participate in η paths in P. Recall that
|P| ≤ |E(W ′)| ≤ 9n, and the length of every path in P is at most d̃. Therefore,

∑
P∈P |E(P )| ≤ 9d̃n, and

|E∗| ≤
∑
P∈P |E(P )|

η ≤ 9d̃n
η .

In the remainder of the algorithm, we will iteratively cut off sparse cuts (that may be quite small) from graph
Ŵ . We maintain a set X of subsets of vertices of Ŵ , that is initially empty. The algorithm is iterative, and in
every iteration a single set Z is added to X , with the vertices of Z deleted from Ŵ . The algorithm continues as
long as |V (Ŵ )| ≥ n− k/2 holds. We now describe the execution of a single iteration.

Since |V (Ŵ )| ≥ n − k/2, there exists an edge e = (x, y) ∈ F with x, y ∈ Ŵ . Moreover, since we were unable
to embed e into Ŵ when it was considered, and since we only deleted edges and vertices from Ŵ since then, it
must be the case that distŴ (x, y) > d̃ holds right now. Let ∆ = O(log n) denote the maximum vertex degree in

Ŵ . Since d̃ = c log2 n, where c is a large enough constant, we can ensure that d̃ ≥ 64∆ log n holds. We now use
the algorithm from Observation 2.1 to compute a cut (Z,Z ′) in the current graph Ŵ , whose sparsity is at most

ϕ′ = 32∆ logn

d̃
≤ O(log2 n)

d̃
. Since d̃ = c log2 n, and we can set c to be a large enough constant, we can ensure that

ϕ′ ≤ α0

222 . Denote the sets Z,Z ′ by X and Y , such that X is the set of smaller cardinality, and Y is the other set
(if the cardinalities of the two sets are equal, break the tie arbitrarily). We then add X to X , delete the vertices
of X from Ŵ , and continue to the next iteration. Note that, if X is the set of vertices that was added to X during
the current iteration, then from Observation 2.1, the running time of the iteration is bounded by Õ(|X|).

When the above algorithm terminates, we let X = {X1, X2, . . . , Xr} be the final collection of vertex subsets, where
the sets are indexed in the order in which they were added to X . We also denote by Xr+1 the set V (Ŵ ) obtained
at the end of the algorithm, and we add Xr+1 to X as well. For all 1 ≤ j ≤ r, denote X ′j = Xj+1 ∪ · · · ∪Xr+1.
From our algorithm, for each such index j, either |EŴ (Xj , X

′
j)| ≤ ϕ′ · |Xj |, or |EŴ (X ′j , Xj)| ≤ ϕ′ · |Xj |, where

ϕ′ ≤ α0

222 . From our discussion, the total time that the algorithm spent on constructing the sets of vertices in X
is bounded by

∑r
j=1 Õ(|Xj |) ≤ Õ(n). Let α be chosen such that the cardinality of largest set of vertices in X is

α · n. From our algorithm, α ≤ 1− k
2n ≤ 1− α0

2000 , since k = α0·n
1000 .

We can now use the algorithm from Observation 2.2 to compute, in time O(|E(Ŵ )|) ≤ Õ(n), a cut (A,B) in Ŵ ,
with |EŴ (A,B)| ≤ ϕ′ ·

∑r
i=1 |Xi|, and |A|, |B| ≥ min

{
1−α

2 · n, n4
}
≥ α0n

4000 .

Recall that graph Ŵ was obtained from W by deleting the edges of E∗ from it, and that |E∗| ≤ 9d̃n
η . Subtituting

d̃ = c log2 n and η = c2 log2 n, where c is a sufficiently large constant, we get that: |E∗| ≤ α0n
222 .

Overall:

|EW (A,B)| ≤ |EŴ (A,B)|+ |E∗| ≤ ϕ′n+
α0n

222
≤ α0n

221
.

(we have used the fact that ϕ′ ≤ α0

222 ). Lastly, since |A|, |B| ≥ α0n
4000 ≥

α0n
214 , we get that |EW (A,B)| ≤ min{|A|,|B|}

128 ,
as required.

From our discussion, the running time of the entire algorithm is bounded by Õ(n2).
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8.3 Algorithm for the Matching Player – Proof of Theorem 8.4 As before, we call the edges of EG(R,L)
special edges, and the edges of EG(L,R) regular edges. Notice that every vertex of G may be incident to at most
one special edge.

As a preprocessing step, we construct a maximal set Q1 of disjoint paths, where every path connects a distinct
vertex of A to a distinct vertex of B, and consists of a single regular edge. We do so by employing a simple
greedy algorithm. We start with Q1 = ∅. While there is a regular edge e = (a, b) with a ∈ A and b ∈ B, we add
a path Q = (e) to Q1, and we delete a and b from A and B, respectively. Clearly, this preprocessing step can be
executed in time O(|E(G)|), and at the end of this step there is no regular edge in G connecting a vertex of A to
a vertex of B.

Let Ĝ be the graph that is obtained from G by replacing every edge e with d′ parallel copies. Edges that are
copies of special edges in G are called special edges of Ĝ, and similarly copies of regular edges in G are called
regular edges of Ĝ.

At the beginning of the algorithm, every special edge e ∈ E(Ĝ) is assigned a length `(e) = 1/d′, while every
regular edge e ∈ E(Ĝ) is assigned length 0. Clearly, at the beginning of the algorithm,

∑
e∈E(Ĝ) `(e) ≤ n holds,

as there are at most nd′ special edges in Ĝ, each of which has length 1/d′.

Over the course of the algorithm, the lengths of special edges may grow, while the lengths of regular edges remain
0. Additionally, vertices may be deleted from sets A and B. We will gradually construct a collection Q2 of paths
in graph Ĝ, where every path connects a distinct vertex of A to a distinct vertex of B; the number of special
edges on every path is at most d′; and the paths cause edge-congestion at most O(log n) in Ĝ. Initially, we set
Q2 = ∅.

We assume for now that we are given an oracle, that, when prompted, either returns a simple path Q in the
current graph Ĝ connecting some vertex of A to some vertex of B, such that the length

∑
e∈E(Q) `(e) of the path

is at most 1; or correctly establishes that such a path does not exist.

The algorithm proceeds in iterations. In every iteration, the oracle is asked to return a simple path Q in the
current graph Ĝ connecting some vertex of A to some vertex of B, such that the length

∑
e∈E(Q) `(e) of the path

is at most 1. If it successfully does so, then we add Q to Q2, double the length of every special edge on path Q,
remove the endpoints of the path from sets A and B, respectively, and continue to the next iteration. Notice that
in this case, |Q2| grows by 1, while

∑
e∈E(Ĝ) `(e) increases by at most 1. If the oracle establishes that no such

path Q exists, then we terminate the algorithm.

