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Abstract

The Metric Labeling problem is an elegant and powerful
mathematical model capturing a wide range of classifica-
tion problems. The input to the problem consists of a set
of labels and a weighted graph. Additionally, a metric dis-
tance function on the labels is defined, and for each label
and each vertex, an assignment cost is given. The goal is
to find a minimum-cost assignment of the vertices to the la-
bels. The cost of the solution consists of two parts: the as-
signment costs of the vertices and the separation costs of the
edges (each edge pays its weight times the distance between
the two labels to which its endpoints are assigned).

Due to the simple structure and variety of the applica-
tions, the problem and its special cases (with various dis-
tance functions on the labels) have recently received much
attention. Metric Labeling has a known logarithmic ap-
proximation, and it has been an open question for several
years whether a constant approximation exists. We refute
this possibility and show that no constant approximation
can be obtained for the problem unless P=NP, and we also
show that the problem is ����� �	��

��� -hard to approximate,
unless NP has quasi-polynomial time algorithms.

1 Introduction

The metric labeling problem, introduced by Kleinberg
and Tardos [13], captures a broad range of classification
problems that arise in computer vision and related fields.
In such classification problems, labels from a given set �
are assigned to a set � of � objects on which a pairwise
relationship is defined. The pairwise relationships between
the objects are represented by a weighted undirected graph��� ��������� , where ����������� represents the strength of the
relationship between � and � . We assume that a metric dis-
tance function  is defined on the label set. The objective is
to find a labeling, a function !#"$�&%'� , that maps objects
(
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to labels, where the cost of ! , denoted by *+��!,� , has two
components.

- For each �/.0� , 1#.2� , there is a non-negative as-
signment cost 34���$��15� for labeling vertex � with label
1 .

- For each edge 6 � �����7�8�9.:� , the cost of labeling
��������� by ��!����;�<��!������=� is �����������?>5 ;��!@���,�A�7!����8�B� .

Thus,
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and the goal is to find a labeling ! of minimum cost.
Metric labeling has rich connections to some well known

problems in combinatorial optimization. A special case
of metric labeling is the 0-extension problem, studied by
Karzanov [11, 12]. There are no assignment costs in this
problem, however, the graph contains a set of terminals,R<S �NTNT5T=� RBU , where the label of terminal

R=V
is fixed in advance

to W , and the non-terminals are free to be assigned to any of
the labels. As in the metric labeling problem, a metric is de-
fined on the set of labels. Clearly, the X -extension problem
generalizes the well-studied multiway cut problem [7, 4, 10]
in which the metric on the label set is the uniform metric.

Kleinberg and Tardos [13] obtained anY �Z�	�8
\[
�	�8
Q�	��
Q[]� -approximation algorithm for the
general metric labeling problem, where [ denotes the
number of labels in � , using the probabilistic tree embed-
ding technique [2, 3]. This bound was recently improved
to
Y �Z�	�8
\[$� [8]. Kleinberg and Tardos [13] also gave a^

-approximation for the uniform metric using a linear
programming formulation.

Chekuri et al. [6] gave a natural linear programming for-
mulation for the general metric labeling problem. A solu-
tion to this linear program is an embedding of the graph
in a [ -dimensional simplex, where the distance between
points in the simplex is defined by a special metric, the earth
mover’s metric (EMD), and not by the (standard) 1 S met-
ric. Chekuri et al. [6] showed that the integrality gap of the
formulation for general metrics is at most the distortion of
a probabilistic tree embedding of the given metric  , i.e.,Y �Z�	�8
\[$� [8].



Călinescu et al. [5] considered approximation algorithms
for the X -extension problem via the metric relaxation linear
programming formulation, originally studied by Karzanov
[11], and obtained an

Y � � �8
Q[]� -approximation algorithm for
general metrics. We note that their formulation does not
apply to the metric labeling problem. A lower bound of
��� � �	��
Q[]� on the integrality ratio of the metric relaxation
was also established by [5]. However, the proof of this
lower bound does not seem to carry over in any straight for-
ward way when using the linear programming formulation
of [6] specialized to the 0-extension problem.

