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ABSTRACT
We consider the classical Minimum Crossing Number problem:

given an n-vertex graph G, compute a drawing of G in the plane,

while minimizing the number of crossings between the images

of its edges. This is a fundamental and extensively studied prob-

lem, whose approximability status is widely open. In all currently

known approximation algorithms, the approximation factor de-

pends polynomially on ∆ – the maximum vertex degree in G.

The best current approximation algorithm achieves an O(n1/2−ϵ ·

poly(∆ · logn))-approximation, for a small fixed constant ϵ , while
the best negative result is APX-hardness, leaving a large gap in

our understanding of this basic problem. In this paper we design

a randomized O
(
2
O ((logn)7/8 log logn) · poly(∆)

)
-approximation al-

gorithm for Minimum Crossing Number. This is the first approxi-

mation algorithm for the problem that achieves a subpolynomial

in n approximation factor (albeit only in graphs whose maximum

vertex degree is subpolynomial in n).
In order to achieve this approximation factor, we design a new

algorithm for a closely related problem called Crossing Number

with Rotation System, in which, for every vertex v ∈ V (G), the
circular ordering, in which the images of the edges incident to

v must enter the image of v in the drawing is fixed as part of

input. Combining this result with the recent reduction of [Chuzhoy,

Mahabadi, Tan ’20] immediately yields the improved approximation

algorithm for Minimum Crossing Number.
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1 INTRODUCTION
We study the classical Minimum Crossing Number (MCN) problem:

given an n-vertex graph G, compute a drawing of G in the plane

while minimizing the number of its crossings. Here, a drawing φ
of a graph G is a mapping, that maps every vertex v ∈ V (G) to
some point φ(v) in the plane, and every edge e = (u,v) ∈ E(G) to a

continuous simple curve φ(e), whose endpoints are φ(u) and φ(v).
For a vertex v ∈ V (G) and an edge e ∈ E(G), we refer to φ(v) and
to φ(e) as the images ofv and of e , respectively. We require that, for

every vertex v and edge e , φ(v) ∈ φ(e) only if v is an endpoint of e .
We also require that, if some point p belongs to the images of three

or more edges, then it must be the image of a shared endpoint of

these edges. A crossing in a drawing φ of G is a point that belongs

to the images of two edges ofG , and is not their common endpoint.

The crossing number of a graph G, denoted by OPTcr(G), is the
minimum number of crossings in any drawing of G in the plane.

The MCN problem was initially introduced by Turán [28] in

1944, and has been extensively studied since then (see, e.g., [5–

7, 9, 10, 16, 17], and also [20, 21, 23, 26] for excellent surveys).

The problem is of interest to several communities, including, for

example, graph theory and algorithms, and graph drawing. As such,

much effort was invested into studying it from different angles. But

despite all this work, most aspects of the problem are still poorly

understood.

In this paper we focus on the algorithmic aspect of MCN. Since
the problem is NP-hard [13], and it remains NP-hard even in cubic

graphs [4, 14], it is natural to consider approximation algorithms for

it. Unfortunately, the approximation ratios of all currently known

algorithms depend polynomially on ∆, the maximum vertex de-

gree of the input graph. To the best of our knowledge, no non-

trivial approximation algorithms are known for the general setting,

where ∆ may be arbitrarily large. One of the most famous results

in this area, the Crossing Number Inequality, by Ajtai, Chvátal,

Newborn and Szemerédi [1] and by Leighton [18], shows that, for

every graph G with |E(G)| ≥ 4|V (G)|, the crossing number of G
is Ω(|E(G)|3/|V (G)|2). Since the problem is most interesting when

the crossing number of the input graph is low, it is reasonable to

focus on low-degree graphs, where the maximum vertex degree ∆
is bounded by either a constant, or a slowly-growing (e.g. subpoly-

nomial) function of n. While we do not make such an assumption

explicitly, like in all previous work, the approximation factor that

we achieve also depends polynomially on ∆.

https://arxiv.org/abs/2202.06827
https://doi.org/10.1145/3519935.3519984
https://doi.org/10.1145/3519935.3519984


STOC ’22, June 20–24, 2022, Rome, Italy Julia Chuzhoy and Zihan Tan

Even in this setting, there is still a large gap in our understand-

ing of the problem’s approximability, and the progress in closing

this gap has been slow. On the negative side, only APX-hardness

is known [2, 4], that holds even in cubic graphs. On the positive

side, the first non-trivial approximation algorithm for MCN was

obtained by Leighton and Rao in their seminal paper [19]. Given as

input an n-vertex graph G , the algorithm computes a drawing of G

with at mostO((n+OPTcr(G)) ·∆O (1)
log

4 n) crossings. This bound

was later improved toO((n +OPTcr(G)) · ∆O (1)
log

3 n) by [12], and

then to O((n + OPTcr(G)) · ∆O (1)
log

2 n) following the improved

approximation algorithm of [3] for Sparsest Cut. Note that all these

algorithms only achieve an O(n poly(∆ logn)))-approximation fac-

tor. However, their performance improves significantly when the

crossing number of the input graph is large. A sequence of pa-

pers [7, 10] provided an improved Õ(n0.9 · ∆O (1))-approximation

algorithm for MCN, followed by a more recent sequence of pa-

pers by Kawarabayashi and Sidiropoulos [16, 17], who obtained

an Õ
(√

n · ∆O (1)
)
-approximation algorithm. All of the above re-

sults follow the same high-level algorithmic framework, and it was

shown by Chuzhoy, Madan and Mahabadi [8] (see [9] for an expo-

sition) that this framework is unlikely to yield a better than O(
√
n)-

approximation. The most recent result, by Chuzhoy, Mahabadi and

Tan [9], obtained an Õ(n1/2−ϵ · poly(∆))-approximation algorithm

for some small fixed constant ϵ > 0. This result was achieved by

proposing a new algorithmic framework for the problem, that de-

parts from the previous approach. Specifically, [9] reduced theMCN
problem to another problem, called Minimum Crossing Number

with Rotation System (MCNwRS) that we discuss below, which ap-

pears somewhat easier than the MCN problem, and then provided

an algorithm for approximately solving theMCNwRS problem.

Our main result is a randomizedO
(
2
O ((logn)7/8 log logn) · ∆O (1)

)
-

approximation algorithm forMCN. In order to achieve this result,

we design a new algorithm for theMCNwRS problem that achieves

significantly stronger guarantees than those of [9]. This algorithm,

combined with the reduction of [9], immediately implies the im-

proved approximation for theMCN problem.We also design several

new technical tools that we hope will eventually lead to further

improvements. We now turn to discuss theMCNwRS problem.

