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Abstract

The uniform labeling problem is defined in the following way: We are given
an undirected graph G = (V, E) with a set T = {t1,...tx} C V of special
vertices called terminals, and non-negative weights we, for every e € E.
Additionally, for every v € V and for every t € T, the assignment cost c(v, t)
is specified. We need to find an assignment function f : V \ T — T which
assigns each non-terminal vertex to some terminal. Each such assignment
function has a cost, and we need to find the assignment function of minimum
cost. A cost of an assignment function consists of two parts:

1. Vertex assignment cost, which is Zyeve(v, f(v))-

2. Edge separation cost: ¥ (uu)er W(u,v)
Fuw)#5(v)

The total cost of an assignment function is the sum of the vertex assignment
cost and the edge stretch cost.

The problem can be viewed as a labeling problem, where the non-terminal
vertices represent the objects we want to label and the terminals represent
the labels. The assignment function f actually assigns to each object some
‘label. The vertex assignment costs c(v, t) reflect our initial estimation of how
likely it is that the object corresponding to v should get a label corresponding
to ¢. Finally, there is an edge between two vertices if it is likely that the two
corresponding objects should get the same label, and the higher the edge
weight is, the more likely it is that the two objects should get the same label.

For the special case of k = 2 the problem can be easily transformed to
the s-t cut problem, and can be solved in polynomial time. For all £ > 3,
the problem is NP-hard and also Max SNP-hard. Therefore, unless P =
NP, there is no polynomial time approximation scheme for the problem.
Kleinberg and Tardos showed a 2-approximation algorithm for the problem.
In this work we concentrate on two special cases of the problem. For the

4

special case of k = 3, we show a factor 3 approximation algorithm, which

matches the integrality gap of the relaxation we use. For k = 4, we show a

1
factor 3¢5=1 ~ 1.5934187 approximation algorithm, while the integrality gap
of the relaxation we use is at least 1.5.



Notations and Abbreviations

Ap — the (k—1)-simplex, which is a convex polytope in IRk,
given by: A ={z € RF|z > 0 and T z; = 1} '
|z — Forze R*, |z] is its Ly norm: |z| = vk |zl
¢ _— a unit vector with e} =1 and ei=0 for all j # 1.
le| — for a graph edge e = (u,v), | = Flz* — z”|



Chapter 1

Introduction

1.1 Introduction

The uniform labeling problem is defined in the following way: we are given
an undirected graph G = (V, F), with nonnegative edge weights w, for each
e € E and aset T = {t;---tx} C V of special vertices called terminals. For
each vertex v € V '\ T and for each terminal t € T, ¢(v,t) > 0 denotes the
cost of assigning v to t. We need to find a function f: V \ T — T, which
assigns each vertex to some terminal. The cost of an assignment is divided
into two parts:

1. Vertex assignment cost: the cost we pay for the assignment of the
vertices, which is L eve(v, f(v))

2. Edge separation cost: for each edge whose endpoints are assigned to
different terminals we pay the weight of the edge, the total being

2 (v, v)EE w(u,v)
f(u)#f(v)

The total cost of an assignment is the sum of the vertex assignment cost
and the edge stretch cost. We are looking for the assignment with minimum
assignment cost.



Intuitively, the non-terminal vertices of the graph can be viewed as objects,
and the terminals as labels. The assignment of the non-terminal vertices to
the terminals can be viewed as labeling the objects. Edges between vertices
denote that the corresponding objects are related, and the bigger the edge
cost is, the more likely it is that the corresponding objects should get the
same label. Finally, the assignment costs show how likely it is that a certain
object gets a certain label. The higher the cost c(v,t;) is, the less likely it is
that the object v should get the label ;.

For k = 2, the problem can be easily transformed to the undirected version
of the s-t cut problem of Ford and Fulkerson [4]. The transformation is as
follows: We denote by s and t the two terminals. For each vertex v € V
we add two new edges to the graph: (v,t) with the weight w(,z = ¢(v,8)
and (v,s) with the weight w(,s) = ¢(v,t). The two new edges will “pay” the
assignment cost of the vertex v. For example, if v is assigned to ¢, the edge
(v, s) is cut, and the stretch cost this edge pays is exactly W,s) = c(v,t) —
the cost of assigning v to t.

For k > 3 the problem is NP-hard and also Max SNP-hard. Therefore,
unless P = NP, there is no polynomial time approximation scheme for this
problem. Kleinberg and Tardos [8] give a polynomial time 2-approximation
algorithm, and this is the best approximation ratio previously known for this

problem.

We considered two special cases of this problem: For k = 3, we show a 45—
approximation algorithm, which matches the integrality gap of the relaxation
we use. For k = 4, we show a -335%7‘—1 ~ 1.5934187-approximation algorithm,
while the integrality gap of the relaxation we use is at least 1.3.

1.2 Related Problems

1.2.1 Metric labeling problem

The Metric labeling problem is a generalization of the uniform labeling prob-
lem, where a metric distance function d(,-) on the terminals is defined. The



vertex assignment cost remains the same, and the edge stretch cost becomes
Y (u)eEW(u) - A(f(u), f(v)). Intuitively, the distances between the terminals
show how far apart the corresponding labels are. Kleinberg and Tardos [8]
gave a factor O(log k log log k)—approximation algorithm for this problem (k
is the number of the terminals).

Gupta and Tardos [5] considered a special case of the metriclabeling problem,
where the metric is the truncated linear metric. They give a 4-approximation
algorithm for this problem.