Our Results A question that has intrigued many re-
searchers since the appearance of [13] is whether there ex-
ists a constant factor approximation algorithm for the metric
labeling problem. We show that there is no constant fac-
tor approximation for metric labeling if P

��
NP, and an

��� � �	��
Q��� -hardness if NP
��

DTIME � � poly
J�� ���
	 M��

. In fact,
we show that the result even holds for the special case of
metric labeling called ��X$��
/� -extension. In this problem,
the assignment costs of the vertices are either X or 
 , or
equivalently, each vertex �#. � has a list of labels, � ����� ,
to which it is allowed to be assigned. The cost of the solu-
tion then only consists of the edge separation cost. We note
that Chekuri et al. [6] have shown that the ��X]��
 � -extension
problem is equivalent to the general metric labeling prob-
lem.

Organization We start in Section 3 with a simple ������ � -hardness proof (for any constant X�� � ��� ) for the
��X]��
/� -extension problem. This proof provides the intuition
and motivation for the new techniques and ideas needed to
obtain the stronger hardness bounds shown in Section 4.

2 Preliminaries

We perform our reduction to metric labeling from the
gap version of Max 3SAT(5). The input to the problem is
a CNF formula � with � variables and � 	� clauses. Each
clause consists of � literals and each variable participates in�

clauses, appearing in each clause at most once.
Let � , X�������� , be a constant and let � be an instance

of Max 3SAT(5). Then � is called a Yes-instance if there is
an assignment that satisfies all the clauses, and it is called
a No-instance (with respect to � ) if any assignment satisfies
at most a fraction � �!�"��� of the clauses. The following well
known theorem was proved by [1].

Theorem 2.1 There is a constant � , X#�$�%�&� , such that
it is NP-hard to distinguish between Yes-instances and No-
instances of the Max 3SAT(5) problem.

For the sake of completeness, we provide a description
of the following standard two-prover protocol for the Max
3SAT(5) problem. Given a 3SAT(5) formula � :

- The verifier randomly chooses a clause ' from the for-
mula � and one of the variables ( belonging to ' .
Variable ( is called the distinguished variable.

- Prover 1 receives clause ' and is expected to return an
assignment to all the variables appearing in the clause.
Prover 2 receives variable ( and is expected to return
an assignment to ( .

- After receiving the answers of the provers, the verifier
checks that the answer of prover 1 defines a satisfy-
ing assignment to clause ' and that the assignments of
prover 1 and prover 2 to variable ( are identical.

The following well known theorem follows from Theorem
2.1.

Theorem 2.2 If � is a Yes-instance, then there is a strategy
of the provers such that the verifier always accepts. If �
is a No-instance, then for any strategy of the provers, the
acceptance probability is at most �)�*��+� � .

3 A Simple ,�-/.�021 Hardness

In this section we present a simple ���3� � � -hardness for
the ��X$��
/� -extension problem (for any constant X%� � �4� )
and also provide some intuition as to the new ideas needed
to improve this bound.

We start by amplifying the soundness of the
^
-prover

protocol presented above by means of parallel repetitions
of the protocol, a usual practice in PCP reductions. The
number of repetitions is a sufficiently large constant 1 . The
new protocol proceeds as follows.

- The verifier chooses, randomly and independently, 1
clauses ' S �5TNTNT7��'65 from the input formula � . For each
W , �87&W67 1 , the verifier chooses, randomly and inde-
pendently, one variable ( V belonging to ' V .

- Prover 1 receives clauses ' S �NT5TNTB��'65 and is expected to
return an assignment to all the variables appearing in
the clauses, such that all clauses are satisfied. Prover 2
receives variables ( S �NT5TNT���(95 and is expected to return
an assignment to these variables.

- After receiving the answers of the provers, the verifier
checks that the answer of prover 1 defines satisfying
assignments to clauses ' S �NT5TNT���' 5 and that the assign-
ments of prover 1 and prover 2 to variables ( S �5TNT5T���( 5
are identical.



The following theorem follows from the well known Raz
parallel repetition theorem [14], which bounds the error
probability of the above protocol.

Theorem 3.1 If � is a Yes-instance, then there is a strategy
of the provers such that the verifier always accepts. If �
is a No-instance, then for any strategy of the provers, the
acceptance probability is at most

^���� 5 for some universal
constant � .