In the MCNwRS problem, the input consists of a multigraph G,
and, for every vertex v ∈ V (G), a circular ordering Ov of the edges

that are incident to v , that we call a rotation for vertex v . The set
Σ = {Ov }v ∈V (G) of all such rotations is called a rotation system for

graphG . We say that a drawing φ ofG obeys the rotation system Σ,
if, for every vertexv ∈ V (G), the images of the edges in δG (v) enter
the image of v in the order Ov (but the orientation of the ordering

can be either clock-wise or counter-clock-wise). In theMCNwRS
problem, given a graph G and a rotation system Σ for G, the goal
is to compute a drawing φ of G that obeys the rotation system

Σ and minimizes the number of edge crossings. For an instance

I = (G, Σ) of theMCNwRS problem, we denote by OPTcnwrs(I ) the
value of the optimal solution for I , that is, the smallest number of

crossings in any drawing ofG that obeys Σ. The results of [9] show
the following reduction from MCN to MCNwRS: suppose there
is an efficient (possibly randomized) algorithm for theMCNwRS
problem, that, for every instance I = (G, Σ), produces a solution

whose expected cost is at most α(m) · (OPTcnwrs(I ) +m), where

m = |E(G)|. Then there is a randomized O(α(n) · poly(∆ · logn))-
approximation algorithm for theMCN problem. Our main technical

result is a randomized algorithm, that, given an instance I = (G, Σ)
ofMCNwRS, with high probability produces a solution to instance

I with at most 2
O ((logm)7/8 log logm) · (OPTcnwrs(I ) +m) crossings,

wherem = |E(G)|. Combining this with the result of [9], we im-

mediately obtain a randomized O
(
2
O ((logn)7/8 log logn) · poly(∆)

)
-

approximation algorithm for theMCN problem.

The best previous algorithm for theMCNwRS problem, due to

[9], is a randomized algorithm, that, given an instance I = (G, Σ) of
the problem, with high probability produces a solution with at most

Õ
(
(OPTcnwrs(I ) +m)2−ϵ

)
crossings, where ϵ = 1/20. A variant of

MCNwRS was previously studied by Pelsmajer et al. [22], where

for each vertex v of the input graph G, both the rotation Ov of its

incident edges, and the orientation of this rotation (say clock-wise)

are fixed. They showed that this variant of the problem is also

NP-hard, and provided an O(n4)-approximation algorithm with

running timeO(mn
logm), where n = |V (G)| andm = |E(G)|. They

also obtained approximation algorithms with improved guarantees

for some special families of graphs.

We introduce a number of new technical tools, that we discuss

in more detail in Section 1.2. Some of these tools require long and

technically involved proofs.We view these tools as laying a pathway

towards obtaining better algorithms for the Minimum Crossing

Number problem, and it is our hope that these tools will eventually

be streamlined and that their proofs will be simplified, leading to

a better understanding of the problem and cleaner and simpler

algorithms. We believe that some of these tools are interesting in

their own right.

1.1 Our Results
Throughout this paper, we allow graphs to have parallel edges (but

not self-loops); graphs with no parallel edges are explicitly called

simple graphs. For convenience, we will assume that the input to

theMCN problem is a simple graph, while graphs serving as inputs

to the MCNwRS problem may have parallel edges. The latter is

necessary in order to use the reduction of [9] between the two

problems. Note that the number of edges in a graph with parallel

edges may be much higher than the number of vertices. Our main

technical contribution is an algorithm for theMCNwRS problem,

that is summarized in the following theorem.

Theorem 1.1. There is an efficient randomized algorithm, that,
given an instance I = (G, Σ) of MCNwRS with |E(G)| =m, computes
a drawing of G that obeys the rotation system Σ. The number of
crossings in the drawing is w.h.p. bounded by 2

O ((logm)7/8 log logm) ·

(OPTcnwrs(I ) +m).

We rely on the following theorem from [9] in order to obtain an

approximation algorithm for theMCN problem.

Theorem 1.2 (Theorem 1.3 in [9]). There is an efficient algo-
rithm, that, given an n-vertex graph G with maximum vertex de-
gree ∆, computes an instance I = (G ′, Σ) of the MCNwRS problem,
with |E(G ′)| ≤ O (OPTcr(G) · poly(∆ · logn)), and OPTcnwrs(I ) ≤

O (OPTcr(G) · poly(∆ · logn)). Moreover, there is an efficient algo-
rithm that, given any solution of value X to instance I of MCNwRS,
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computes a drawing of G with the number of crossings bounded by
O ((X +OPTcr(G)) · poly(∆ · logn)).

Combining Theorem 1.1 and Theorem 1.2, we immediately obtain

the following corollary, whose proof is deferred to the full version.

Corollary 1.3. There is an efficient randomized algorithm, that,
given a simple n-vertex graph G with maximum vertex degree ∆,
computes a drawing ofG , such that, w.h.p., the number of crossings in

the drawing is at mostO
(
2
O ((logn)7/8 log logn) · poly(∆) · OPTcr(G)

)
.

1.2 Our Techniques
In this subsection we provide an overview of the techniques used in

the proof of our main technical result, Theorem 1.1. For the sake of

clarity of exposition, some of the discussion here is somewhat im-

precise. Our algorithm relies on the divide-and-conquer technique.

Given an instance I = (G, Σ) of theMCNwRS problem, we compute

a collection I of new instances, whose corresponding graphs are

significantly smaller than G, and then solve each of the resulting

new instances separately. Collection I of instances is called a de-
composition of I . We require that the decomposition has several

useful properties that will allow us to use it in order to obtain the

guarantees from Theorem 1.1, by solving the instances in I recur-

sively. Before we define the notion of decomposition of an instance,

we need the notion of a contracted graph, that we use throughout
the paper. Suppose G is a graph, and let R =

{
R1, . . . ,Rq

}
be a col-

lection of disjoint subsets of vertices ofG . The contracted graph ofG
with respect to R, that we denote byG |R , is a graph that is obtained

from G, by contracting, for all 1 ≤ i ≤ q, the vertices of Ri into a

supernodeui . Note that every edge of the resulting graphG |R corre-

sponds to some edge ofG , and we do not distinguish between them.

The vertices in setV (G |R ) \
{
u1, . . . ,uq

}
are called regular vertices.

Each such vertex v also lies in G, and moreover, δG |R
(v) = δG (v).

Abusing the notation, given a collection C = {C1, . . . ,Cr } of dis-
joint subgraphs of G, we denote by G |C the contracted graph of

G with respect to the collection {V (C1), . . . ,V (Cr )} of subsets of
vertices of G. Given a graph G and its drawing φ, we denote by
cr(φ) the number of crossings in φ.
Decomposition of an Instance. Given an instance I = (G, Σ) of
the MCNwRS problem, we will informally refer to |E(G)| as the
size of the instance. Assume that we are given an instance I = (G, Σ)
of MCNwRS with |E(G)| = m, and some parameter η (we will

generally use η = 2
O ((logm)3/4 log logm)

). Assume further that we are

given another collection I of instances ofMCNwRS. We say that I

is an η-decomposition of I , if
∑
I ′=(G′,Σ′)∈I |E(G ′)| ≤ m poly logm,

and

∑
I ′∈I OPTcnwrs(I ′) ≤ (OPTcnwrs(I ) + |E(G)|) · η. Additionally,

we require that there is an efficient algorithm Alg(I ), that, given a

feasible solution φ(I ′) to every instance I ′ ∈ I, computes a feasible

solutionφ for instance I , with at mostO
(∑

I ′∈I cr(φ(I ′))
)
crossings.