At the end of the algorithm, we set Q = Q1 ∪ Q2. If |Q| ≥ n/2 − z, then we return the collection Q of paths.
It is immediate to verify that the paths in Q connect vertices of A to vertices of B, and that their endpoints are
disjoint. Moreover, since the length of every special edge in Ĝ is at least 1

d′ , while the length of every path Q ∈ Q
is at most 1, each path in Q contains at most d′ special edges, and at most 2d′ + 1 edges overall, since special
and regular edges must alternate on every path. Lastly, due to the doubling of edge lengths on the paths that
we add to Q, every special edge of Ĝ may participate in at most log n paths in Q, and so in total every special
edge of G may participate in at most O(d′ log n) paths in Q. Moreover, if e = (u, v) is a regular edge, then every
path Q ∈ Q2 that contains e must also contain either the unique special edge incident to u, or the unique special
edge incident to v, while the paths in Q1 are disjoint. We conclude that the paths in Q cause congestion at most
O(d′ log n) in G.

From now on we assume that, when the algorithm terminates, |Q| < n/2− z holds. Let A′ ⊆ A, B′ ⊆ B be the
sets of vertices that remain in A and B, respectively at the end of the algorithm. Since the algorithm terminated,
in the current graph Ĝ, the length of the shortest path connecting a vertex of A′ to a vertex of B′ is at least 1.
Since |Q| < n/2− z and |A′|, |B′| = n/2− |Q|, we get that |A′|, |B′| ≥ z.

Recall that, at the beginning of the algorithm,
∑
e∈E(Ĝ) `(e) ≤ n held. Over the course of the algorithm, in every

iteration,
∑
e∈E(Ĝ) `(e) grew by at most 1, and the number of iterations is bounded by |A| ≤ n. Therefore, at the

end of the algorithm,
∑
e∈E(Ĝ) `(e) ≤ 2n holds.

Let e be any edge of graph G, and let S(e) be the collection of d parallel edges representing e in graph Ĝ. Let
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e′ ∈ S(e) be the copy of e with smallest current length `(e′). Notice that, if we set the lenghts of all edges in S(e)
to `(e′), then the length of the shortest path connecting a vertex of A′ to a vertex of B′ in Ĝ will remain at least
1. Therefore, we can assume without loss of generality, that, for every edge e ∈ E(G), the lengths of all edges in
set S(e) are identical; we denote this length by `′(e). Notice that

∑
e∈E(Ĝ) `(e) ≤ 2n continues to hold after this

transformation.

Consider now the graph G′ that is obtained from G by setting the length of every edge e ∈ E(G) to `′(e),
unifying all vertices of A′ into a source vertex s and all vertices of B′ into a destination vertex t. Since graph G′

contained d parallel copies of every edge e ∈ E(G), that all had the same length equal to `′(e), we now have that∑
e∈E(G) `

′(e) ≤
∑
e∈E(Ĝ) `(e)

d′ ≤ 2n
d′ . At the same time, since Ĝ did not contain an A′-B′ path of length at most 1,

we get that distG′(s, t) ≥ 1.

Consider the following thought experiment: we choose a threshold ρ ∈ (0, 1) uniformly at random, and then
define two sets S = {v ∈ V (G′) | distG′(s, v) ≤ ρ} and T = V (G′) \ S of vertices. Clearly, s ∈ S and t ∈ T must
hold. By replacing s with the vertices of A′ in S and replacing t with the vertices of B′ in T , we obtain a cut
(S′, T ′) in graph G with |EG(S′, T ′)| = |EG′(S, T )|. It is easy to verify that, for every edge e = (u, v) ∈ E(G′),
the probability that u ∈ S and v ∈ T is bounded by `′(e). Therefore, the expected value of |EG′(S, T )| is bounded
by
∑
e∈E(G) `

′(e) ≤ 2n
d′ . By performing a BFS search from vertex s, we can then compute a cut (S′, T ′) in G′

with |EG′(S′, T ′)| ≤ 2n
d′ . Using the procedure outlined above, we can covert this cut into a cut (S, T ) in G with

|EG(S, T )| ≤ 2n
d′ . Since A′ ⊆ S and B′ ⊆ T , we are guaranteed that |S|, |T | ≥ z. We return the cut (S, T ) and

terminate the algorithm. In order to analyze the algorithm we need to provide an implementation of the oracle,
which we do next.

Notice that the paths in Q cause congestion at most O(d′ log n) in G, so
∑
Q∈Q |E(Q)|) ≤ Õ(md′). We will use

this fact later.

Implementing the Oracle. In order to implement the oracle efficiently, we construct a new graph H, as follows.
Initially, H is obtained from G by adding a source vertex s that connects with an edge to every vertex of A, and
a destination vertex t, to which every vertex of B connects. The edges that leave s or enter t are called regular
edges.

Let q = dlog d′e. Consider any special edge e = (u, v) ∈ E(G). We replace e with q parallel edges e1, . . . , eq, whose
lengths are 1, 2, 4, . . . , 2q, respectively. Additionally, for every regular edge e′ = (x, u) that enters u, we replace
e′ with q parallel edges e′1, . . . , e

′
q, whose lengths are 1, 2, 4, . . . , 2q, respectively (the latter transformation is also

applied to the regular edge (s, u), if such an edge is present). The latter step is done in order to ensure that the
length of every edge in G is greater than 0, since this is a requirement in Theorem 2.2 that we will use. If (x, y)
is a regular edge of G with y 6= t, such that no special edge leaves y, then we delete y and its incident edges from
G, since vertex y does not lie on any s-t path. So far we have assigned lengths to all edges of H, except for some
edges that leave s, and all edges that enter t. Initially, we set the lengths of all these edges to 0. We then increase
the length of every edge that is incident to s or t by 1, thus obtaining the final lengths of all edges in H.

Over the course of the algorithm, for every special edge e = (u, v) ∈ E(G), for every index 1 ≤ j ≤ q, we monitor

the number of copies of e in graph Ĝ, whose length is 2j

d′ . Once this number becomes 0, the corresponding copy
ej of e is deleted from graph H. Additionally, for every regular edge e′ = (x, u), we also delete the corresponding
copy e′j from H. Lastly, whenever a vertex a is deleted from set A, we delete edge (s, a) from H, and whenever a
vertex b is deleted from set B, we delete edge (b, t) from H. Therefore, the only types of updates that graph H
undergoes is the deletion of edges.

It is now easy to verify that, throughout the algorithm, if Q is an s-t path in H, whose length is δ + 2, then the
length of the corresponding path Q′ in Ĝ (where for every edge e ∈ E(Q), we choose its cheapest copy in Ĝ to
participate in the path) is at most δ

2d′ . Similarly, if Q′ is an s-t path in graph Ĝ, whose length is δ′, then the
length of the corresponding s-t path in graph H (where again for every edge e ∈ E(Q′) we use its cheapest copy
available in H) is 2δ′ · d′ + 2.

It is now enough to design an algorithm for the following problem. We are given a graph H, with two special
vertices s and t, and integral positive edge lengths, together with a parameter d′ > 0. The algorithm consists of
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a number of iterations. In every iteration, we need to either return an s-t path in the current graph H, of length
at most 2d′+ 2; or correctly establish that no such path exists. In the latter case, the algorithm terminates, while
in the former case, the algorithm is given a batch of edge deletions from graph H, and we proceed to the next
iteration.