Let * S denote the set of all the possible queries to prover
1 (i.e., each query �P. * S is an 1 -tuple of clauses). Given a
query � S . * S , let � ��� S � denote the set of all the possible
answers of prover 1 to query � S , i.e., � ��� S � is the set of
all the possible assignments to the variables that appear in
the clauses of � S that satisfy these clauses. Similarly, *
	
denotes the set of all the possible queries to prover 2 (each
query is an 1 -tuple of variables), and given � 	 . * 	 , � ��� 	 �
is the set of all the possible answers of prover 2 to query � 	 .

The set of labels is defined as follows. For every possi-
ble query to each one of the provers and for every possible
answer to this query, there is a label, i.e.,

� ��� 1 ���G�
������� . * S�� *�	���� .�� ���4���
The metric distance function on the labels is defined by

a label graph
���

. The vertices of this graph are the labels,
and the metric distance between the labels is the length of
the shortest path in this graph. Consider some random string� of the verifier, and let � S , ��	 be the queries sent to the
provers when the verifier chooses � . Let � S .�� ��� S �<����	 .
� ��� 	 � be a pair of consistent answers to these queries. Then
there is an edge of length � between 1���� S ��� S � and 1���� 	 �
� 	 �
in
� �

. Note that since each edge connects a label belonging
to prover 1 and a label belonging to prover 2, the graph is
bipartite. Therefore, for any random string � , if � S . * S ,
� 	 . * 	 are the queries sent to the two provers when the
verifier chooses � , and � S .�� ��� S � , � 	 .�� ��� 	 � are incon-
sistent answers to these queries, then the distance between
labels 1���� S �
� S � and 1 ��� 	 �
� 	 � in graph

� �
is at least � .

We now proceed to define the input graph. For every
query � . * S � * 	 , there is a vertex �$���4� . This vertex
can be assigned only to those labels that correspond to this
query, i.e.,

� ��� �$���4������. * S � *!	"�

� ���]���4�B� �#� 1����G�
������� .�� ���4���
The edge set consists of edges connecting every pair of

vertices �$��� S �<���]����	N� , such that � S . * S , �$	 . *!	 , and for
some random string of the verifier, the queries � S and ��	 are
sent to provers 1 and 2. All edges have unit weight. Note
that for each random string of the verifier there is exactly
one edge corresponding to it.

Yes-instance If � is a Yes-instance, then there is a strat-
egy of the provers such that their answers are always ac-
cepted by the verifier. This strategy defines the assign-
ments of the vertices to the labels, namely vertex �$���4� for
� . * S%� *!	 is assigned to label 1����G��� � , where � .&� ���4�
is the answer of the corresponding prover to query � under
the above strategy. Consider some random string � of the
verifier and the queries � S . * S �'� 	 . * 	 that are sent to
the provers when the verifier chooses � . Let � S .(� ��� S � ,
� 	 .)� ��� 	 � be the answers of the provers according to
the above strategy. Note that vertices �$��� S � , �]��� 	 � are as-
signed to labels 1���� S ��� S � , 1���� 	 ��� 	 � and that the answers
� S and � 	 of the provers are consistent. Therefore, there is
an edge in the label graph between the labels 1���� S ��� S � and
1���� 	 ��� 	 � , and thus the distance between the two labels (and
the cost incurred by the edge between �$��� S � and �$��� 	 � ) is � .
The total cost of the solution is therefore � *+� , where * is
the set of all the random strings of the verifier.

No-instance Consider any solution to the problem. Note
that the assignments of the vertices to the labels define
a strategy of the provers (the assignment of vertex �$���4� ,
�9. * S,� *!	 to label 1 ���G�
��� , � .-� ���4� , implies that the
answer of the corresponding prover to query � is � ). Let
*/. � * be the set of random strings of the verifier for which
the answers of the two provers are inconsistent. Following
Theorem 3.1, � *�.0�21 �)� � ^3�2� 5 �$� *+� . Consider such a ran-
dom string � .&*/. and let � S �'� 	 be the queries that are sent
to the provers given � . Let 1���� S �
� S � , 1���� 	 �
� 	 � be the la-
bels to which the vertices �$��� S � , �$��� 	 � are assigned. As the
answers � S , ��	 of the provers are inconsistent, the distance
between the two labels (and hence the cost of the edge be-
tween �]��� S � and �]����	5� ) is at least � . Therefore, the total cost
of the solution is at least �]� � � ^3��� 5 �$� *+� � � �]� � � � �$� *+� ,
where

�
is an arbitrarily small constant.