1.2.2 Multiway cut

In the multiway cut problem we are given an undirected graph G with non-
negative edge weights, and a set of terminals. We need to assign each vertex
to some terminal, so as to minimize the total weight of the edges whose
endpoints are assigned to different terminals.

The problem can be viewed as a special case of the uniform labeling problem,
with 0 assignment costs. Dahlhaus, Johnson, Papadimitriou, Seymour and
Yannakakis [3] proved that multiway cut is Max SNP-hard. Therefore, unless
P=NP, there is no polynomial-time approximation scheme for multiway cut,
and hence for the uniform labeling problem as well. The first constant factor
approximation algorithm for this problem is due to Dahlhaus, Johnson, Pa-
padimitriou, Seymour and Yannakakis [3], who gave a 2 — Z-approximation
algorithm for this problem (k is the number of the terminals). The algorithm
is based on computing the minimum isolating cut C; for each terminal ¢; (a
cut that isolates t; from all the other terminals). Let C,, denote the maxi-
mum weight cut between Cj, ..., Ck. The multiway cut is the union of all the
isolating cuts Cj, except for C,,. Recently Cilinescu, Karloff and Rabani [1]
found a (2 — 1) approximation algorithm, using a new geometric relaxation
of multiway cut. This result was improved by Karger, Klein, Stein, Tho-
rup and Young [6], which give a (1.3438 — ¢;) approximation algorithm for
each k, using the same relaxation. For k = 3, Cunningham and Tang [2} and
Karger et al. [6] give a % approximation algorithm using the same relaxation
and also prove that i—f is the integrality gap for this relaxation. A similar
relaxation was used by Kleinberg and Tardos [8] for their 2-approximation



algorithm for the uniform labeling problem. We use the same relaxation to
achieve the approximation algorithms for the uniform labeling problem.

Dahlhaus, Johnson, Papadimitriou, Seymour and Yannakakis studied in [3]
the special case of the multiway cut problem where the graph is a planar
graph. They showed polynomial time algorithms for this problem for all
fixed values of k. For k part of an input, they showed that the problem is

N P-hard.

1.3 Work Overview and Main Methods

1.3.1 Integer Programming and Linear Programming

A general form of an integer program is as follows:

minimize cT
st. Az >b (1.1)
z; € {0,1} Vie{l,...,n}

Where ¢ € R*, b € R™ and A € R™*". Finding an optimal solution to an

integer program is an NP-hard problem.

A linear program (in canonical form) is the following:

minimize cT

s.t. Az > b, (1.3)

where ¢ € R*, b € R™ and A € R™*". Linear programs can be solved in
polynomial time, for example, using Karmarkar’s algorithm [7].

A widely used technique (which we also use in this work) for obtaining a factor
o approximation algorithms for combinatorial problems, is as follows: First,
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we express the combinatorial problem as an integer program. The entries of
A, b and c and the parameters n and m may depend on the instance of the
combinatorial problem. We denote the integer program by (IP). By relaxing
the integrality constraints (1.2), we get a linear program (LP), which is a
relaxation of (IP). Note that given any instance S of the combinatorial
problem, we can solve the corresponding instance of (LP) in polynomial
time. The solution we obtain is called an optimal fractional solution, and
it does not necessarily meet the integrality constraints (1.2) of the integer
program. To obtain a solution to the integer program, we must round the
optimal fractional solution.

So we try to comstruct a rounding algorithm A, which, given a fractional
solution of cost ¢ outputs an integer solution of cost < ac. If we succeed
in constructing such an algorithm, we can compute o-approximation for any
instance S of the combinatorial problem, by first solving the corresponding
instance of the linear program, and then applying A to the optimal frac-
tional solution. Given any problem instance S, we denote by OPT;p(s) and
OPTyp(s) the costs of the optimal integer and the optimal fractional solu-
tions for S, respectively, and we denote by Cip(s) the cost of the solution
A outputs when it is given an optimal fractional solution for S as input.
Since any feasible solution of the integer program is also a feasible solution
of the linear program, we know that OPTrpsy < OPTip(sy. - Therefore,
Cips) < a-OPTppsy < o OPTip(s), and so we get a factor a approxima-
tion.

A general way to compute a lower bound on the approximation factor which
can be achieved using the technique described above is to compute a lower
bound on the integrality gap of the relaxation.

Suppose we have an integer program (/P) and its linear relaxation (LP)
for some combinatorial problem. Let S be some instance of this problem.
Let OPTyp(s)y be the cost of the optimal fractional solution for this instance
and OPTip(s) be the cost of the optimal integer solution for this instance.
Then the integrality gap of the relaxation is the maximum of g—;%?)— over all
possible instances S of the problem. If we can show a problem instance S with
%’3—% > (3, then we cannot achieve approximation factor < (3 using the
technique described above, since no rounding algorithm A which achieves



factor < B exist: No rounding algorithm A, given the optimal fractional
solution to S of cost OPTrp(s) can output an integer solution to S of cost
< ,BOPTLP(S), since OPTIP(S) > ﬁOPTLp(S).