We apply the algorithm from Theorem 2.2 to graph H and parameter 2d′+2. Recall that the algorithm maintains
an ES-Tree for H, rooted in s, up to depth 2d′+ 2. We denote the corresponding tree by T . In every iteration, we
check whether vertex t lies in the tree T , and if so, whether distH(s, t) ≤ 2d′ + 2. If this is not the case, then we
terminate the algorithm. Otherwise, we use the tree T to compute a simple s-t path P of length at most 2d′ + 2
in H, in time O(|E(P )|), by simply retracing the unique s-t path in the tree T . By deleting the first and the last
vertices from P , we obtain a path connecting a vertex of A to a vertex of B in Ĝ, whose length is at most 1.

It is easy to verify that the total time needed to implement the oracle is O(|E(H)| · d′ +
∑
Q∈Q |E(Q)|), where

Q is the set containing all paths that the algorithm ever returned. As shown already,
∑
Q∈Q |E(Q)|) ≤ Õ(md′),

while it is easy to see that |E(H)| ≤ Õ(m). The total running time of the oracle is then bounded by Õ(md′).

We note that in general, the algorithm for Theorem 8.4 does not need to compute and maintain the graph Ĝ
explicitly, this graph is only used for the sake of analysis. Instead, for every special edge e ∈ E(G), for every integer
0 ≤ j ≤ dlog d′e, we only need to keep track of the number of copies of e that lie in graph Ĝ and have length 2j/d′.

Therefore, the total running time of the remainder of the algorithm is bounded by O(m+
∑
Q∈Q |E(Q)|) ≤ Õ(md′).

This includes the time required to perform a BFS in G′, in order to compute a spase cut (S, T ) if needed. The

total running time of the whole algorithm for Theorem 8.4 is then bounded by Õ(md′).
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A Proof of Observation 2.1.

For all integers i ≥ 0, let Si = BG(x, i) be the set of all vertices u ∈ V (G) with distG(x, u) ≤ i.

Let L = d/4. We claim that, if |SL| < n/2, then there is some index 1 ≤ i < L for which |EG(Si, V \Si)| ≤ ϕ · |Si|
holds.

Indeed, assume otherwise. Then for all 1 ≤ i < L, |EG(Si, V \ Si)| ≥ ϕ · |Si|. Denote Ri = Si+1 \ Si. Since every
edge in EG(Si, V \Si) must enter a vertex of Ri, and the degree of every vertex in G is at most δmax, we get that

|Ri| ≥ |EG(Si,V \Si)|
δmax

≥ ϕ·|Si|
δmax

must hold.

Therefore, for all 1 ≤ i < L, |Si+1| ≥
(

1 + ϕ
δmax

)
|Si|, and |SL| ≥

(
1 + ϕ

δmax

)L
≥
(

1 + ϕ
δmax

)d/4
.

Since d = 32δmax logn
ϕ , we get that |SL| > n, a contradiction.

For all integers i ≥ 0, we also let S′i = {u ∈ V (G) | dist(u, y) ≤ i}. Using the same reasoning, if |S′L| ≤ n/2, then
there is some index 1 ≤ i < L for which |EG(V \ S′i, S′i)| ≤ ϕ · |S′i|.

We are now ready to describe our algorithm. We run in parallel two processes. The first process simply performs a
BFS from vertex x, while the second process performs a reversed BFS from vertex y. The first process, whenever
it computes a set Si, checks whether |EG(Si, V \ Si)| ≤ ϕ · |Si|. If so, we terminate both processes and return
the cut (A,B) = (Si, V \ Si). Similarly, the second process, whenever it computes a set S′j , checks whether
|EG(V \ S′j , S′j)| ≤ ϕ · |S′j | holds. If so, we terminate both processes and return the cut (A,B) = (V \ S′j , S′j).
Since we set L = d/4, it must be the case that either |SL| ≤ n/2 or |S′L| ≤ n/2, so one of the two processes must
terminate with a sparse cut. Since we run the two processes in parallel, it is easy to verify that the running time
is bounded by the number of edges that the process that successfully terminated explored. Therefore, the running
time of the algorithm is at most O(δmax ·min {|A|, |B|}).

B Proof of Corollary 3.1.

We start by applying the algorithm from Theorem 3.1 to graph H, to obtain a collection P of Ω(∆/ poly log n) s-t
paths in H, that cause edge-congestion at most O(log n). We construct a directed graph H ′ ⊆ H, that consists
of all vertices and edges that participate in the paths of P. The capacity of every edge in H ′ remains unit – the
same as its capacity in H.

Since the paths in P cause edge-congestion η = O(log n), due to the special structure of graph H, they also cause
vertex-congestion η. Therefore, |E(H ′)| ≤ O(n log n). Additionally, by sending 1/η = Ω(1/ log n) flow units on
every path in P, we can obtain a valid s-t flow in H ′, that obeys edge capacities, whose value is Ω(|P|/ log n).

Next, we compute an integral maximum s-t flow in H ′ that obeys edge capacities in H ′, using the standard Ford-
Fulkerson algorithm. We start by setting the flow f(e) on every edge e ∈ E(H ′) to 0, and then perform iterations.
In every iteration, we use the current flow f in H ′ in order to compute a residual flow network H ′′ = H ′f . If
there is no s-t path in H ′′, then the algorithm terminates. We are then guaranteed that the value of the current
flow f is optimal, so val(f) ≥ Ω(|P|/ log n). Otherwise, we compute an arbitrary s-t path P in H ′′, and we
augment the flow f along the path P . Notice that every iteration of the algorithm can be implemented in time
O(|E(H ′′)|) = Õ(n), and the number of iterations is bounded by n. Therefore, the total running time of this

algorithm is Õ(n2). The final integral flow f can be decomposed, in time O(|E(H ′)|) = Õ(n), into a collection
P ′ of Ω(|P|/ log n) ≥ Ω(∆/ poly log n) edge-disjoint paths connecting s to t in H ′. Due to the special structure
of the graph H, the paths in P ′ are also internally vertex-disjoint. It now remains to analyze the running time

of the algorithm. The running time of the algorithm from Theorem 3.1 is Õ
(
n2.5
√

∆

)
; the running time of the

Ford-Fulkerson algorithm in graph H ′ is Õ(n2), and the time required to decompose the resulting flow into a

collection P ′ of paths is bounded by Õ(n), as discussed above. Since ∆ ≤ n, the overall running time of the

algorithm is bounded by Õ
(
n2.5
√

∆

)
.

We note that we could have used the blocking flow idea used in Hopcroft-Karp algorithm to compute the set P ′
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of paths in H ′ in time Õ(n1.5). Alternatively, we could also directly round the initial fractional s-t flow in H ′, in

expected time Õ(|E(H)|) = Õ(n), e.g. by using the algorithm from Theorem 5 in [31], that builds on the results
of [22]. The latter would however result in a randomized algorithm, and since the bottlenecks in the running time
of our algorithm lie elsewhere we use this simpler albeit somewhat slower method.