As the gap between the costs of Yes and No instances is
�]�)� � � � , and the size of the construction is polynomial in � ,
we have that ��X]��
/� -extension is �]�)�*� � � -hard to approxi-
mate for any constant

�
, unless P=NP.

It is not hard to see that the analysis is tight. Given a
pair of labels 1���� S �
� S � , 1���� 	 ��� 	 � , such that for some ran-
dom string of the verifier, queries � S and � 	 are sent to the
two provers and the answers � S , � 	 to these queries are in-
consistent, we show that there is a path of length � in graph� �

between these two labels. Let � S � ��' V�4 �5TNT5T���' V65 � and
� 	 � � ( V�4 �5TNT5T���( V65 � . Note that for each 7 " ��787 7 1 , ( V69 is
one of the variables of clause ' V69 . Let (�.V 9 and (:.;.V 9 denote the
other two variables. The path of length � between the two
labels is <Z1���� S ��� S �A��1�����.	 ����.	 �A��1���� S �
�/. S �<� 1�����	4����	<��= , where
��.	 � ��(�.V 4 �NT5TNT���(:.V 5 � and �/.	 contains assignments to
� (:.V 4 �5TNTNT7��(:.V 5 � identical to those in � S . For each 7 " � 7
7 701 , the assignment to clause ' V 9 that appears in �/. S is
as follows. The assignment to ( V69 is the same as in � 	 , the



assignment to ( .V 9 is the same as in � . 	 , and the assignment
to (:.;.V 9 is set in such a way that clause ' V 9 is satisfied.

One can see that even though the answers � S and � 	
of the provers might be inconsistent in many coordinates,
there is still a short path between the two labels. In order to
improve hardness, it would be useful to ensure that if two
answers are inconsistent in almost all the coordinates, the
length of the shortest path between the two corresponding
labels is ��� 1A� (so in a way we “correct” one coordinate at a
time). This is the intuition behind the construction and the
[ -prover protocol in the next section.

4 The Main Hardness Result

In this section we show ����� �	��

�,� hardness of ��X$��
/� -
extension. We start by defining a new [ -prover protocol
to 3SAT(5). The protocol is then used in a way similar to
section 3 construction to obtain a better hardness result.

4.1 A New [ -Prover Protocol

We define a new [ -prover protocol which is based on
the basic two-prover protocol. We use the new protocol in
our construction setting [ �

poly �Z�	��

��� . We denote the
provers by � S �NT5TNTB��� U . The protocol is as follows.

- For each ��W=� 7 � , � 7 W3�#7 7 [ , the verifier chooses,
randomly and independently, a clause ' V�� and a dis-
tinguished variable ( V�� belonging to the clause. Prover
� V is then sent the clause ' V�� (and is expected to re-
turn an assignment to all the variables appearing in the
clause), and prover � � is sent the variable ( V�� (and is
expected to return an assignment to the variable). Each
prover ��� , for � ��� � [ and � �� W=� 7 , is sent both
clause ' V � and variable ( V�� and is expected to return an
assignment to all the variables appearing in ' V�� . Thus,
a query � sent to prover � V has �

U
	 � coordinates. Coor-

dinate ���,��	<� of the query, ���
	 , is the following:

– if W � � , then the coordinate contains '���� .
– if W � 	 , then the coordinate contains ( ��� .
– if W �� �;��	 , then the coordinate contains both '����

and ( ��� .
- After receiving the answers of the provers, the verifier

checks, for each coordinate ��W=� 7�� , �37 W6�87�7 [ , that
the answers of all the provers are consistent, i.e., all
the provers �
� , � �� 7 , return an identical assignment
to the variables of ' V � , and the assignment of prover
� � to variable ( V�� matches the assignments of all the
other provers.

We note that our [ -prover system departs from standard
protocols in several ways. First, we do not use Parallel
Repetitions theorem here, and there is no need to amplify
the soundness of the protocol. Observe also that for each
prover �
� , for each coordinate ��W=� 7�� ",W=� 7 �� � , the prover
receives both the clause ' V � and the distinguished variable
( V�� . Clearly, some of the information the prover receives
is redundant. Indeed, in [ -prover systems (e.g., [9]), the
provers usually receive either the clause or the distinguished
variable, but not both. However, this sending of redundant
information to the provers is essential for our reduction. In-
tuitively, it will ensure that if, for some random string � , the
answers of the [ provers are inconsistent in many coordi-
nates, then the distances between the corresponding labels
are long.