1.3.2 Work Overview

In chapter 2 we define the restricted multiway cut problem. This problem is
a special case of the uniform labeling problem. We write an integer program
for this problem and its relaxation — a linear program. We show that the
integrality gap of the relaxation is at least 2 — £ (k is the number of the
terminals). In chapter 3 we show two rounding algorithms for this linear
program. The first algorithm works for the special case of £ = 3 and achieves
an approximation factor of %, which matches the integrality gap for £ =
3. The second algorithm works for the special case of £k = 4 and achieves

1
approximation factor 3’9—3‘2;1 ~ 1.5934187, while the integrality gap for k = 4
is at least 1.5.

In chapter 4 we write an integer program and its linear relaxation for the
uniform labeling problem and show that the two rounding algorithms for the
restricted multiway cut problem can be used to round fractional solutions of
the uniform labeling problem (for the same values of k), achieving the same
approximation ratios.



Chapter 2

The Restricted Multiway Cut
Problem

We next define the restricted multiway cut problem, which is a special case
of the uniform labeling problem.

In the next chapter we show approximation algorithms for this problem,
which is simpler and easier to deal with than the uniform labeling problem.
In chapter 4 we show that these algorithms can also be used as approximation
algorithms for the uniform labeling problem, achieving the same approxima-
tion ratios. '

2.1 Problem Definition

In the restricted multiway cut problem, we are given an undirected graph,
G = (V, E) with non-negative edge weights w, for each (u,v) € E, and a
set of special vertices T = {t;...tx} C V called terminals. For each vertex
v € V\T alist [, C T of possible assignments to the terminals is specified.
We need to assign each non-terminal graph vertex v € V to some terminal
t € l,. The cost of the assignment is the sum of the weights of edges, whose
endpoints are assigned to different terminals.



This problem can be viewed as a special case of the uniform labeling problem,
where the assignment costs are restricted only to 0 and M, where M is a large
integer (M > X.cpw. is enough): for each v € V, ¢(v,t) = 0if ¢t € [, and
¢(v,t) = M otherwise. Indeed if there is a feasible solution to the restricted
multiway cut problem, its cost must be smaller than M. So the optimal
solution to the problem we obtained after the transformation must also have
a cost smaller than M and thus it is a feasible solution to the restricted
multiway cut problem.

2.2 Linear Program for the Restricted Mul-
tiway Cut Problem

Notation: We use Ay to denote the (k — 1)-simplex, which is a convex
polytope in IR¥, given by: Ay = {z € R*|z > 0 and Tk ,z; = 1}

For z € IR*, |z| is its L; norm: |z| = Xk |z:.

Finally, we use e’ for a unit vector with e = 1 and e§=0 for all j # 1.

The linear program: We represent each graph node v by a vector z¥ €
IRF. The vector z¥ has z¥ = 1 if v is assigned to the terminal ¢;. Otherwise,
z¢! = 0. This can be viewed as placing all the terminals on the vertices
of a (k — 1)-simplex, and then assigning the graph nodes to the terminals
by placing them on the corresponding simplex vertices. We also introduce
a vector variable z(*¥) € IR* for each (u,v) € E, and its value is 2(%?) =

|z¥ — z*|.

(MIP) Min 15, 0eEWan) - (55,2

s.t. zh = ¢ 1=1,...,k (2.1)
TElazvr=1 WYoeV
z! = YveV, Vi : &, &1,
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2 > v~ gt Y(u,w)€E, i=1,....k (2.4)
Zl(u,v) >zt —z? Y(u,v)€e E, 1=1,...,k (2.5)
22 €{0,1} WweV,i=1,...,k (2.6)

The constraints (2.4), (2.5) ensure that z™*) > |z¥ — z¥|. Since in the
objective function we want to minimize z{*", it is clear that in the optimal
solution, for each (u,v) € E and ¢ € {1,...k}, z,(u’") = |z¥ — z?| holds. Thus
the objective function is actually:

1 u v
Min Ez(u,v)EEw(u,v) ) ".’17 - "

~ In this paper we define the length of an edge e = (u,v) to be half the L,
distance in between z* and z*: |e] = Z|z* — 2”|, and thus the objective
function of the integer program is:

1
Min ‘Q‘EeeEwe - |el.

Clearly, any feasible solution for (MIP) places all the graph nodes in the
simplex vertices, which can be viewed as assigning the graph nodes to the
corresponding terminals. The constraints (2.3) ensure that each vertex v can
‘be placed only on the simplex vertices which correspond to the terminals
from [,. For each (u,v) € E, 1|z* — z*| = 0 if u,v are assigned to the same
simplex vertex, and |z — z¥| = 1 otherwise. Thus, we pay w,, for an
edge (u,v) if u and v are assigned to different terminals. Thus, any feasible
solution to (M P) gives us a solution to the restricted multiway cut problem
of the same or smaller cost. (The cost may be smaller if for some (u,v) € E

and i € {1,...,k}, the value z{*" is > |z¥ — z].)

Note also that given any solution to the restricted multiway cut problem, we
can construct a feasible solution of the same cost to the (M IP), by placing
all the graph nodes on the simplex vertices together with the terminals they
are assigned to (i.e. we set z¥ = €', where ¢ is the index of the terminal v is
assigned to), and setting 2(“*) = |z* — z*| for each (u,v) € E. Thus, (MIP)
and the restricted multiway cut problem are equivalent.

11



We denote by (M L P) the linear program obtained from (M I P) by replacing
the integrality constraints (2.6) with

V>0 VeV, i=1,...k (2.7)

This linear program can be solved in polynomial time, giving us a fractional
solution to the restricted multiway cut problem, where each graph node v is
placed on the simplex, on the facet spanned by the terminals from [,. We
will try to round this solution by placing all the nodes on simplex vertices,
while trying to increase the cost of the solution by as little as possible. Note
that we must make sure that if some vertex v is on the facet spanned by
some terminals, it will be assigned to one of these terminals. For example, if
z} = 0, then v will not be assigned to ¢; (because it is possible that ¢; & [,).