C Proof of Theorem 5.1.

Initial Transformation of Edge Lengths. We start by performing a simple transformation of the lengths of
edges, whose goal is to ensure that Γ · log n ≤ d ≤ max {4n/ε, 4Γ · log n}.

We perform the transformation in two steps. The first step is only performed if d > dn/εe. For every edge
e ∈ E(G), we let the new length ˜̀(e) be obtained by rounding the length `(e) up to the next integral multiple
of dεd/ne, and we set d̃ = (1 + 2ε)d. Consider any simple s-t path P in G. Since |E(P )| ≤ n, we get
that

∑
e∈E(P ) `(e) ≤

∑
e∈E(P )

˜̀(e) ≤ 2εd +
∑
e∈E(P ) `(e). Notice that, if P is a simple s-t path in G, with∑

e∈E(P )
˜̀(e) ≤ (1 + 6ε)d̃, then

∑
e∈E(P ) `(e) ≤ (1 + 10ε)d. Moreover, if G′ is a subgraph that is obtained

from G by deleting some edges from it, and G′ does not contain an s-t path P with
∑
e∈E(P )

˜̀(e) ≤ d̃, and∑
e∈E(P ) w(e) ≤ Γ, then G may not contain an s-t path P with

∑
e∈E(P ) `(e) ≤ d, and

∑
e∈E(P ) w(e) ≤ Γ.

Therefore, we can now replace the lengths `(e) of edges e ∈ E(G) with new lengths ˜̀(e). The problem remains
unchanged, except that now, in response to path-query, the algorithm needs to return a simple s-t path P of
length at most (1 + 6ε)d̃.

Since all edge lengths are now integral multiples of
⌈
εd
n

⌉
, we can divide the length of every edge e by

⌈
εd
n

⌉
,

obtaining a new length, that we still denote by `(e), which remains an integer. We also update d̃ by dividing its
value by

⌈
εd
n

⌉
. This scaling of the lengths of edges and of parameter d do not change the problem, but now we

are guaranteed that d̃ ≤ 4n/ε. For convenience, we will call d̃ by d from now on.

If d ≥ Γ · log n now holds, no further transformations are necessary, since we are now guaranteed that
Γ · log n ≤ d ≤ max {4n/ε, 4Γ · log n}. Assume now that d < Γ · log n. Then we multiply the lengths of all

edges by factor
⌈

Γ logn
d

⌉
, and replace d with value d ·

⌈
Γ logn
d

⌉
; this transformation does not change the problem,

but it ensures that Γ · log n ≤ d ≤ 4Γ · log n. From now on we assume that Γ · log n ≤ d ≤ max {4n/ε, 4Γ · log n}
holds. The problem remains the same, except that now, in response to path-query, the algorithm needs to return
a simple s-t path P of length at most (1 + 6ε)d.

Modified Edge Lengths. We define, for every edge e = (u, v), a modified edge length `′(e), as follows:

`′(e) = `(e) + ε ·
⌈

d
Γ·logn · w(e)

⌉
. Notice that, since 1/ε is an integer, for every edge e ∈ E(G), its modified

length `′(e) is an integral multiple of ε. Throughout, for a pair of vertices u, v in G, we denote by dist′(u, v) the
distance from u to v in the current graph G, with respect to edge lengths `′(·). We need the following simple
observation.

Observation C.1. Assume that at time τ ∈ T , there is an s-t path P in G with
∑
e∈E(P ) `(e) ≤ d, and∑

e∈E(P ) w(e) ≤ Γ. Then at time τ , dist′(s, t) ≤ (1 + 3ε) · d.

Proof. For all 0 ≤ i ≤ dlog ne, let Ei be the set of all edges e ∈ E(P ) with w(e) = 2i. Since
∑
e∈E(P ) w(e) ≤ Γ,

for all such i, |Ei| ≤ Γ
2i . We now get that:
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∑
e∈E(P )

`′(e) ≤
∑

e∈E(P )

(
`(e) +

ε · d
Γ · log n

· w(e) + ε

)

≤
∑

e∈E(P )

(1 + ε)`(e) +

dlogne∑
i=0

∑
e∈Ei

ε · d
Γ · log n

· 2i

≤ (1 + ε)d+

dlogne∑
i=0

|Ei| ·
2ε · d

Γ · log n
· 2i

≤ (1 + ε) · d+

dlogne∑
i=0

Γ

2i
· ε · d

Γ · log n
· 2i

≤ (1 + 3ε)d.

(we have used the fact that `(e) ≥ 1 for every edge e ∈ E(G)).

Throughout the algorithm, we maintain, for every vertex v ∈ V (G), an estimate d̃ist(v) on dist′(s, v). If

d̃ist(v) > 2d holds, we replace d̃ist(v) with∞. Additionally, for every edge e = (v, u), vertex u is given an estimate

d̃istu(v) on dist′(s, v) (that may be outdated). More specifically, if w(e) = 2i, then vertex v only communicates

its estimate d̃ist(v) to u in increments of ε2 ·
⌈

d·2i
Γ·logn

⌉
(it is this modification of the standard Even-Shiloach tree

algorithm that leads to the faster total update time). In other words, every time d̃ist(v) passes a threshold of

z · ε2 ·
⌈

d·2i
Γ·logn

⌉
for some integer z, vertex v communicates its current estimate d̃ist(v) to u, and d̃istu(v) is replaced

with this amount. Additionally, we maintain a directed tree T ⊆ G, that is rooted at vertex s, with all edges

directed away from the root. The tree contains all vertices v ∈ V (G) with d̃ist(v) 6= ∞. Whenever we refer to
lengths of paths or distances in the tree T , it is with respect to edge lengths `′(e) for e ∈ E(T ).

Additional Data Structures. In addition to the tree T , the estimates d̃ist(v) for vertices v ∈ V , and estimates

d̃istu(v) for edges (v, u) ∈ E, we maintain the following data structures. For every vertex v ∈ V , we maintain
a heap H(v) that contains all vertices of {u ∈ V | (u, v) ∈ E}, with the key associated with each such vertex u

being d̃istv(u) + `′(u, v). Additionally, for all 0 ≤ i ≤ dlog ne, we maintain a set Ui(v) of vertices, that contains
every vertex u ∈ V (G), such that there is an edge e = (v, u) with w(e) = 2i in G.

Invariants. We ensure that, throughout the algorithm, the following invariants hold.