We denote the set of all the random strings of the verifier
by * . Given a random string � .&* , for each W , �37 W67 [ ,
let � V � � � be the query sent to prover � V when the verifier
chooses the random string � , and let * V be the set of all the
possible queries of prover W . For each W�"*� 7DW87 [ , for
each � V . * V , let � ��� V � denote the set of all the possible an-
swers of prover � V to query � V , which satisfy all the clauses
appearing in the query.

Definition 4.1 Consider a pair of provers � V and � � , ��7
W � 7"7:[ , and let � V . * V , � � . * � be a pair of queries,
such that for some random string � .-* , � V � � V � � �<��� � �
� � � � � . Let � V and � � denote the answers of the provers to
the queries. We say that the answers are weakly consistent
if the assignments to ' V�� and ( V�� in � V and � � respectively
are consistent. The answers are called strongly consistent
if they are also consistent in every other coordinate, i.e., for
each ���;��	A� , �37
����	 7 [ , where ���;��	<� �� ��WB� 7�� :
- If both coordinates � V ���;��	A� and � � ���;��	<� contain clause

' ��� and variable ( ��� , then the assignments to clause
' ��� in � V and � � are identical.

- If one of the coordinates � V ���;��	A� and � � ���;��	A� contains
clause ' ��� and the other contains clause ' ��� and vari-
able ( ��� , then the assignments to clause ' ��� in � V and
� � are identical.

- If one of the coordinates � V ���;��	A� and � � ���;��	A� contains
variable ( ��� and the other contains clause ' ��� and
variable ( ��� , then the assignments to clause ' ��� and
variable ( � K � in � V and � � are consistent.

Theorem 4.2 If � is a Yes-instance, then there is a strategy
of the [ provers such that the verifier always accepts. If �
is a No-instance, then for any strategy of the provers, for
every pair of provers � V and � � , W*�(7 , the probability that
their answers are weakly consistent is at most �)�*� +� � .
Proof. Assume otherwise. Let � V and � � be a pair of
provers such that the probability that their answers are



weakly consistent is more than �)�3� +� � . We partition the
set of random strings * into classes, such that within each
class the random strings are identical except for the clause
' V � and the distinguished variable ( V�� . Each such class, (to-
gether with the corresponding queries and answers to the
queries), can be viewed as a two-prover protocol (while we
ignore all the coordinates of the queries and the answers
except for ��WB� 7�� ). As the probability of obtaining a pair of
weakly consistent answers is more than � �8� +� � , at least
for one of the classes, the probability that the verifier ac-
cepts is greater than � �8� +� � . This defines a strategy for
the two-prover protocol, where the acceptance probability
by the verifier is greater than � ��� +� � , contradicting Theo-
rem 2.2. �
4.2 The Graph and the Label Set

In this section we construct from a 3SAT(5) formula � an
instance of the ��X]��
/� -extension problem. Our construction
is based on the [ -prover system described above.

The set of labels � consists of two subsets:

Query Labels: for each prover � V , � 7 W�7 [ , for each
query � . * V , and for each answer ��. � ���4� to the
query � , there is a label 1 ��� V ���G�
��� .

Constraint Labels: consider a random string � of the ver-
ifier. Let � S �5TNT5T���� U , be any collection of possible an-
swers of the provers to the queries � S � � �A�5TNT5T���� U � � � ,
i.e., for each � 7DW 7 [ , � V . � ��� V � � �B� . Moreover,
assume that these answers are accepted by the verifier,
(i.e., � S �5TNT5T���� U are strongly consistent). Then, there
is a label 1 � � ��� S �
� 	 �5TNTNT7��� U � .