2.3 Integrality Gap of the Relaxation

Kleinberg and Tardos proved in [8] that the integrality gap of the relaxation,
which they used for the uniform labeling problem, and which we use later
in this work, is > 2 — 2. The proof of the integrality gap of our relaxation
for the restricted multiway cut problem easily follows from the proof given
in [8].

We show that for each k, the integrality gap of the relaxation (M LP) is
> 2~ % To show this, we first show an instance of the restricted multiway
cut problem and give a fractional solution for this instance of cost % We
then show that the cost of the optimal integer solution for this instance is
k — 1. Since the cost of the optimal fractional solution for this instance is
< g, the integrality gap is > k,;%l =2- %

Consider the following instance of the restricted multiway cut problem: G =
(V,E), V = {'Ul,...,’Uk} U {tl,...,tk}, T = {tl,...,tk}, E = {(U,’,’Uj)]l S
t,j <k, i# j}. Foreache € E,w, = 1. Foreachi € {1,...,k}, L, = T\{t;}

The fractional solution we propose is as follows: For each i € {1,...,k}, the

i-th coordinate of z¥ is 0, and all the other coordinates are E—i—l There are

12



('2“) edges in the graph, each one of length 1= and weight 1. Thus the cost

of the fractional solution is (';) . %%T = §

In an integer solution, we cannot assign all the vertices to one terminal, since
for each 1 € {1,...,k}, t; & l,,. So the best thing we can do is to assign all
the vertices to two terminals. It is not hard to see that the optimal integer
solution is achieved, for example, by assigning vs...v; to ¢;, and v; to t,.
The cost of this solution is k — 1, and so the integrality gap is > 4t = 2— %

[MEY
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(’;) edges in the graph, each one of length X5 and weight 1. Thus the cost

of the fractional solution is (;) . k—i—l = %

In an integer solution, we cannot assign all the vertices to one terminal, since
for each 7 € {1,...,k}, t; € l,,. So the best thing we can do is to assign all
the vertices to two terminals. It is not hard to see that the optimal integer
solution is achieved, for example, by assigning vs... vy to ¢;, and v; to t,.
The cost of this solution is k£ — 1, and so the integrality gap is > %2 = 2 — %

LM
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Chapter 3

Upper Bounds for the
Restricted Multiway Cut
Problem

We are looking for algorithms of the following form:
Alg.:

1. Choose a random permutation o of {1...k}, and let o; denote the i-th
number in this permutation.

2. Fori=1... k-1

e Choose p; € (0,1) with some distribution
e Assign to t,, all the vertices v € V with z. > p; that were not
assigned previously. ’

3. Assign to t,, all the vertices that are not assigned yet.

In order for such a solution to work, we need that £5-1p; < 1. Otherwise it
is possible that there will be some vertex v on the facet spanned by T'\ {¢,, }
(with 2, = 0), which will not be assigned in step 2, and thus will be assigned
to t,,. This can give an infeasible solution, because it is possible that t,, € L,.

14



Lemma 1 Any solution obtained by any rounding algorithm of the form
Alg., where £¥1p; < 1 is a feasible solution for the restricted multiway

cut problem.

Proof:

We must make sure that if for some vertex v and for some ¢ € {1...k},
zy = 0, then v is never assigned to %,.

Let v € V be some vertex, and suppose z; = 0 for some q € {1...k}, and
suppose ¢ = 0, J € {1...k}.

If j # k, v can only be assigned to ¢, if p; < 2 = 0, which is impossible
since p; > 0.

Now suppose that j = k. Then v can be assigned to t,, only if v was not
assigned to any of the t,, : 7 < k. This means that for each 1 < k, z7, < pi,
and thus Ef;llx;’i < ¥F21p; < 1. This is impossible, because Ef;lla:zi =1.

0 .

3.1 Some Useful Observations

The next lemma states that given a fractional solution to the restricted mul-
tiway cut problem, we can assume that each graph edge is parallel to some
simplex edge, i.e., for each graph edge, its two endpoints differ in at most 2
coordinates. The lemma was proved in [1]. We include it here for the sake
of completeness.

Lemma 2 Given a fractional solution S to the restricted multiway cut prob-
lem of cost c, one can obtain from it another solution, S', to the restricted
multiway cut problem, of cost ¢ < ¢, in which for each edge (u,v) € E, z*
and zV differ in at most two coordinates. '

Proof: While there exists an edge (v,u) € E, such that z* and z* differ in
more than two coordinates, we perform the following procedure:

15



Let g be the number of coordinates in which z* and zv differ, and let 7 be the
coordinate in which the two nodes differ, which minimizes d; = |z} —a¥|. We
assume without loss of generality, that z¥ < z¥. Since ¥ a¥ = & 2V =1,
there exists an index 7, such that z} > z¥. Note that d; = 27 — 27 2 d;.

We add a new vertex v’ to the graph, with [, = T, and set z¥" in the following
way: for each r #i,r # 7, 2V = 2?. 2¥ = 2? + d; = z¥, and :r;f’ = z¥ —d;.
We remove the edge (v, u) from the graph and add instead two new edges

(v,?) and (v',u), with Wwy = W' w) = W)

Note that z¥ and z¥’ differ in two coordinates, so the number of "bad” edges
did not increase. Note also that ¥’ and z* differ in at most ¢— 1 coordinates.
So we need to repeat this procedure at most (k — 2)|E| times.