I1. For every vertex v, the value d̃ist(v) is an integral multiple of ε, and it may only grow over the course of the

algorithm; the same holds for values d̃istu(v) for all edges e = (v, u);

I2. If e = (x, y) is an edge in the tree T , then vertex x is the vertex with the lowest key d̃isty(x) + `′(x, y) in

H(y), and moreover d̃ist(y) = d̃isty(x) + `′(x, y);

I3. For every edge e = (u, v), if w(e) = 2i, then d̃ist(u)− ε2 ·
⌈

d·2i
Γ·logn

⌉
≤ d̃istv(u) ≤ d̃ist(u);

I4. For all v ∈ V (G), if dist′G(s, v) ≤ 2d, then d̃ist(v) 6=∞ and d̃ist(v) ≤ dist′(s, v); and

I5. For all v ∈ V (G), d̃ist(v) ≥ (1 − ε) · dist′(s, v) holds at all times; moreover, if v ∈ V (T ), then the length of

the s-v path in the current tree T is at most d̃ist(v)
1−ε .

Initialization. At the beginning of the algorithm, we compute a shortest-path out-tree T rooted at vertex s, with

respect to edge lengths `′(·). For every vertex v ∈ V , we then set d̃ist(v) = dist′(s, v) – the distance from s to v in

the tree T . Next, we scan all vertices in the bottom-up order in the tree T . For each such vertex v, if d̃ist(v) > 2d,
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then we set d̃ist(v) = ∞, and delete v from the tree. For every edge e = (v, u) ∈ E, we set d̃istu(v) = d̃ist(v).
Lastly, for every vertex v ∈ V , we initialize the heap H(v) with the vertices of {u ∈ V | (u, v) ∈ E}, and the
sets {Ui(v)}0≤i≤dlogne of its out-neighbors. It is easy to verify that the initialization can be performed in time

O(m logm), and that all invariants hold at the end of initialization.

Next we describe the algorithms for handling vertex-splits and edge deletions.

Algorithm for Handling Vertex Splits. Consider a vertex split operation, in which we are given a vertex
v ∈ V , and a collection U = {u1, . . . , uk} of new vertices that need to be inserted into G. Recall that we are
also given a collection E′ of new edges that must be inserted into G, and for every edge e ∈ E′, we are given a
length `(e) and a weight w(e). For each such edge e ∈ E′, either both its endpoints lie in {u1, . . . , uk, v}; or one
endpoint lies in {u1, . . . , uk}, and the other in V (G) \ {v, u1, . . . , uk}. In the latter case, if e = (ui, x), then edge
e′ = (v, x) must currently lie in G, and both w(e′) = w(e) and `(e′) = `(e) must hold, so `′(e′) = `′(e). Similarly,
if e = (x, ui), then edge e′ = (x, v) must currently lie in G, and both w(e′) = w(e) and `(e′) = `(e) must hold, so
`′(e′) = `′(e).

If d̃ist(v) 6=∞, then let e = (x, v) be the unique edge that is incoming into v in the tree T . We temporarily insert,
into set E′, edges ei = (x, ui) with `′(ei) = `′(e) and w(ei) = w(e) for all ui ∈ U .

Our algorithm consists of two steps. In the first step, we set, for every vertex ui ∈ U , d̃ist(ui) = d̃ist(v). We then
inspect the edges of E′ one by one. Consider any such edge e = (a, b).

• If both endpoints of e lie in U ∪{v}, then we set d̃istb(a) = d̃ist(a), and update the corresponding heap H(b)
by inserting a into it.

• If the second endpoint b of e lies in U and the first endpoint a lies in V (G) \ (U ∪{v}), then edge e′ = (a, v)

with `′(e′) = `′(e) must be present in G. In this case, we set d̃istb(a) = d̃istv(a), and update heap H(b) by
inserting a into it.

• Similarly, if the first endpoint a of e lies in U , and the second endpoint b lies in V (G) \ (U ∪{v}), then edge

e′ = (v, b) with `′(e′) = `′(e) must be present in G. In this case, we set d̃istb(a) = d̃istb(v), and update heap
H(b) by inserting a into it.

Lastly, if w(e) = 2i, and b 6∈ Ui(a), then we insert b into Ui(a). We also update the graph G with the insertion of
the vertices of U and edges of E′. Notice that all these updates can be done in time O((|U |+ |E′|) · logm).

The second step only needs to be executed if d̃ist(v) 6=∞. In this step we delete from G the edges e1, . . . , ek that
were temporarily inserted. Our data structure is then updated using the algorithm that we describe below, for
handling edge-deletion updates.

We now establish that all invariants hold after the first step. Invariant I1 continues to hold, as we did not update

any d̃ist(a) or d̃istb(a) estimates except for the newly inserted vertices.

In order to establish Invariant I2, assume that d̃ist(v) 6= ∞, and so edge (x, v) lies in tree T . Observe that for
every vertex ui ∈ U , all vertices in H(ui) lie in H(v), except possibly for the vertices of (U ∪ v) \ {ui}. But

for every vertex a ∈ (U ∪ v) \ {ui}, d̃ist(a) = d̃ist(v) > d̃ist(x) currently holds, so the key of such a vertex a in

the heap H(ui) is greater than or equal to d̃istui(v) = d̃ist(v) = d̃istv(x) + `′(x, v) = d̃istui(x) + `′(x, ui). Since
ui is connected to x in the tree T , we get that Invariant I2 holds for ui. Consider now any vertex a 6∈ U , and
assume that some edge (b, a) lies in tree T . It is possible that we have inserted new vertices into H(a): if an edge
e = (ui, a) for some ui ∈ U lies in E′, then ui was inserted into H(a). However, in this case, edge e′ = (v, a) with
`′(e′) = `′(e) belonged to G before the current update, and so v already lied in H(a). Since `′(e) = `′(e′), and

d̃ista(ui) = d̃ista(v), the key of ui in heap H(a) is equal to the key of v, that remained unchanged. Therefore,
Invariant I2 continues to hold.

We now turn to prove that Invariants I4 and I5 continue to hold. Consider any vertex a ∈ V (G). If a 6∈ U , then it
is easy to see that dist′(s, a) did not change after the current update. This is because for any path P connecting s

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



to a in the current graph G, we can obtain a path P ′ connecting s to a in the original graph G, whose length with
respect to the modified edge lengths `′(·) is no higher than that of P , by replacing every vertex of U on P with
the vertex v. Moreover, path P ′ still belongs to the current graph since we did not delete any vertices or edges

during the current update. Since d̃ist(a) did not change, and the path connecting s to a in T did not undergo
any changes either, both invariants continue to hold for a.

Assume now that a ∈ U . Let P be the path connecting s to v in the current tree T . Since path P did not change

during the current update, from Invariant I5 , the length of this path is at most d̃ist(v)
1−ε . Notice that the last edge

on this path is e = (x, v), and recall that we have inserted an edge e′ = (x, a) into G, with `′(e′) = `′(e). By
replacing edge e with e′ on path P , we obtain a path P ′, connecting s to a, which is the unique s–a path in tree

T . Moreover, the length of P ′ is equal to the length of P , which, in turn, is at most d̃ist(v)
1−ε = d̃ist(a)

1−ε . We conclude

that dist′(s, a) ≤ d̃ist(a)
1−ε , establishing Invariant I5 for vertex a.