At a high level, our algorithm starts with the input instance

I∗ = (G∗, Σ∗) of the MCNwRS problem. Throughout the algo-

rithm, we denote m∗ = |E(G∗)|, and we use a parameter µ =

2
O ((logm∗)7/8 log logm∗)

. Over the course of the algorithm, we con-

sider various other instances I of MCNwRS, but parameters m∗

and µ remain unchanged, and they are defined with respect to

the original input instance I∗. The main subroutine of the algo-

rithm, that we call AlgDecompose, receives as input an instance

I = (G, Σ) of MCNwRS, and computes an η-decomposition I

of I , for η = 2
O ((logm)3/4 log logm)

, where m = |E(G)|. The sub-

routine additionally ensures that every instance in the decom-

position is sufficiently small compared to I , that is, for each in-

stance I ′ = (G ′, Σ′) ∈ I, |E(G ′)| ≤ |E(G)|/µ. We note that this

subroutine is in fact randomized, and, instead of ensuring that∑
I ′∈I OPTcnwrs(I ′) ≤ (OPTcnwrs(I ) + |E(G)|) · η, it only ensures

this in expectation. We will ignore this minor technicality in this

high-level exposition.

It is now easy to complete the proof of Theorem 1.1 using Algo-

rithm AlgDecompose: we simply apply Algorithm AlgDecompose
to the input instance I∗, obtaining a collection I of new instances.

We recursively solve each instance in I, and then combine the

resulting solutions using Algorithm Alg(I∗), in order to obtain the

final solution to instance I∗. Since the sizes of the instances decrease
by the factor of at least µ with each application of the algorithm,

the depth of the recursion is bounded by O
(
(logm∗)1/8

)
. At each

recursive level, the sum of the optimal solution costs and of the

number of edges in all instances at that recursive level increases by

at most factor 2
O ((logm∗)3/4 log logm∗)

, leading to the final bound of

2
O ((logm∗)7/8 log logm∗) · (OPTcnwrs(I∗) +m∗) on the solution cost.

From now on we focus on the description of AlgDecompose. We

start by describing several technical tools that this algorithm builds

on. Throughout, given a graph G, we refer to connected vertex-

induced subgraphs of G as clusters. Given a collection C of disjoint

clusters of G, we denote by EoutG (C) the set of all edges e ∈ E(G),
such that the endpoints of e do not lie in the same cluster. We will

also use the notion of subinstances that we define next.

Subinstances. Suppose we are given two instances I = (G, Σ)
and I ′ = (G ′, Σ′) of MCNwRS. We say that I ′ is a subinstance of
instance I , if the following hold. First, graph G ′

must be a graph

that is obtained from a subgraph of G by contracting some subsets

of its vertices into supernodes. Formally
1
, there must be a graph

G ′′ ⊆ G, and a collection R =
{
R1, . . . ,Rq

}
of disjoint subsets

of vertices of G ′′
, such that G ′ = G ′′

|R
. For every regular vertex v

of G ′
, the rotation Ov ∈ Σ′ must be consistent with the rotation

Ov ∈ Σ (recall that δG′(v) ⊆ δG (v)). For every supernode ui of G
′
,

its rotation Oui ∈ Σ′ can be chosen arbitrarily. Note that the notion

of subinstances is transitive: if I ′ is a subinstance of I and I ′′ is a
subinstance of I ′, then I ′′ is a subinstance of I .

The main tool that we use is disengagement of clusters. Intuitively,
given an instance I = (G, Σ) of MCNwRS, and a collection C of

disjoint clusters of G, the goal is to compute an η-decomposition

I of I , such that every instance I ′ = (G ′, Σ′) ∈ I is a subinstance

of I , and moreover, there is at most one cluster C ∈ C that is con-

tained inG ′
, and all edges ofG ′

that do not lie in C must belong to

EoutG (C). Assume for now that we can design an efficient algorithm

for computing such a decomposition. In this case, the high-level

plan for implementing Algorithm AlgDecompose would be as fol-

lows. First, we compute a collection C of disjoint clusters of graph

G, such that, for each cluster C ∈ C, |E(C)| ≤ |E(G)|/(2µ), and

1
We note that this definition closely resembles the notion of graph minors, but, in

contrast to the definition of minors, we do not require that the induced subgraphs

{G[Ri ]}1≤i≤q are connected.
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|EoutG (C)| ≤ |E(G)|/(2µ). Then we perform disengagement of clus-

ters in C, obtaining an η-decomposition of the input instance I . We

are then guaranteed that each resulting instance in I is sufficiently

small. We note that it is not immediately clear how to compute the

desired collection C of disjoint clusters of G; we discuss this later.
For now we focus on algorithms for computing disengagement of

clusters. We do not currently have an algorithm to compute the

disengagement of clusters in the most general setting described

above. In this paper, we design a number of algorithms for com-

puting disengagement of clusters, under some conditions. We start

with the simplest algorithm that only works in some restricted

settings, and then generalize it to more advanced algorithms that

work in more and more general settings. In order to describe the

disengagement algorithm for the most basic setting, we need the

notion of congestion, and of internal and external routers, that we

use throughout the paper, and describe next.

Congestion, Internal Routers, and External Routers. Given a

graph G and a set P of paths in G, the congestion that the set P of

paths causes on an edge e ∈ E(G), that we denote by congG (P, e), is
the number of paths in P containing e . The total congestion caused

by the setP of paths inG is congG (P) = maxe ∈E(G)

{
congG (P, e)

}
.

Consider now a graphG and a clusterC ⊆ G .We denote by δG (C)
the set of all edges e ∈ E(G), such that exactly one endpoint of e lies
inC . An internalC-router is a collection Q(C) = {Q(e) | e ∈ δG (C)}
of paths, such that, for each edge e ∈ δG (C), path Q(e) has e as its
first edge, and all its inner vertices lie in C . We additionally require

that all paths in Q(C) terminate at a single vertex of C , that we call
the center vertex of the router. Similarly, an external C-router is a
collection Q ′(C) = {Q ′(e) | e ∈ δG (C)} of paths, such that, for each

edge e ∈ δG (C), path Q ′(e) has e as its first edge, and all its inner

vertices lie inV (G) \V (C). We additionally require that all paths in

Q ′(C) terminate at a single vertex of V (G) \V (C), called the center
vertex of the router. For a cluster C ⊆ G, we denote by ΛG (C) and
Λ′
G (C) the sets of internal and external C-routers, respectively.