Finally, we show that the cost of the solution did not increase. The only
change in the cost concerns the edge costs of (v,u), (v,v') and (v',u).

Before the transformation we paid [z*—z"|w(,u). After the transformation;

we pay sw(yu)(Jz¥ — z¥| + |z — z*|). Note that |z¥ — z*'| = 2d;.
|e¥ —z*] =
o =2l — (lay — o] +lay ~ 23+
b (ot et et~ di ) =
|z —z*| — di— (2% —2z¥)+2¥—di -zt =
o — 2] — 24

Since we know that z¥ > z¥ and z¥ — z% > d,.
J J J J

Thus Jw(,u(|z¥ — V| + o — 2¥)) = JW(wu 2¥ — 2*], and the cost of the
solution did not increase. O

Note that now, given an integer solution to S', we can easily transform it
to an integer solution to S of the same or even smaller cost, by removing
the additional vertices and edges we added during the transformation, and
restoring the edges from the original graph.

Thus we can assume now that in a fractional solution to the restricted mul-
tiway cut problem all the graph edges are parallel to the simplex edges — a

16



simplifying assumption which we use in our algorithms.

Lemma 3 Suppose we are given A > 0 and a fractional solution S of
(M LP) where the endpoints of each edge differ in at most two coordinates.
We can obtain from it another solution, S’, for which the following condition
holds:

For each edge e = (u,v), for each i € {1,...,k}, either both ! and z* are
> A, or they are both < A.

Proof: While there exists an edge which violates this condition, let e = (u,v)
be such an edge. We denote its length by e. We assume, without loss of
generality, that the edge’s endpoints differ in the first two coordinates, and
that =7 > z}. Thus, 2] — 2} =z} — 2} = ¢

We can only have problems with the first two coordinates of the edge’s end-
points, since all the other coordinates are equal in both endpoints.

We must take care of three cases:

1. z¥ > A > z{, but 2} and 2} are both either > A or < A.

We add a new vertex v’ to the graph, with 2V’ = A, z¥ = 22+ 2¥ — A,
and for each 2 <i <k, ¥ = z¥ = z¥. We set [, = T. We replace the
edge (v,u) by two new edges: (v,v’) and (v',u) with w, ) = Wrw) =
W(v,u)- Note that the cost of the solution remains the same:

=* — 2V = 2(a} - A)

| — =] =

|A = 2}|+ |25 — 25 -2+ A| =
|A =z} +|z] -z — 2] + Al =
2(A — zY)

Thus,b

17



Lwwwmle® = ¥ + 2w,y Jz* — a¥] =

w(u,v)(x;’ - $11‘) = %w(u,v) "xU - xu"
Note that z¥ > z¥ = A, z¥ < z¥ = A. Also z3,12%,z% are all either
> A or < A. This is because z3 < 23 < z¥.

2. ¥ > A > z3, but z} and z7 are both either > A or < A. In this
case we can exchange the first coordinate with second, v with v and
get exactly the first case. So we can proceed like in the previous case.

3. z¥ > A > z¥ and z§ > A > z}. In this case we can first "fix” the
first coordinate, as in case 1. As the result we will get two new edges,
(v,v’)) and (u,v’), with ¥,z > A, z%,27 <A, and z§ > 2y > 23 It
is possible that either z¥ > A > z¥ or 2§ > A > z3, but not both. In
this case we have to fix the second coordinate of the problematic edge,
like in case 2.

We must perform this procedure at most once for each edge.
]

Again, given an integer solution to S’ we can obtain an integer solution to S
of smaller or equal cost by removing all the additional edges and vertices we
have added to the graph and restoring the original edges.

3.2 Upper Bound for £ =3

For k = 3 we show the upper bound of %, which matches the lower bound on
the integrality gap.

The Rounding Algorithm: We use an algorithm of the form Alg. for
k=3.

The parameter p; is distributed uniformly at random in (0,1), and p; = 1—p;.
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Figure 3.1: The rounding algorithm for k = 3

Note that p; + p2 = 1, and thus, by Lemma 1, the solution is feasible.

The algorithm can be viewed geometrically in the following way: we choose
a point on the boundary of the simplex uniformly at random. Suppose we
have chosen a point z on one of the three simplex edges, we cut the triangle
with two lines which pass through this point and are parallel to the other
two simplex edges.

Analysis We show that for each edge e = {(u,v)} of length ¢, the proba-
bility that the edge is cut by the algorithm is %c. Thus the expected cost of
the solution is L(u,u)eE3W(uu)lz* — 2¥] - 5, and so the approximation ratio of

the algorithm is 2.

Let e = (u,v) be some edge of G, of length . We assume without loss of
generality that =% = z3. Thus |z} — z}| = |2} — 23| = . We consider all the
possible permutations. For each we compute the probability over all values
of p that the edge will be cut.

If the first two coordinates in the permutation are 1 and 2 (which happens
with probability 1), the edge is cut with probability < 2e.

If the first two coordinates are 1 and 3 (which also happens with probability
%), the edge is cut with probability e.