We now define a graph
��� ��� �7��. � on the label set. The

metric on the label set is implied by the shortest path dis-
tance function in the graph. The vertices of

���
are the

labels and the edges are defined as follows. Consider a
constraint label 1 � 1�� � �
� S �
� 	 �5TNTNT7��� U � , Then, for each
W , � 7 W87 [ , there is an edge of length

S
	 between 1 and

1 ��� V ��� V � � �<��� V � .
Thus, the graph is a collection of stars, while some stars

share some of their leaves (see Figure 1).
We now proceed to define a graph

� � ������� . The vertex
set � is the union of two vertex sets: a set of query vertices,
denoted by � S , and a set of constraint vertices, denoted by
�3	 .
Query Vertices: for each prover � V , �#7 W%7�[ , and for

each query ��. * V , there is a vertex �]��� V ���4� . Thus,

� S � � �]��� V ���4� � ��7 W 7 [ and �P. * V �
Vertex �]��� V �'�4� can only be assigned to the labels cor-
responding to ��� V ��� V � , i.e.,

�������	��
���
�
�
��	�����

���������	���������	�	�����

���������������������	�����
����� ���	���!�������	���	�

�����"
��	��
	�����	����
#�

Figure 1. Edges in the graph of labels incident
to 1�� � ��� S �5TNTNTB��� U �

� ���$��� V �'�4�=� � � 1���� V ���G�
��� � � .�� ���4� �
Note that assigning �]��� V ���4� to a label in � ���$��� V ���4�B�
defines an answer of prover � V to query � .

Constraint Vertices: for each random string � , there is a
vertex �]� � � , i.e.,

��	 � � �]� � ��� � . *��
Vertex �$� � � can be assigned only to labels cor-
responding to � , i.e., � ���]� � �B� consists of labels
1�� � ��� V �5TNT5T���� U � , such that $ W=�%� V . � ��� V � � �B� and
� � S �NTNT5T�� U � are strongly consistent.

The edges of the graph are as follows. Every con-
straint vertex �$� � � is connected to every assignment vertex
�]��� V ��� V � � �B� by a unit-weight edge (see Figure 2).

% �����

% ��� � ��� � �����#�

% ��� � �	� � �����&�
% ��� � �	� � �����&�

% ��� 
 ��� 
 �����#�

Figure 2. Edges incident to �]� � �

The graph is therefore a collection of stars that can have
common leaves.

4.3 Hardness of Approximation Proof

4.3.1 Yes-Instances

We assume that formula � is a yes-instance. Consider a
strategy of the provers for which the acceptance probability



of the verifier is � . For every prover � V , ��7 W 7 [ , for every
query � . * V , let !@���4��. � ���4� be the answer of prover � V
to query � under this strategy. (Clearly, ! is derived from
the satisfying assignment to � .) Note that for each random
string � , !���� S � � �B�A�5TNTNT7��!���� U � � �=� are strongly consistent. We
define the following labeling of the graph

�
(see Figure 3).

- For each random string � .&* , vertex �$� � � is assigned
to label 1�� � ��!���� S � � �B�<�NTNT5T���!@��� U � � �B�=� .

- For each W+"�� 7 W�7 [ , �#.:* V , vertex �]��� V ���4� is
assigned to label 1���� V ���G�7!����4�=� .

Consider an edge in the graph
�

between �$� � � and
�]��� V �'� V � � �B� , � .-* , �87&W*7 [ . Vertex �$� � � is assigned to
label 1�� � ��!���� S � � �B�A�5TNT5T���!@��� U � � �B�=� and vertex �]��� V ��� V � � �B� is
assigned to label 1��=��� V ��� V � � �<��!���� V � � �B�B� . Thus, the separa-
tion cost of the edge is

S
	 , since the distance between the two

labels is
S
	 . Hence, the total cost of the solution is

S
	 >B[ >�� *+� .

4.3.2 No-Instances

We assume that formula � is a no-instance. We prove that
the cost of any solution to the metric labeling instance is at
least � U 	 � > +� > � *+� . Observe that the assignment of the query
vertices to query labels defines a strategy of the provers. We
concentrate on this strategy and define the set � � *���� [����
� [�� .
Definition 4.3 For � . * , �87&W*�(7 7&[ , � � �7W=� 7�� .	� �
*
��� [������ [�� if and only if the answers of provers � V and � �
to queries � V � � � and � � � � � , respectively, (under the above
strategy) are not weakly consistent.

The following proposition is a direct consequence of Theo-
rem 4.2.

Proposition 4.4 � �
� 1 �
U
	 � > +� > � *+� .