Basic Cluster Disengagement. In the most basic setting for clus-

ter disengagement, we are given an instance I = (G, Σ) of the
MCNwRS problem, and a collection C of disjoint clusters ofG . Ad-
ditionally, for each clusterC ∈ C, we are given an internalC-router
Q(C), whose center vertex we denote by u(C), and an external C-
router Q ′(C), whose center vertex we denote by u ′(C). The output
of the disengagement procedure is a collection I of subinstances

of I , that consists of a single global instance Î = (Ĝ, Σ̂), and, for
every cluster C ∈ C, an instance IC = (GC , ΣC ) associated with

it. Graph Ĝ is the contracted graph of G with respect to C; that

is, it is obtained from G by contracting every cluster C ∈ C into a

supernode vC . For each cluster C ∈ C, graphGC is obtained from

G by contracting the vertices of V (G) \V (C) into a supernode v∗C .

For every clusterC ∈ C, the rotation OvC ∈ Σ̂ of the supernode vC
in instance Î and the rotation Ov∗

C
∈ ΣC of the supernode v∗C in

instance IC need to be defined carefully, in order to ensure that the

sum of the optimal solution costs of all resulting instances is low,

and that we can combine the solutions to these instances to obtain

a solution to I . Observe that the set of edges incident to vertex vC
in Ĝ and the set of edges incident to vertexv∗C inGC are both equal

to δG (C). We define a single ordering OC
of the edge set δG (C),

that will serve both as the rotation OvC ∈ Σ̂, and as the rotation

Ov∗
C

∈ ΣC . The ordering OC
is defined via the internal C-router

Q(C), as the order in which the images of the paths of Q(C) enter
the image of vertex u(C). On the one hand, letting OvC = Ov∗

C
for

every cluster C ∈ C allows us to easily combine solutions φ(I ′) to
instances I ′ ∈ I, in order to obtain a solution to instance I , whose
cost is at most O

(∑
I ′∈I′ cr(φ(I ′))

)
. On the other hand, defining

OC
via the set Q(C) of paths, for each cluster C ∈ C, allows us to

bound

∑
I ′∈I OPTcnwrs(I ′).

We now briefly describe how this latter bound is established,

since it will motivate the remainder of the algorithm and clarify the

bottlenecks of this approach. We consider an optimal solution φ∗

to instance I , and we use it in order to construct, for each instance

I ′ ∈ I, a solutionψ (I ′), such that
∑
I ′∈I cr(ψ (I ′)) is relatively small

compared to cr(φ∗) + |E(G)|. In order to construct a solutionψ (Î )
to the global instance Î , we start with solution φ∗ to instance I . We

erase from this solution all edges and vertices that lie in the clusters

of C. For each cluster C ∈ C, we let the image of the supernode

vC coincide with the original image of the vertex u(C) – the center

of the internal C-router Q(C). In order to draw the edges that are

incident to the supernode vC in Ĝ (that is, the edges of δG (C)), we
utilize the images of the paths of the internal C-router Q(C) in φ∗,
that connect, for each edge e ∈ δG (C), the original image of edge e
to the original image of vertex u(C).

Consider now some cluster C ∈ C. In order to construct a so-

lutionψ (IC ) to instance IC , we start again with the solution φ∗ to
instance I . We erase from it all edges and vertices except for those

lying in C . We let the image of the supernode v∗C be the original

image of vertex u ′(C) – the center of the external C-router Q ′(C).
In order to draw the edges that are incident to the supernode v∗C
in GC (that is, the edges of δG (C)), we utilize the images of the

paths of the external C-router Q ′(C), that connect, for each edge

e ∈ δG (C), the original image of edge e to the original image of

vertex u ′(C).
Observe that the only increase in

∑
I ′∈I cr(ψ (I ′)), relatively to

cr(φ∗), is due to the crossings incurred by drawing the edges in-

cident to the supernodes in {vC }C ∈C in instance Î , and for each

subinstance IC , drawing the edges incident to supernode v∗C . All
such edges are drawn along the images of the paths in

⋃
C ∈C(Q(C)∪

Q ′(C)) in φ∗. However, an edge may belong to a number of such

paths. With careful accounting we can bound this number of new

crossings as follows. Assume that, for everyC ∈ C, congG (Q
′(C)) ≤

β . Assume further that, for eachC ∈ C, and for each edge e ∈ E(C),
congG (Q(C), e)2 ≤ β . Then

∑
I ′∈I cr(ψ (I ′)) ≤ O(β2(OPTcnwrs(I )+

|E(G)|)). Therefore, in order to ensure that the collection I of subin-

stances of I that we have obtained via the cluster disengagement

procedure is an η-decomposition of I , we need to ensure that, for ev-
ery clusterC ∈ C, congG (Q

′(C)) ≤ β , and, for every edge e ∈ E(C),

(congG (Q(C), e))2 ≤ β , for β = O(η1/2). This requirement seems

impossible to achieve. For example, if maximum vertex degree in

graph G is small (say a constant), then some edges incident to

the center vertices {u(C),u ′(C)}C ∈C must incur very high conges-

tion. In order to overcome this obstacle, we slightly weaken our

requirements. Instead of providing, for every clusterC ∈ C, a single

internal C-router Q(C), and a single external C-router Q ′(C), it is
sufficient for us to obtain, for each cluster C ∈ C, a distribution
D(C) over the collection ΛG (C) of internalC-routers, such that, for
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every edge e ∈ E(C), EQ(C)∼D(C)

[
(congG (Q(C), e))2

]
≤ β , and a

distribution D ′(C) over the collection Λ′
G (C) of externalC-routers,

such that for every edge e , EQ′(C)∼D′(C)

[
congG (Q

′(C), e)
]
≤ β .

To recap, in order to use Basic Cluster Disengagement proce-
dure described above to compute an η-decomposition of the input

instance I ofMCNwRS into sufficiently small instances, it is now

enough to design a procedure that, given an instance I = (G, Σ) of
MCNwRS, computes a collection C of disjoint clusters of G, and,
for every cluster C ∈ C, a distribution D(C) over the collection
ΛG (C) of internal C-routers, such that, for every edge e ∈ E(C),
EQ(C)∼D(C)

[
(congG (Q(C), e))2

]
≤ β , together with a distribution

D ′(C) over the collectionΛ′
G (C) of externalC-routers, such that, for

every edge e , EQ′(C)∼D′(C)

[
congG (Q

′(C), e)
]
≤ β , for β = O(

√
η).

Additionally, we need to ensure that, for every cluster C ∈ C,

|E(C)| ≤ |E(G)|/(2µ), and that |EoutG (C)| ≤ |E(G)|/(2µ). While com-

puting a collection C of clusters with the latter two properties

seems possible (at least when the maximum vertex degree in G is

small), computing the distributions over the internal and the exter-

nal routers for each cluster C with the required properties seems

quite challenging. As a first step towards this goal, we employ the

standard notions of well-linkedness and bandwidth property of

clusters as a proxy to constructing internal C-routers with the re-

quired properties. Before we turn to discuss these notions, we note

that the Basic Cluster Disengagement procedure that we have just
described can be easily generalized to the more general setting,

where the set C of clusters is laminar (instead of only containing

disjoint clusters). This generalization will be useful for us later.