If the first two coordinates are 2 and 3, the case is symmetrical to the previous
one.
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The total probability that the edge will be cut during the algorithm is 1(2e+
e+€) = ie

3.3 Upper Bound for £ =4

Our Computational Experiment We performed computational experi-
ments similar to those performed by Karger et al. [6].

We wanted to use again an algorithm of the form Alg. So we were looking
for the distribution of p;, p2, p3, such that p; +p2+p3 < 1, which would give
us the best approximation ratio, using algorithm of the form Alg. We tried
to get some idea how this distribution looks by solving a linear program.

First, we have built a mesh (with step d). The vertices of the mesh are:

o,

)| =+ 5+=+4-=1, 4,5k, are integers}

3

ol ~
ol
alss.
Q| &
ol ~

J k
V=Ugra

There is an edge between any two vertices which are at distance § from one
another.

Note now that we need not consider all the possible values of p; (i € {1,2,3}).
It’s enough to consider the values which are multiples of L

So the variables of the linear program are all the triples (p1, p2, p3), where py,
p2, p3 are multiples of %, and p; + p2 + p3 < 1. The values of these variables
correspond to the probability of choosing this triple as a solution. Additional
variable is MC, which is the approximation factor of the solution.

We try to minimize MC, subject to the constraints that for each edge e, the
probability that the edge is cut is less than or equal to MC - |e|.

Clearly, the smaller the step (%) we choose, the bigger the linear program
becomes. So we were able to solve the linear program only for d < 18. The
best approximation ratio achieved using this way by the linear program with
d = 18 was 1.54. It shows that there does not exist a rounding algorithm
of the form presented above, which achieves approximation factor 1.5 (the
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lower bound on the integrality gap for the relaxation we use). There was also
a tendency of the solution for the linear program (the approximation factor)
to become bigger as we increased d. So it is possible that factor 1.54 also
cannot be achieved in this way.

The solution of the linear program gave us the idea of the distributions of
p1, P2, p3 in the rounding algorithm which we present here.

The Intuition: We use the algorithm of the form Alg. described above.
So we only need to specify what are the distributions of p;, p2 and p3. We
use a parameter A, and we will set its value later. We denote by [ =1—3A.

The values of p; and p; are distributed uniformly at random, between A
and 1 — 2A, such that their sum is always 1 — A. This is achieved by
choosing p; uniformly at random between A and 1 — 2A and then setting
ps =1~ A — p;. The parameter ps is distributed between 0 and A. Note
that p; + p2 + ps < A+1— A =1, which ensures that the solution is always
feasible.

Now let e = (u,v) be some edge. Assume, without loss of generality that z*
and z* differ in the first two coordinates. Clearly, this edge can only be cut
when we assign exactly one of u,v to ¢; or to t;. This cannot happen with
t3 or t4, because z3 = z% and zj = zj. Now we are only considering the
probability that the edge is cut by assigning exactly one of u,v to ¢y, and the
second case is symmetrical. We assume that zj > z7.

Recall that we can assume that either both z} and z} are > A, or they are
both < A.

If the first case is true, the edge can be cut by assigning v or u to ¢, only during
the first two cuts the algorithm performs (if o1 = 1 or o3 = 1, respectively),
but it cannot be cut during the third cut of the algorithm (because even if
o3 = 1, we choose ps3 € (0,A), and both z} and z} are > A).

If the second case is true, the edge can be cut by assigning v or u to ¢; only
during the third cut of the algorithm, if o3 = 1. This is because p1, p2 > A,
and zj,z5 < A.

Finally, we must set the distribution of p; (we only said that ps € (0,A)).
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Suppose that z¥,z¥ < A. If o3 = 1, the probability that the edge will be cut
by assigning v or u to ¢; during the third cut of the algorithm is:

< Pr

u was not assigned
on previous steps

oo = 1) - Pr(ps € [a%,22))

We will show later that the probability that u was not assigned on previous

steps is < li%xl The density function of the distribution of ps, which we

denote by P(z), is proportional to l_-;-liz

The Rounding Algorithm: We set two parameters: A =

_— - 2 .
1-3A Y
We use an algorithm of the form Alg. We must specify the distributions of
P1, P2, P3-
We choose p; uniformly at random from (A,1—2A =1+ A), and set p; =
1 — A — p;. The parameter p3 is chosen from (0,A) with density function
Pe) = b
Note that p; + p2 + p3 < 1— A+ A =1 and so the solution the algorithm
returns is feasible. '

Analysis: We show that for each edge e of length ¢, the probability to

ie—i"—l - €, and so the approximation ratio of the

1
algorithm is 25=1 ~ 1.5934187.

be cut by the algorithm is

Let e = (u,v) be some edge of length . We assume without loss of generality
that the two vertices differ in the first two coordinates and that zi > z}. Thus
|2} — z}| = |7 — 23| = .

Clearly, this edge can be cut only during assignments to ¢; or t,. We compute
separately the probabilities that the edge is cut during assignments to t, and
to tg.
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First, we compute the probability that the edge was cut during the assign-
ment to t;. We take care of 2 cases:

1. z} > A. We assume that z} > A, too. If oy = 1 (which happens
with probability }1—), the edge is cut with the probability {. The same
analysis holds if o3 = 1. If 03 = 1, the edge cannot be cut, because
p3 < A. So the probability that the edge is cut during the assignment

s l.9.e_ ¢ 3ef-1
totyis 3-2- =5 =5 €.

2. z¥ < A. Again, we assume that 2} < A, too. First, note that if oy =1
or g9 = 1, the edge cannot be cut during the assignment to ¢,, since
p1,p2 > A.