Consider an edge 6 . � and assume that the endpoints
of the edge are assigned to labels 1 S and 1 	 . We denote
by 
�� the shortest path between the labels 1 S and 1 	 in the
graph of labels

� �
. Note that the length of 
�� is exactly

the cost paid by edge 6 , and the solution cost is � � F4O � 
�� � .
We define the set � . � *���� [������ [�� as follows. Consider
a random string � .#* and a pair � V and � � , � 7 W=� 7 7
[ , W �� 7 of provers. Let 6 be the edge between �$� � � and
�]��� V �'� V � � �B� . Then, � � �7W=� 7�� .�� . if and only if the path 
 �
contains a label belonging to prover � � (i.e., a label of the
form 1���� � ���G��� � , for some � .&* � ��� .�� ���4� ). Observe
that the cost of the solution is at least � ��.0� .
Lemma 4.5 For � . * , suppose � � ��WB� 7 � .�� , where � 7
W � 7%7 [ . Then, either � � �7W=� 7 � .�� . , or � � � 7���W�� .�� . .

Proof. Suppose that vertex �]� � � is assigned to label
1�� � ��� S �NTNT5T���� U � , and suppose vertices �]��� V ��� V � � �B� and
�]��� � �'� � � � �B� are assigned to labels 1���� V ��� V � � �<����.V � and
1���� � ��� � � � �<����.� � , respectively. As � � �7W=� 7 � .�� , the answers
��.V and ��.� of provers � V and � � cannot be weakly consis-
tent. However, the answers � V and � � are strongly consis-
tent. Therefore, either the ��WB� 7�� coordinates in � V and �/.V
differ (recall that this coordinate contains an assignment to
a clause ' V � ), or the ��W=� 7�� coordinates in � � and �/.� differ
(this coordinate contains an assignment to a distinguished
variable ( V�� ). Assume the former is true (the other case is
handled similarly).

Let 6 be the edge between �]� � � and �]��� V ��� V � � �B� . It is
enough to show that the path 
 � contains a label corre-
sponding to prover � � . Suppose this is not the case. Let
1���� � �'� � �
��� and 1���� � �'� � ����.	� be two consecutive query la-
bels on the path. As the two labels are at distance 1, there
must be an � .?. * , such that � � � � � � � .Z� and � � � � � � � .Z� ,
and the answers � and �/. are strongly consistent. As
�;��	 �� 7 , the ��W=� 7 � coordinate in � � and in � � must con-
tain some clause, and the two clauses are identical. More-
over, coordinate ��W=� 7�� of � and ��. must contain an identi-
cal assignment to the variables of this clause. Therefore, if
path 
�� starts at 1���� V ��� V � � �<����. V � , and does not pass through
any label belonging to prover � � , then for every query label
1������4�����A�
��� appearing on the path, coordinate ��W=� 7 � of ���
contains the same clause as that of � V � � � , and coordinates
��W=� 7�� in � and �/.V are identical. This is also true for the last
query label on the path, denoted by 1������������4�
���5� . But this
label is connected by an edge to label 1�� � ��� S �NTNT5T���� U � , and
therefore coordinates ��W=� 7�� of � � and � V must be identical,
which is impossible. �

It follows from the lemma that � ��.0�:1 � �
� , yielding that
the solution cost is at least �

U
	 � >2+� > � * � .

4.3.3 Construction Size

The size of the construction is dominated by the number of
labels. For each W , � 7 W 7 [ , � * V � 7 � � ��� U! , and for
each �#. * V , � � ���4���67#"

U  
, and therefore the number of

query labels is at most [ � � ��� U! >$" U! . The size of * is at
most � � ��� U  and for each � . * the number of [ -tuples
of consistent answers is at most "

U  
. Hence, the number of

constraint labels is bounded by � � ��� U  >�" U  . The construc-
tion size is therefore % � �'& J

U  M
. If [ is a constant, then it

is polynomial in � . Choosing [ � poly � � �8
 ��� , we get that
[ � �Z�	�8
(% �

4 ��)
for arbitrarily small constant

�
.

Thus, we have proved the following result.

Theorem 4.6 There is no constant approximation fac-
tor for the metric labeling problem, unless P=NP.
Moreover, for any constant

� * X , there is no
���B� � �8
(% �

4 �+) � -approximation for the problem, unless
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Figure 3. Yes instance: the embedding of edges incident to �$� � � .

NP
�

DTIME ��� poly
J�� ��� 	 M � .
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