Assume that we are given a laminar family C of clusters (that

is, for every pair C,C ′ ∈ C of clusters, either C ⊆ C ′
, or C ′ ⊆ C , or

C ∩C ′ = ∅ holds), with G ∈ C. Assume further that we are given,

for each cluster C ∈ C, a distribution D(C) over the collection

ΛG (C) of internal C-routers, in which, for every edge e ∈ E(C),
EQ(C)∼D(C)

[
(congG (Q(C), e))2

]
≤ β , together with a distribution

D ′(C) over the collection Λ′
G (C) of external C-routers, where for

every edge e , EQ′(C)∼D′(C)

[
congG (Q

′(C), e)
]
≤ β , for some pa-

rameter β . The Basic Cluster Disengagement procedure, when
applied to C, produces a collection I = {IC = (GC , ΣC ) | C ∈ C}

of instances. For every cluster C ∈ C, graph GC associated with

instance IC is obtained from graph G, by first contracting all ver-

tices of V (G) \ V (C) into a supernode v∗C , and then contracting,

for each child-cluster C ′ ∈ C of C , the vertices of V (C ′) into

a supernode vC ′ . We define, for every cluster C , an ordering of

the set δG (C) of edges via an internal C-router that is selected
from the distribution D(C), and we let the rotation Ov∗

C
in the

rotation system ΣC , and the rotation OvC in the rotation system

ΣC ′ , where C ′
is the parent-cluster of C , to be identical to this

ordering. Using the same reasoning as in the case where C is a

set of disjoint clusters, we show that E
[∑

I ′∈I OPTcnwrs(I ′)
]
≤

O
(
β2 · dep(C) · (OPTcnwrs(I ) + |E(G)|)

)
, where dep(C) is the depth

of the laminar family C of clusters. We then show that I is an η′-
decomposition of instance I , where η′ = O(β2 · dep(C)).

As noted already, one of the difficulties in exploiting the Ba-
sic Cluster Disengagement procedure in order to compute an η-
decomposition of the input instance I is the need to compute

distributions over the sets of internal and the external C-routers
for every cluster C ∈ C, with the required properties. We turn

instead to the notions of well-linkedness and bandwidth properties

of clusters. These notions are extensively studied, and there are

many known algorithms for computing a collection C of clusters

that have bandwidth property in a graph. We will use this property

as a proxy, that will eventually allow us to construct a distribution

over the sets of internal C-routers for each cluster C ∈ C, with the

required properties.

Well-Linkedness, Bandwidth Property, and Cluster Classifi-
cation. We use the standard notion of well-linkedness. Let G be

a graph, let T be a subset of the vertices of G, and let 0 < α < 1

be a parameter. We say that the set T of vertices is α-well-linked
in G if for every partition (A,B) of vertices of G into two subsets,

|EG (A,B)| ≥ α ·min {|A ∩T |, |B ∩T |}.
We also use a closely related notion of bandwidth property of

clusters. Suppose we are given a graph G and a cluster C ⊆ G.
Intuitively, clusterC has the α-bandwidth property (for a parameter

0 < α < 1), if the edges of δG (C) are α-well-linked in C . More

formally, we consider the augmentation C+ of cluster C , that is
defined as follows. We start with the graphG, and subdivide every

edge e ∈ δG (C) with a vertex te , denoting T = {te | e ∈ δG (C)}.
The augmentation C+ of C is the subgraph of the resulting graph

induced by V (C) ∪T . We say that cluster C has the α-bandwidth
property if set T of vertices is α-well-linked in C+.

We note that, if a cluster C has the α-bandwidth property, then,

using known techniques, we can efficiently construct a distribution

D over the set ΛG (C) of internal C-routers, such that, for every

edge e ∈ E(C), EQ(C)∼D(C) [cong(Q(C), e)] ≤ O(1/α). However, in
order to use the Basic Cluster Disengagement procedure, we need
a stronger property: namely, for every edge e ∈ E(C), we require
that EQ(C)∼D(C)

[
(cong(Q(C), e))2

]
≤ β , for some parameter β . If

we are given a distribution D(C) over the set ΛG (C) of internal
C-routers with this latter property, then we say that cluster C is

η-light with respect to D(C). Computing a distribution D(C) for
which clusterC is η-light is a much more challenging task. We come

close to achieving it in our Cluster Classification Theorem. Before

we describe the theorem, we need one more definition. Let C be a

cluster of a graphG , and let η′ be some parameter. Assume that we

are given some rotation system Σ for graph G, and let ΣC be the

rotation system for clusterC that is induced by Σ. Let IC = (C, ΣC )
be the resulting instance of MCNwRS. We say that cluster C is

η′-bad if OPTcnwrs(IC ) ≥ |δG (C)|
2/η′.

In the Cluster Classification Theorem, we provide an efficient

algorithm, that, given an instance I = (G, Σ) of MCNwRS with

|E(G)| = m, and a cluster C ⊆ G that has the α-bandwidth prop-

erty (where α = Ω(1/poly logm)), either correctly establishes that

clusterC is η′-bad, for η′ = 2
O ((logm)3/4 log logm)

, or produces a dis-

tribution D(C) over the set ΛG (C) of internal C-routers, such that

clusterC is β-light with respect toD(C), for β = 2
O (
√
logm ·log logm)

.

In fact, the algorithm is randomized, and, with a small probabil-

ity, it may erroneously classify cluster C as being η′-bad, when
this is not the case. This small technicality is immaterial to this

high-level exposition, and we will ignore it here. The proof of the

Cluster Classification Theorem is long and technically involved,

and is partially responsible for the high approximation factor that

we eventually obtain. It is our hope that a simpler and a cleaner

proof of the theorem with better parameters will be discovered in
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the future. We believe that the theorem is a graph-theoretic result

that is interesting in its own right. We now provide a high-level

summary of the main challenges in its proof.

At the heart of the proof is an algorithm called AlgFindGuiding.
Suppose we are given an instance I = (H , Σ) of MCNwRS, and a

setT of k vertices ofH called terminals, that are α-well-linked inH ,

for some parameter 0 < α < 1. Denote C = H \T and |V (H )| = n.
The goal of the algorithm is to either establish that OPTcnwrs(H ) +

|E(H )| ≥ k2 poly(α/logn); or to compute a distribution D(C) over
internal C-routers, such that cluster C is η′ = poly(logn/α)-light
with respect to D(C).

Consider first a much simpler setting, where H is a grid graph,

and T is the set of vertices on the first row of the grid. For this

special case, the algorithm of [27] (see also Lemma D.10 in the full

version of [7]) provides the construction of a distribution D(C)
over internal C-routers with the required properties. This result

can be easily generalized to the case where H is a bounded-degree

planar graph, since such a graph must contain a large grid minor.