Now assume o3 = 1 (which happens with probability i) The proba-
bility that the edge will be cut during the assignment to ¢; in this case
is less than or equal to

- ( u was not assigned o = 1) ’ f:};f P(z)dz <

in previous steps

Pr ( u was not assigned s = 1) . P(z%)e

in previous steps
This is true because P(z) is monotonous decreasing in z.

We will show later that if o3 = 1, then u is assigned to some termi-

nal a,fteur the first two cuts the algorithm performs with probability
> L_:,’%ﬂ Thus the probability that u was not assigned in previous
stepsis <1 — 21;?"‘ = %‘L

So the probability that the edge is cut during the assignment to ¢; is <

u was not assigned

Pr(os=1)- Pr (

previously
114 22% 2¢ e 3es-—1
43 ((+2h)mBER T gmEA T T 4 f
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1
3e3 -1
1 €.

So the edge can be cut during assignment to ¢; with probability
By the symmetry, the edge can be cut during assignment to ¢; with the

same probability. So the probability the edge is cut by the algorithm is
1
<231 o sedol o 5034187,

Now it only remains to show that if o3 = 1 and z} < A, the probability that
u is assigned after the first two cuts of the algorithm is > 21—%’-

Claim 1 Suppose 2% ,z%, < 1—2A. Thenifzy +z3, > 1-A, u1s assigned
after the first two cuts of the algorithm with probability 1. If z3 + z7, <
1 — A, u is assigned after the first two cuts of the algorithm with probability
Ty 4Ty, —24

i il
] .

Proof:

1. Suppose =i + x5, > 1 — A and u was not assigned after the first two
cuts of the algorithm, Then z} < p1, 2}, < p2. But 1-A <7 +z7, <
p1+ p2 =1 — A. Contradiction.

2. Suppose zy +z,, < 1— A. Then the probability that u is assigned
after the first two cuts of the algorithm is:

Prip; < 2y ]+ Prlps < zj,] — Prlp < 27, and py < 7]

Since p; is distributed uniformly in (A,1 —2A), z} < 1 - 2A, and
1-3A =1, Prip < z¥] > Z=2  Note that it is possible that
z¥ < A. In this case Pr[p; <z} ] =0, and zﬂl;A— < 0.

The same computation holds for Prlp; <z} ] > fgg{—é.

Finally, we compute Pr[p; < z and p; < zj,]. Since p = 1—A—py,
this is equivalent to Pr(z¥ > p; > 1—-A—z},] = 0, because zj, +z7, <
1 —A and thus zj;, <1—-A—z7,.

So, the probability that u is assigned after the first two cuts of the

. . zs —A ¥ —A z% +z¥ ~24
algorithm is > 44— + 24— — 0 = —2—
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Claim 2 Suppose o3 = 1 and 2% < A. Then the probability that u is assigned
after the first two cuts of the algorithm is > 21_—3?_&

Proof:

First, if for any i € {2, 3,4}, z¥ > 1 — 2A, the probability that u is assigned

to some terminal by the first two cuts is 2. (This is the probability that i

3
will be chosen as one of the first two terminals. If ituha,ppens, u is surely
assigned because p;,p; < 1 —2A.) Note that 2 > i;l_ﬁ So now we assume

that for each ¢ € {2,3,4}, ¥ <1 —2A. We take care of four different cases:

Case 1: For all three pairs of coordinates (z,7) : 7,5 € {253,4} have
z¥+z¥ < 1—A. In this case, the probability that the vertex is assigned

i1 x’2‘+rg—2A z¥+ri—2A ri4Ti-28y 2rY 42y +2rf—-64A 2—21”1‘—6A _
1231 32(u ] + ] + —) = 3l =T a8 -
2o

3l

Case 2: There is exactly one pair of coordinates (z,7) : ,7 € {2,3,4} such
that z} + z¥ > 1 — A. We assume, without loss of generality, that the
pair of the coordinates is (2,3), and so z§ + z§ > 1 — A. Note that
z} < A must hold. If {5 and t3 are the first two coordinates, which
happens with probability 3, u is surely assigned. If (2,4) is the first pair
of coordinates, u is assigned with probability > xgl—A, because i < A.
The same holds for the third pair of coordinates. So the probability u

1s assigned is:

+oitey-3A _ l41-sP-3A _ 2l-g} . 20-2a}
3l = 3l = T3 <3l

%(1 + a:!;I—A + zgl—A) 2 4z

Case 3: There are exactly two pairs of coordinates (1,7) : 1,5 € {2,3,4}
such that z} -+ 2% > 1 — A. If any of these two pairs is chosen to be
the first two coordinates (which happens with probability %), u will be

assigned. So the probability that u is assigned is > % > gl_—?j_x{

Case 4: All the three pairs of coordinates have z} +z% > 1—A. This case is
33%

impossible, because it means that z% +z%+ 2§ > %(1 -A)==f—>1
3e3 -1
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Chapter 4

Upper Bounds for the Uniform
Labeling Problem

The Linear Program

We again represent each graph node v by a vector z¥ € IR*. The vector
z¥ has 2 = 1 if v is assigned to the terminal ¢;. Otherwise, z? = 0. We
also introduce vector variables z(“*) € IR* for each (u,v) € E, with values
2w = |z¥ — 2.