In order to establish Invariant I4 for vertex a, let Q be the shortest s-a path in graph G, with respect to edge
lengths `′(·). By replacing every vertex of U on this path with vertex v, and removing loops, we obtain an s-v
path Q′ in G, whose length is no higher than the length of Q. Therefore, dist′(s, v) ≤ dist′(s, a). Since we set

d̃ist(a) = d̃ist(v), we get that, if dist′(s, a) 6=∞, then dist′(s, v) 6=∞, and d̃ist(a) = d̃ist(v) ≤ dist′(s, v) ≤ dist′(s, a).
We conclude that Invariants I4 and I5 continue to hold.

It now remains to establish Invariant I3. Consider any edge e = (a, b). Notice that none of the values d̃ist(a) of

vertices a ∈ V changed, except for the vertices of U that were inserted into G. Similarly, value d̃istb(a) remained
unchanged, except if a or b (or both) are vertices that were newly inserted into G. In other words, we only need
to consider edges e = (a, b) ∈ E′.

Let e = (a, b) be any such edge. As before, we need to consider three cases. The first case happens if both

a, b ∈ U ∪ {v}. In this case, we set d̃ist(a) = d̃ist(b) = d̃ist(v) and d̃istb(a) = d̃ist(v), so the invariant clearly holds.
Assume now that a ∈ U and b 6∈ U ∪{v}. In this case, edge e′ = (v, b) was present in G before the current update,

and we set d̃ist(a) = d̃ist(v) and d̃istb(a) = d̃istb(v). Since the invariant held for edge (v, b) before the current
update, and since w(a, b) = w(v, b), the invariant holds for edge (a, b) at the end of the current update. Lastly,
assume that a 6∈ U ∪ {v} and b ∈ U . In this case, edge (a, v) was present in G before the current update, we set

d̃istb(a) = d̃istv(a) and d̃ist(a) remains unchanged. Since Invariant I3 held for edge (a, v) at the beginning of the
current update, it now holds for edge (a, b) at the end of the update.

Algorithm for Handling Edge Deletions. We now provide an algorithm for updating the data structure with
the deletion of some edge e = (x, y). First, we may need to update the heap H(y) (by either deleting x from it,
or changing the key of x in the heap, if another (x, y) edge is present in G). We may also need to delete y from
the appropriate set Ui(x); all this can be done in time O(log n). If e 6∈ T , then no further updates are needed.
We assume from now on that e ∈ E(T ). We start by deleting the edge e from the tree T .

Throughout the algorithm, we let S be the set of vertices that are not currently connected to the tree T . We will
not maintain the set S explicitly, but it will be useful for the analysis. At the beginning of the algorithm, the set
S contains all vertices that lied in the original subtree of T rooted at y.

Our algorithm maintains a heap Q that contains a subset of vertices of S that need to be examined. The key

associated with each vertex v in Q is d̃ist(v). We will ensure that the following invariant holds throughout the
update:

J1. If a is the vertex with minimum value d̃ist(a) in S, then a ∈ Q holds.

We start with the heap Q containing only the vertex y. Then we perform iterations, as long as Q 6= ∅. In order

to execute a single iteration, we let a be the vertex with smallest key d̃ist(a) in the heap Q, and we let b be the

vertex in heap H(a) with smallest key. If d̃ist(a) > 2d, then we set d̃ist(a) to ∞ and remove it from Q. We then

set value d̃ist(x) of every vertex that is currently not connected to the tree T to ∞ and terminate the update

algorithm. We assume from now on that d̃ist(a) ≤ 2d. We then consider two cases.
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The first case happens if d̃ista(b) + `′(b, a) ≤ d̃ist(a). Note that from Invariant J1, vertex b is currently attached
to the tree T . In this case, we remove a from Q and attach it to the tree T as a child of vertex b, via the edge
(b, a). Every vertex that is currently a descendant of a also becomes automatically attached to the tree T and
removed from the set S; vertex a itself is removed from S as well.

Consider now the second case, where d̃ista(b) + `′(b, a) > d̃ist(a). In this case, we increase d̃ist(a) by (additive) ε,
and keep vertex a in the heap Q. Additionally, for every integer 0 ≤ i ≤ dlog ne, such that, for some integer q,

threshold q · ε2 ·
⌈

d·2i
Γ·logn

⌉
lies between the old and the new value d̃ist(a), we consider every vertex z ∈ Ui(a). We

set d̃istz(a) = d̃ist(a) and update the key of vertex a in the heap H(z). Additionally, if z is currently a child-vertex
of a, then we disconnect z from a (so it stops being a child of a), and add z to the heap Q. This finishes the
algorithm for handling edge-deletion updates.

We start by showing that Invariant J1 holds throughout the algorithm.

Claim C.1. Invariant J1 holds throughout the algorithm.

Proof. Consider any time during the execution of the update procedure, and let a be the vertex of S with smallest

value d̃ist(a). Assume for contradiction that a 6∈ Q. Observe first that, whenever the value d̃ist(v) changes for any
vertex of S, we add v to Q. Vertex v can only leave the heap Q when it is connected to the tree T , or if we set

d̃ist(v) to ∞. Therefore, if d̃ist(a) ever changed over the course of the current update operation, then a ∈ Q must

hold. We assume from now on that value d̃ist(a) did not change over the course of the current update operation.

Let b be the parent-vertex of a at the beginning of the current update. From our algorithm, if value d̃istb(a)
ever changed over the course of the current update operation, then vertex a was immediately added to heap Q.

Therefore, value d̃istb(a) remained unchanged throughout the current update.

Denote the weight of edge (b, a) by 2i. In the next observation, we show that, at the beginning of the current

update procedure, d̃ist(b) was significantly lower than d̃ist(a). We will then conclude that d̃ist(b) must have grown

significantly over the course of the current update procedure, and so d̃istb(a) must have grown as well, leading to
a contradiction.

Observation C.2. At the beginning of the current update procedure, d̃ist(b) ≤ d̃ist(a)− ε·d
Γ·logn · 2

i−1 held.

Proof. From Invariant I2, at the beginning of the current update procedure, d̃ist(a) = d̃ista(b) + `′(b, a) held.

Recall that `′(b, a) = `(b, a) + ε ·
⌈

d
Γ·logn · 2

i
⌉
. Moreover, from Invariant I3, d̃ista(b) ≥ d̃ist(b)− ε2 ·

⌈
d·2i

Γ·logn

⌉
held

at the beginning of the procedure for processing the update. Altogether, we get that, at the beginning of the
current update procedure:

d̃ist(a) = d̃ista(b) + `′(b, a)

≥ d̃ist(b)− ε2 ·
⌈

d · 2i

Γ · log n

⌉
+ `(b, a) + ε ·

⌈
d

Γ · log n
· 2i
⌉

≥ d̃ist(b) +
ε · d

Γ · log n
· 2i−1.

Since vertex a is the vertex of S with smallest value d̃ist(a), either vertex b is currently connected to the tree T ,

or the value d̃ist(b) has grown to become at least d̃ist(a) over the course of the current update procedure.