If H is a planar graph, but its maximum vertex degree is no longer

bounded, we can still compute a grid-like structure in it, and apply

the same arguments as in [27] in order to compute the desired

distribution D(C). The difficulty in our case is that the graph H
may be far from being planar, and, even though, from the Excluded

Grid theorem of Robertson and Seymour [24, 25], it must contain a

large grid-like structure, without having a drawing ofH in the plane

with a small number of crossings, we do not know how to compute

such a structure
2
. We provide an algorithm that either establishes

that OPTcnwrs(H ) is large compared to k2, or computes a grid-like

structure in graph H , even if it is not a planar graph. Unfortunately,

this algorithm only works in the setting where |E(H )| is not too

large comparable to k . Specifically, if we ensure that |E(H )| ≤

k · η̂ for some parameter η̂, then the algorithm either computes

a distribution D(C) over internal C-routers that is η′-light (with
η′ = poly(logn/α) as before), or it establishes that OPTcnwrs(H ) +

|E(H )| ≥ k2 poly(α/(η̂ logn)).
Typically, this algorithm would be used in the following setting:

we are given a cluster C of a graph G, that has the α-bandwidth
property. We then let H = C+ be the augmentation ofC , and we let
T be the set of vertices of C+ corresponding to the edges of δH (C).
In order for this result to be meaningful, we need to ensure that

|E(C)| is not too large compared to |δH (C)|. Unfortunately, we may

need to apply the classification theorem to clusters C for which

|E(C)| ≫ |δH (C)| holds. In order to overcome this difficulty, given

such a cluster C , we construct a recursive decomposition of C into

smaller and smaller clusters. Let L denote the resulting family of

clusters, which is a laminar family of subgraphs of C . We ensure

that every cluster C ′ ∈ L has α = Ω(1/poly logm)-bandwidth

property, and, additionally, if we let Ĉ ′
be the graph obtained from

C ′
by contracting every child-cluster of C ′

into a supernode, then

the number of edges in Ĉ ′
is comparable to |δH (C ′)|. We consider

the clusters of L from smallest to largest. For each such cluster C ′
,

we carefully apply Algorithm AlgFindGuiding to the corresponding

2
We note that we need the grid-like structure to have dimensions (k ′ × k ′), where k ′
is almost linear in k . Therefore, we cannot use the known bounds for the Excluded

Minor Theorem (e.g. from [11]) for general graphs, and instead we need to use an

analogue of the stronger version of the theorem for planar graphs.

contracted graph Ĉ ′
, in order to either classify cluster Ĉ ′

as η(C ′)-

bad, or to compute a distribution D(C ′) over internal C ′
-routers,

such thatC ′
is β(C ′)-light with respect to D(C ′). Parameters η(C ′)

and β(C ′) depend on the height of the cluster C ′
in the decomposi-

tion tree that is associated with the laminar family L of clusters.

This recursive algorithm is eventually used to either establish that

cluster C is η(C)-bad, or to compute a distribution D(C) over the
set ΛG (C) of internal C-routers, such that cluster C is β(C)-light
with respect to D(C). The final parameters η(C) and β(C) depend
exponentially on the height of the decomposition tree associated

with L. This strong dependence on dep(L) is one of the reasons

for the high approximation factor that our algorithm achieves.

Obstacles to Using Basic Cluster Disengagement. Let us now
revisit the Basic Cluster Disengagement routine. We start with an

instance I = (G, Σ) of MCNwRS, and denote |E(G)| =m. Through-

out, we use a parameter η = 2
O ((logm)3/4 log logm)

, and β = η1/8.
Recall that the input to the procedure is a collection C of disjoint

clusters of G. For every cluster C ∈ C, we are also given a dis-

tribution D ′(C) over the set of external C-routers, such that, for

every edge e , EQ′(C)∼D′(C)

[
congG (Q

′(C), e)
]
≤ β , and a distri-

bution D(C) over the set of internal C-routers, such that cluster

C is β-light with respect to D(C). We are then guaranteed that

the collection I of subinstances of I that is constructed via Basic
Cluster Disengagement is an η-decomposition of I . We can slightly

generalize this procedure to handle bad clusters as well. Specifically,

suppose we are given a partition (Clight,Cbad) of the clusters in

C, and, for each cluster C ∈ Clight
, a distribution D(C) over inter-

nal C-routers, such that cluster C is β-light with respect to D(C).

Assume further that each cluster C ∈ Cbad
is β-bad. Additionally,

assume that we are given, for every cluster C ∈ C, a distribu-

tion D ′(C) over external C-routers, such that, for every edge e ,
EQ′(C)∼D′(C)

[
congG (Q

′(C), e)
]
≤ β , and that every cluster C ∈ C

has the α-bandwidth property, for some α = Ω(1/poly logm). We

can then generalize the Basic Cluster Disengagement procedure to
provide the same guarantees as before in this setting, to obtain an

η-decomposition of instance I .
Assume now thatwe are given an instance I = (G, Σ) ofMCNwRS,

with |E(G)| =m. For simplicity, assume for now that the maximum

vertex degree inG is quite small (it is sufficient, for example, that it is

significantly smaller thanm.) Using known techniques, we can com-

pute a collection C of disjoint clusters ofG , such that, for every clus-
ter C ∈ C, |E(C)| ≤ m/(2µ); |EoutG (C)| ≤ m/(2µ); and every cluster

C ∈ C hasα-bandwidth property. If we could, additionally, compute,

for each clusterC ∈ C, a distributionD ′(C) over externalC-routers,
such that, for every edge e , EQ′(C)∼D′(C)

[
congG (Q

′(C), e)
]
≤ β ,

then we could use the Cluster Classification Theorem to partition

the set C of clusters into subsets Clight
and Cbad

, and to compute,

for every cluster C ∈ Clight
, a distribution D(C) over the set of

its internal routers, such that every cluster in Cbad
is η′-bad, and

every cluster C ∈ Clight
is η′-light with respect to D(C), for some

parameter η′. We could then apply the Basic Cluster Disengage-
ment procedure in order to compute the desired η-decomposition

of the input instance I . Unfortunately, we currently do not have

an algorithm that computes both the collection C of clusters of G
with the above properties, and the required distributions over the

external C-routers for each such cluster C . In order to overcome
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this difficulty, we design Advanced Cluster Disengagement proce-
dure, that generalizes Basic Cluster Disengagement, and no longer

requires the distribution over external C-routers for each C ∈ C.

Advanced Cluster Disengagement. The input to the Advanced
Cluster Disengagement procedure is an instance I = (G, Σ) of
MCNwRS, and a set C of disjoint clusters of G, that we refer to as

basic clusters, each of which has α-bandwidth property. Letm =

|E(G)|, and η = 2
O ((logm)3/4 log logm)

as before. The output is an η-
decomposition I of I , such that every instance I ′ = (G ′, Σ′) ∈ I is

a subinstance of I , and moreover, there is at most one basic cluster

C ∈ C with E(C) ⊆ E(G ′), with all other edges of G ′
lying in

EoutG (C). The algorithm for the Advanced Cluster Disengagement
and its analysis are significantly more involved than Basic Cluster
Disengagement. We start with some intuition.