(UIP) Min 23(u)eEW(uw) - (E{'c:lzz(u’v)) + Yoeviere(v, ti) - x¥

s.t. rh = ¢ 1=1,...,k
Thiv=1 WweV
z}“’")Z:r}’—:c}‘ V(u,v) € E, i=1,...,k
2 > v~ v Y(u,w)€E, i=1,... .k
e €{0,1} YveVyi=1,...,k

N TN TN N N
Ot W QO DD
N N’ N’ N’ N’

Again, since the constraints (4.3), (4.4) ensure that z{** > |z* — z?| and
since we would like to decrease z™*) as much as we can, in the optimal
solution z{**) = |z* — z°|, and the objective function is actually

1
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!
Min §E(u,u)eEw(u,u) 2 — 2| + Seeverclv, i) - &}

Clearly, any feasible solution for (UIP) places all the graph nodes on the
simplex vertices. For each (u,v) € E, 1|z* — z¥| = 0 if u,v are assigned to
the same simplex vertex, and 3||lz*—z"| = 1 otherwise. Thus, we pay wy,, for
an edge (u,v) iff u and v are assigned to different terminals. For each node
v € V and for each terminal ¢; € T, if v is assigned to t;, z¥ = 1, otherwise
z? = 0. So we pay the assignment cost ¢(v,t;) iff v is assigned to #;. Thus,
any feasible solution to (UIP) gives us a solution to the uniform labeling
problem of the same or smaller cost. Given any feasible solution to uniform
labeling problem, it is easy to construct a solution to (UIP) of the same cost
by placing all the graph nodes on the simplex vertices corresponding to the
terminals they are assigned to, and setting 2(**) = |z* — z¥|. We denote by
(ULP) the linear program obtained from (UIP) by replacing the integrality
constraints (4.5) with

>0 YoeVyi=1,.. .k (4.6)

Kleinberg and Tardos proved in [8] that the integrality gap of (UIP) is
> 2 — £ for all k. We showed in the previous chapters that the integrality
gap of the relaxation we used for the restricted multiway cut problem is
> 2 - % The same example we used for proving the integrality gap of the
restricted multiway cut problem can be used here to prove the integrality gap
for the uniform labeling problem. We only need to "translate” this example
to the uniform labeling problem by specifying the vertex assignment costs.
We set them in the following way: for each v € V\T, ¢t € T, ¢(v,t) = 0 if
t € l,, and ¢(v,t) = Lecpwe + 1 otherwise.

The next lemma shows that the approximation algorithms we used for the
restricted multiway cut problem can be used to round the fractional solution
of the uniform labeling problem, obtained from (ULP), achieving the same
approximation ratios.

Lemma 4 The two rounding algorithms for the restricted multiway cut prob-
lem for k = 3 and for k = 4 presented in the previous sections can be used
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for approzimation of the uniform labeling problem for the same values of k,
achieving the same approzimation factors.

Proof: Let A be any of the two rounding algorithms from the previous
sections, with approximation ratio a (while o =_§ for the algorithm for £ = 3

and a = %‘—l for the algorithm for k = 4). We use the fact that for any edge
e of length ¢, the probability that A will cut e is < ea. (This fact was proved
for both algorithms while analyzing their approximation ratios). Another
fact we use is that the distribution of the cuts A chooses is independent of
its input.

Suppose we are given an optimal fractional solution S to the uniform labeling
problem obtained from solving (ULP). We denote by ¢, its vertex assignment
cost, and by ¢, its edge stretch cost. The total cost of S is ¢; +¢;. We use A to
round this fractional solution and to obtain integer solution A(S). The cost
of the solution A(S) also consists of 2 parts: vertex assignment cost which
we denote by a;, and edge stretch cost which we denote by a;. We need to
prove that a; + a; < a(e; + ¢2). Since A is a factor-a rounding algorithm for
restricted multiway cut problem, we know that a; < ac,. It remains to show
that a; < ac;.

Claim 3 For each v € Vand for each t; € T, the probability that A assigns
v tot; is < azx).

Proof: Suppose, by contradiction, that the claim is wrong. Then there exist
veV,1€{l...k}, such that the probability that A assigns v to ¢; is > az?.
We can add to the fractional solution a new vertex u on the facet spanned
by T'\ {t;}, and a new edge (v, u), such that Z|z* — z*| = ¥, and wy, ) = 1.
Note that A cannot assign u to t;. So if A assigns v to t;, the edge (u,v)
is surely cut. We know that the probability that A cuts the edge must be
< oa-1-]z* —2¥| = az?, and also that this probability is greater than or
equal to the probability of assigning v to t;. Thus v is assigned to t; with
probability < az?. Since the distribution of the cuts does not depend on the
input, adding the edge could not change the probability of assigning v to ¢;.
This 1s a contradiction to the fact that before adding the edge, A assigned v

to t; with probability > az?.
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Note that we can add an edge (v, u) from v to the faced spanned by T'\ {t;}
of length z?, by defining:

gt = (zV 4 dy, 2y + iy, 0,28y + dig, oo, 2+ di)

while ¥;.;d; = z¥ and for each j # ¢, z¥ +d; < 1. This is possible because
St et=1.0

We now complete the proof of Lemma 4. The expected value of a; is the
sum of expected values of the vertex assignment costs of all the vertices. For
each v € V, the expected value of the assignment cost is

Prlv is assigned to t;] - ¢(v,t;) < Byerazic(v, ), and so the expected value
of ay is < Lyevperazic(v,ti) = acy.

O
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