If vertex b remained attached to the tree T over the course of the entire update procedure, then a = y must hold;
in other words, the edge that was deleted from G is (b, a). In this case, a must have been added to Q immediately
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at the beginning of the update procedure. Otherwise, if vertex b became attached to tree T at any time during
the update procedure, then each of its children was either attached to tree T together with it, or added to Q.

Since a was never added to Q, it must be the case that b was never attached to T , and so d̃ist(b) increased over

the course of the current update procedure to become at least d̃ist(a). We claim that in this case, value d̃istb(a)
must have been updated, leading to a contradiction.

Indeed, from the above calculations, over the course of the current update operation, value d̃ist(b) must have

increased by at least ε·d
Γ·logn · 2

i−1 > ε2 ·
⌈

d·2i
Γ·logn

⌉
units, (since d ≥ Γ log n and ε ≤ 1/8), and so value d̃ista(b) must

have been updated, with vertex a added to Q, a contradiction.

We now verify that Invariants I1–I3 continue to hold at the end of the update procedure, assuming that they held
before the procedure started.

First, it is immediate to verify that values d̃ist(v) for vertices v ∈ V and values d̃istu(v) for edges (v, u) are never
decreased, so Invariant I1 continues to hold.

Consider now some edge e = (v, u) with w(e) = 2i. Notice that our algorithm updates d̃istu(v) to the current

value d̃ist(v) whenever the latter passes a threshold that is an integral multiple of ε2 ·
⌈

d·2i
Γ·logn

⌉
. This ensures that

d̃ist(u)− ε2
⌈

d·2i
Γ·logn

⌉
≤ d̃istv(u) ≤ d̃ist(u) holds at all times and establishes Invariant I3.

In order to establish Invariant I2, we consider the time when some vertex v ∈ S reconnects to the tree T via an
edge (u, v). Notice that at this time, if z is a descendant of v, and no vertex on the v–z path in T was ever added

to Q, then z becomes connected to the tree T as well. If z′ is the parent of z, then d̃istz(z
′) and d̃ist(z) remained

unchanged over the course of the current update procedure, so d̃ist(z) = d̃istz(z
′) + `′(z′, z) continues to hold, and

z′ is the vertex with the lowest key d̃istz(z
′) + `′(z′, z) in the heap H(z). Consider now vertex v itself, and recall

that it reconnects to the tree T via the edge (u, v). From our algorithm, it must be the case that u is the vertex

with the smallest key d̃istv(u) + `′(u, v) in H(v), and moreover, d̃istv(u) + `′(u, v) ≤ d̃ist(v). It now remains to

show that d̃istv(u) + `′(u, v) = d̃ist(v). If the value d̃ist(v) never increased over the course of the current update

procedure, then, since Invariant I2 held at the beginning of the update procedure, and since value d̃istv(u) may

only grow, it is impossible that d̃istv(u) + `′(u, v) < d̃ist(v). Therefore, in this case, d̃istv(u) + `′(u, v) = d̃ist(v)

must hold at the end of the update procedure. Assume now that the value d̃ist(v) grew over the course of the
current update procedure, and let τ be the time when it was increased last (recall that each increase is by exactly

ε units). Then, at time τ , d̃istv(u) + `′(u, v) > d̃ist(v) held. Since value d̃istv(u) may not decrease, and since

d̃istv(u) + `′(u, v) is an integral multiple of ε, it must be the case that d̃istv(u) + `′(u, v) = d̃ist(v) at the end of
the procedure.

In order to establish Invariant I5, it is enough to show that, if v ∈ V (T ), then the length of the s-v path in the

current tree T is at most d̃ist(v)
1−ε . The proof is by induction on the number of edges on the path. The claim clearly

holds for the root vertex s. Let j > 0 be any integer. We assume that the claim holds for all vertices v ∈ V (T ) for
which the s-v path in T contains at most j − 1 edges, and prove the claim for the case where the path contains j
edges. Consider now some vertex v ∈ V (T ), and let P be the s-v path in tree T , that contains j edges. Let u be
the penultimate vertex on the path, and let P ′ be the subpath of P from s to u. Then `′(P ) = `′(P ′) + `′(u, v).
Let i be the integer for which w(u, v) = 2i. From the induction hypothesis:

`′(P ′) ≤ d̃ist(u)

1− ε
.

From Invariant I2, d̃ist(v) = d̃istv(u)+`′(u, v), and from Invariant I3, d̃istv(u) ≥ d̃ist(u)−ε2 ·
⌈

d·2i
Γ·logn

⌉
. Altogether,

we get that:
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d̃ist(v) = d̃istv(u) + `′(u, v) ≥ d̃ist(u)− ε2 ·
⌈

d · 2i

Γ · log n

⌉
+ `′(u, v) ≥ (1− ε) · `′(P )− ε2 ·

⌈
d · 2i

Γ · log n

⌉
+ `′(u, v).

Since `′(u, v) = `(u, v) + ε ·
⌈

d·2i
Γ·logn

⌉
, we get that ε2 ·

⌈
d·2i

Γ·logn

⌉
≤ ε · `′(u, v). Altogether, we get that:

d̃ist(v) ≥ (1− ε) · `′(P ) + (1− ε)`′(u, v) = (1− ε)`′(P ),

as required.

Lastly, it remains to establish Invariant I4. We first prove that, for every vertex v that lies in the tree T ,

d̃ist(v) ≤ dist′(s, v) holds. The proof is by induction on the number of edges on the shortest path (with respect
to edge lengths `′(·)) connecting s to v. Induction base is when the path consists of a single vertex and no
edges, so v = s, in which case the claim clearly holds. Assume now that for some integer j > 0, the claim holds
for all vertices v′, for which there exists a shortest s-v′ path that contains fewer than j edges. Consider some
vertex v, such that there exists a shortest s-v path P ∗ (with respect to edge lengths `′(·)), containing exactly j

edges. Let u be the penultimate vertex on this path. From the induction hypothesis, d̃ist(u) ≤ dist′(s, u). From

Invariant I3, d̃istv(u) ≤ d̃ist(u) holds, and, from Invariant I2, d̃ist(v) ≤ d̃istv(u) + `′(u, v). Altogether, we get that

d̃ist(v) ≤ d̃ist(u) + `′(u, v) ≤ dist′(s, u) + `′(u, v) = dist′(s, v). From the analysis of the algorithm it is easy to

verify that, once d̃ist(v) reaches 2d, it must be the case that dist′G(s, v) ≥ 2d. This establishes Invariant I4.

The Remainder of the Algorithm. We continue the algorithm as long as d̃ist(t) ≤ (1 + 3ε) · d holds.

Once d̃ist(t) > (1 + 3ε) · d, we terminate the algorithm and return “FAIL”. From Invariant I4, at this time
dist′G(s, t) > (1 + 3ε) ·d must hold, and, from Observation C.1, graph G may no longer contain an s-t path P with∑
e∈E(P ) `(e) ≤ d, and

∑
e∈E(P ) w(e) ≤ Γ.