Consider the contracted graph H = G |C , and its Gomory-Hu

tree T . This tree naturally defines a laminar family L of clusters

of H : for every vertex v ∈ V (H ), we add to L the clusterUv , that
is the subgraph of H induced by vertex set V (Tv ), where Tv is

the subtree of T rooted at v . From the properties of Gomory-Hu

trees, if v ′ is the parent-vertex of vertex v in T , there is an external

Uv -router Q
′(Uv ) in graph H with congH (Q ′(Uv )) = 1. Laminar

family L of clusters of H naturally defines a laminar family L′
of

clusters of the original graph G, where for each cluster Uv ∈ L,

set L′
contains a corresponding clusterU ′

v , that is obtained from

Uv , by un-contracting all supernodes that correspond to clusters

of C. For each such cluster U ′
v ∈ L′

, we can use the external

Uv -router Q
′(Uv ) in graph H in order to construct a distribution

D ′(U ′
v ) over externalU

′
v -routers in graphG , where for every edge e ,

EQ′(U ′
v )∼D

′(U ′
v )

[
congG (Q

′(U ′
v ), e)

]
≤ O(1/α). We can then apply

the Basic Cluster Disengagement procedure to the laminar family

L′
and the distributions

{
D ′(U ′

v )
}
U ′
v ∈L′ in order to compute an

η∗-decomposition I of instance I , where every instance in I is a

subinstance of I . Recall that the parameter η∗ depends on the depth

of the laminar family L′
, which is equal to the depth of the laminar

family L. Therefore, if dep(L) is not too large (for example, it is

at most 2
O ((logm)3/4 log logm)

), then we will obtain the desired η-
decomposition of I . But unfortunately we have no control over the

depth of the laminar family L, and in particular the tools described

so far do not work when the Gomory-Hu tree T is a path.

Roughly speaking, we would like to design a different disen-

gagement procedure for the case where the tree T is a path, and

then reduce the general problem (by exploiting Basic Cluster Dis-
engagement) to this special case. In fact we follow a similar plan.

We define a special type of instances (that we call nice instances),
that resemble the case where the Gomory-Hu tree of the contracted

graph H = G |C is a path. While the motivation behind the defini-

tion of nice instances is indeed this special case, the specifics of the

definition are somewhat different, in that it is more general in some

of its aspects, and more restrictive and well-structured in others. We

provide an algorithm for Cluster Disengagment of nice instances,

that ensures that, for each resulting subinstance I ′ = (G ′, Σ′), there
is at most one cluster C ∈ C with C ⊆ G ′

, and all other edges ofG ′

lie in EoutG (C). We also provide another algorithm, that, given an

instance I = (G, Σ) ofMCNwRS and a collection C of disjoint basic

clusters of graph G, computes a decomposition I ′
of instance I ,

such that each resulting instance I ′ ∈ I ′
is a subinstance of I and a

nice instance, with respect to the subset C(I ′) ⊆ C of clusters, that

contains every cluster C ∈ C with C ⊆ G ′
. Combining these two

algorithms allows us to compute Advanced Cluster Disengagement.
Algorithm AlgDecompose. Recall that Algorithm AlgDecompose,
given an instance I = (G, Σ) of MCNwRS, needs to compute an

η-decomposition I of I , where η = 2
O ((logm)3/4 log logm)

andm =
|E(G)|, such that, for each instance I ′ = (G ′, Σ′) ∈ I, |E(G ′)| ≤

|E(G)|/µ (here, µ = 2
O ((logm∗)7/8 log logm∗)

, andm∗
is the number

of edges in the original input instance I∗ ofMCNwRS). We say that

a vertex v of G is a high-degree vertex if |δG (v)| ≥ m/poly(µ).
Consider first the special case where no vertex of G is a high-

degree vertex. For this case, it is not hard to generalize known

well-linked decomposition techniques to obtain a collection C of

disjoint clusters ofG , such that each C ∈ C has α = (1/poly logm)-

bandwidth property, with |E(C)| < O(m/µ), and |EoutG (C)| ≤ O(m/µ).
We can now apply the Advanced Cluster Disengagement proce-
dure to the set C of clusters, in order to obtain the desired η-
decomposition of I . Recall that we are guaranteed that each re-

sulting instance I ′ = (G ′, Σ′) ∈ I is a subinstance of I , and there is

at most one cluster C ∈ C with C ⊆ G ′
, with all other edges of G ′

lying in EoutG (C). This ensures that |E(G ′)| ≤ m/µ, as required.
In general, however, it is possible that the input instance I =

(G, Σ) contains high-degree vertices. We then consider two cases.

We say that instance I is wide if there is a vertex v ∈ V (G), a
partition (E1,E2) of the edges of δG (v), such that the edges of E1
appear consecutively in the rotation Ov ∈ Σ, and a collection P

of at least m/poly(µ) simple edge-disjoint cycles in G, such that

every cycle P ∈ P contains one edge of E1 and one edge of E2.
An instance that is not wide is called narrow. We provide separate

algorithms for dealing with narrow and wide instances.

Narrow Instances. The algorithm for decomposing narrow in-

stances relies on and generalizes the algorithm for the special

case where G has no high-degree vertices. As a first step, we

compute a collection C of disjoint clusters of G, such that each

cluster C ∈ C has α = Ω(1/poly logm)-bandwidth property, and

|EoutG (C)| < O(E(G)/µ). The set C of clusters is partitioned into two

subsets: set Cs
of small clusters, and set Cf

of flower clusters. For
each cluster C ∈ Cs

, |E(C)| < O(|E(G)|/µ) holds. If C is a cluster

of Cf
, then we no longer guarantee that |E(C)| is small. Instead,

we guarantee that cluster C has a special structure. Specifically,

C must contain a single high-degree vertex u(C), that we call the
flower center, and all other vertices of C must be low-degree ver-

tices. Additionally, there must be a set X(C) = {X1, . . . ,Xk } of

subgraphs of C , that we call petals, such that, for all 1 ≤ i < j ≤ k ,
V (Xi ) ∩ V (X j ) = {u(C)}. We also require that, for all 1 ≤ i ≤ k ,
there is a set Ei of Θ(m/poly(µ)) edges of δG (u(C)) that are con-
tiguous in the rotation Ou(C) ∈ Σ, and lie in Xi . Lastly, we require
that, for all 1 ≤ i ≤ k , there is a set Qi of edge-disjoint paths,

connecting every edge of δG (Xi ) \δG (u(C)) to vertex u(C), with all

inner vertices on the paths lying in Xi .
We apply Advanced Cluster Disengagement to the set C of

clusters, in order to compute an initial decomposition I1 of the

input instance I , such that every instance in I1 is a subinstance of I .
Unfortunately, it is possible that, for some instances I ′ = (G ′, Σ′) ∈
I1, |E(G

′)| > m/µ. For each such instance I ′, there must be some
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flower cluster C ∈ Cf
that is contained in G ′

, and all other edges

of G ′
must lie in EoutG (C).