Whenever a path-query arrives, we simply return the unique s-t path P in the current tree T , in time O(|E(P )|).
Since we are guaranteed that d̃ist(t) ≤ (1 + 3ε) · d, from Invariant I5,

∑
e∈E(P ) `

′(e) ≤ d̃ist(t)
1−ε ≤ (1 + 6ε)d, and so∑

e∈E(P ) `(e) ≤
∑
e∈E(P ) `

′(e) ≤ (1 + 6ε)d.

Analysis of Total Update Time. From the discussion above, the initialization takes time O(m logm), and
the total time spent on vertex-splitting updates (excluding the time spent on edge-deletion updates generated by
them) is bounded by O(m logm).

We now turn to analyze the total time spent on edge-deletion updates. Consider the algorithm for processing
the deletion of some edge e = (x, y), that lies in the tree T . Initially, we add vertex y to the heap Q, and then
inspect this vertex. Whenever any vertex v ∈ Q is inspected, we spend time O(log n) in order to decide whether

it needs to be reconnected to the tree T , and, if d̃ist(v) increases, to calculate all indices 0 ≤ i ≤ dlog ne for which

an integral multiple of ε2 ·
⌈

d·2i
Γ·logn

⌉
lies between the old and the new value d̃ist(v). We refer to this as vertex

inspection time. Additionally, for every integer i, for which an integral multiple of ε2 ·
⌈

d·2i
Γ·logn

⌉
lies between the

old and the new value d̃ist(v), we consider every vertex u ∈ Ui(v), update d̃istu(v), and possibly insert u into Q.
We call this procedure the update of out-neighbor u, and the time required to perform this update, including the
possible subsequent inspection of vertex u when it becomes the lowest-key vertex in Q, is counted as the time
required to update the out-neighbor u. However, if such a vertex u is inspected several times (in which case its

value d̃ist(u) grows with every inspection), then only the first inspection is charged to the time that v spends on

updating its out-neighbors. All subsequent times are charged to the increase of value d̃ist(u).

To summarize, the total update time due to edge deletion updates can be bounded as follows.

• Whenever an edge e = (x, y) is deleted from G, we may spend O(logm) time on inspecting vertex y. In
total this may contribute up to O(m logm) to total update time.
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• Whenever, for some vertex a ∈ V , d̃ist(a) increases, we may spend O(logm) time on a subsequent inspection

of a. Since, when d̃ist(a) reaches 2d, it is set to be ∞, and since every increase is by ε units, there can be

at most O(d/ε) such increases for each vertex a. In total this may contribute up to O
(
nd logm

ε

)
to total

update time.

• The remaining time contribution is due to out-neighbor update operations. Consider a vertex v ∈ V , and
an index 0 ≤ i ≤ dlog ne. From Property P1, the total number of vertices that at any given time lie in Ui(v)

is bounded by 2i+2. Whenever d̃ist(v) passes a threshold that is an integral multiple of ε2 ·
⌈

d·2i
Γ·logn

⌉
, we

need to update all vertices in Ui(v). Since d̃ist(v) ≤ 2d, and d̃ist(v) only grows throughout the algorithm,

there are in total at most O
(

Γ·logn
ε2·2i

)
such update operations of vertices in Ui(v). Since each such update

operation takes time O(|Ui(v)| · log n) ≤ O(2i · log n), the total time required to update all out-neighbors

of v in Ui(v) is bounded by O
(

Γ·log2 n
ε2

)
. Summing this over all indices 0 ≤ i ≤ dlogme, the total time

required for all updates of out-neighbors of v is bounded by O
(

Γ·log3m
ε2

)
, and the total time required for

all updates of out-neighbors of all vertices is bounded by O
(

Γ·n log3m
ε2

)
.

We conclude that the total update time of the algorithm is bounded by:

O

(
nd logm

ε
+m logm+

Γ · n log3m

ε2

)
≤ Õ

(
n2 + Γ · n

ε2

)
,

since d ≤ max {4n/ε, 4Γ · log n} holds.

A minor point that we have ignored so far is that, during the vertex-split updates, we may temporarily insert
some edges into the graph, which are then immediately deleted, and such edges are not included in the total
number of edges m that ever belong to G. However, every edge that ever lied in G contributes at most one such
extra edge, so the total number of edges ever present in G is at most n + m ≤ 2m, and the above asymptotic
bound on total update time remains unchanged.

D Proof of Observation 8.1.

Let ϕ′ = 64 logn
d . For all i ≥ 1, let Si = BH(v, i) = {u ∈ V (H) | distH(v, u) ≤ i} – the ball of radius i around

v. Assume first that v ∈ R. Then for all odd indices i > 1, Si \ Si−1 only contains vertices of L, while for
all even indices i > 1, Si \ Si−1 only contains vertices of R. Therefore, for every even index i > 1, all edges in
EH(Si, V (H)\Si) are special edges. We say that an even index i > 1 is acceptable if |EH(Si, V (H)\Si)| ≤ ϕ′ · |Si|.
We now claim that some even index 1 < i ≤ d−1 must be acceptable. Indeed, assume for contradiction that each
such even index i is unacceptable. Consider any such even index i. Then |EH(Si, V (H) \ Si)| > ϕ′ · |Si|. Since
all edges in EH(Si, V (H) \ Si) are special, every vertex in Si+1 \ Si is incident to exactly one such edge, and so
|Si+1 \ Si| ≥ |EH(Si, V (H) \ Si)| > ϕ′ · |Si|. In particular, |Si+2| ≥ |Si+1| ≥ (1 + ϕ′) · |Si|. Let r be the largest
even integer that is at most d− 1, so r ≥ d− 2 ≥ d/2. Then, since ϕ′ = 64 logn

d :

|Sr| ≥ (1 + ϕ′)r/2 ≥ (1 + ϕ′)d/4 =

(
1 +

64 log n

d

)d/4
> n,

a contradiction.

Our algorithm performs a BFS starting from v, until it reaches the first even index i that is acceptable. It then
returns a cut (A,B) with Si = A and B = V (H) \ A. Clearly, |EH(A,B)| ≤ ϕ′ · |A| ≤ ϕ · |A| holds from the
definition of acceptable index. Moreover, since |EH(A,B)| ≤ ϕ′ · n = 64 logn

d · n, while |B| ≥ |X| ≥ n
32 , we get

that |EH(A,B)| ≤ 211 logn
d |B| = ϕ · |B|. Therefore, the sparsity of cut (A,B) is at most ϕ. It is immediate to
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verify that this cut has all other required properties. It is also immediate to verify that the running time of the
algorithm is O(VolH(A)).

If v ∈ L, then for all odd indices i > 1, Si \ Si−1 only contains vertices of R, while for all even indices i > 1,
Si \ Si−1 only contains vertices of L. Therefore, for every odd index i > 1, all edges in EH(Si, V (H) \ Si) are
special edges. The algorithm is the same as before, except that we use odd indices i instead of even indices.
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