We now consider each instance I ′ = (G ′, Σ′) ∈ I1 with |E(G ′)| >

m/µ one by one. Assume that C ∈ Cf
is the flower cluster that is

contained inG ′
, andX(C) = {X1, . . . ,Xk } is the set of its petals. We

further decompose instance I ′ into a collectionI(C) of subinstances,
that consists of a single global instance Î (C), and k additional in-

stances I1(C), . . . , Ik (C). We ensure that the graph Ĝ(C) associated
with the global instance Î (C) only contains edges of EoutG (C), so

|E(Ĝ(C))| < m/µ holds. For all 1 ≤ j ≤ k , graph G j (C) associated
with instance Ij (C) ∈ I(C) contains the petal X j , and all other

edges of G j (C) lie in EoutG (C). We note that unfortunately it is still

possible that, for some 1 ≤ j ≤ k , graph G j (C) contains too many

edges (this can only happen if |E(X j )| is large). However, our con-

struction ensures that, for each such instance Ij (C), no high-degree
vertices lie in graphG j (C). We can then further decompose instance

Ij (C) into subinstances using the algorithm that we designed for

the case where no vertex of the input graph is a high-degree vertex.

After this final decomposition, we are guaranteed that each of the

resulting subinstances of instance I that we obtain contains fewer

thanm/µ edges, as required.
Wide Instances. Suppose we are given a wide instance I = (G, Σ)
of MCNwRS. In this case, we compute an η-decomposition I of

instance I , such that, for each resulting instance I ′ = (G ′, Σ′) ∈

I, either |E(G ′)| < m/µ (in which case we say that I ′ is a small
instance), or I ′ is a narrow instance.Wewill then further decompose

each resulting narrow instance using the algorithm described above.

In order to obtain the decompositionI of I , we start withI = {I }.
As long as set I contains at least one wide instance I ′ = (G ′, Σ′)
with |E(G ′)| ≥ m/µ, we perform a procedure that “splits” instance

I ′ into two smaller subinstances. We now turn to describe this

procedure at a high level.

Let I ′ = (G ′, Σ′) ∈ I be a wide instance with |E(G ′)| ≥ m/µ.
Recall that from the definition of a wide instance, there is a vertex

v ∈ V (G ′), a partition (E1,E2) of the edges of δG′(v), such that

the edges of E1 appear consecutively in the rotation Ov ∈ Σ′, and
a collection P of at least m/poly(µ) simple edge-disjoint cycles

in G ′
, such that every cycle in P contains one edge of E1 and

one edge of E2. Consider the experiment, in which we choose a

cycleW ∈ P uniformly at random. Since |P | is very large, with

reasonably high probability, the edges of the cycleW participate

in relatively few crossings in the optimal solution to instance I ′

of MCNwRS. We show that with high enough probability, there

is a near-optimal solution to I ′, in which cycleW is drawn in the

natural way.We use the cycleW in order to partition instance I ′ into
two subinstances I1, I2 (intuitively, one subinstance corresponds
to edges and vertices of G ′

that are drawn “inside” the cycleW in

the near-optimal solution to I ′, and the other subinstance contains

all edges and vertices that are drawn “outside”W ). Each of the

resulting two instances contains the cycleW , and, in order to be

able to combine the solutions to the two subinstances to obtain

a solution to I ′, we contract all vertices and edges ofW , in each

of the two instances, into a supernode. Let I ′
1
, I ′
2
denote these two

resulting instances. The main difficulty in the analysis is to show

that there is a solution to each resulting instance ofMCNwRS, such
that the sum of the costs of two solutions is close to OPTcnwrs(I ′).

The difficulty arises from the fact that we do not know what the

optimal solution to instance I ′ looks like, and so our partition ofG ′

into two subgraphs that are drawn on different sides of the cycle

W in that solution may be imprecise. Instead, we need to “fix” the

solutions to instances I1, I2 (that are induced by the optimal solution

to I ′) in order to move all edges and vertices of each subinstance

to lie on one side of the cycleW . In fact we are unable to do so

directly. Instead, we show that we can compute a relatively small

collection E ′ of edges, such that, if we remove the edges of E ′

from the graphs corresponding to instances I1, I2, then each of the

resulting subinstances has the desired structure: namely, it can

be drawn completely inside or completely outside the cycle W
with relatively few crossings compared to OPTcnwrs(I ′). After we
solve the two resulting subinstances recursively, we combine the

resulting solutions, and add the images of the edges of E ′ back, in
order to obtain a solution to instance I ′.

2 PRELIMINARIES
By default, all logarithms in this paper are to the base of 2. All

graphs are undirected and finite. Graphs may contain parallel edges

but they may not contain self loops. Graphs without parallel edges

are explicitly referred to as simple graphs.

2.1 Curves in General Position, Graph
Drawings, Faces, and Crossings

Letγ be an open curve in the plane, and let P be a set of points in the

plane. We say that γ is internally disjoint from P if no inner point of

γ lies in P . In other words, P ∩γ may only contain the endpoints of

γ . Given a set Γ of open curves in the plane, we say that the curves

in Γ are internally disjoint if, for every pair γ ,γ ′ ∈ Γ of distinct

curves, every point p ∈ γ ∩ γ ′ is an endpoint of both curves. We

use the following definition of curves in general position.

Definition 2.1 (Curves in general position). Let Γ be a finite set of

open curves in the plane. We say that the curves of Γ are in general
position, if the following conditions hold:

• for every pair γ ,γ ′ ∈ Γ of distinct curves, there is a finite

number of points p with p ∈ γ ∩ γ ′;
• for every pair γ ,γ ′ ∈ Γ of distinct curves, an endpoint of γ
may not serve as an inner point of γ ′ or of γ ; and

• for every triple γ ,γ ′,γ ′′ ∈ Γ of distinct curves, if some point

p lies on all three curves, then it must be an endpoint of each

of these three curves.

Let Γ be a set of curves in general position, and let γ ,γ ′ ∈ Γ be

a pair of curves. Let p be any point that lies on both γ and γ ′, but
is not an endpoint of either curve. We then say that point p is a

crossing between γ and γ ′, or that curves γ and γ ′ cross at point p.
We are now ready to formally define graph drawings.

Definition 2.2 (Graph Drawings). A drawing φ of a graphG in the

plane is a map φ, that maps every vertex v of G to a point φ(v) in
the plane (called the image of v), and every edge e = (u,v) ofG to a

simple curve φ(e) in the plane whose endpoints are φ(u) and φ(v)
(called the image of e), such that all points in set {φ(v) | v ∈ V (G)}
are distinct, and the set {φ(e) | e ∈ E(G)} of curves is in general

position. Additionally, for every vertexv ∈ V (G) and edge e ∈ E(G),
φ(v) ∈ φ(e) only if v is an endpoint of e .
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Assume now that we are given some drawing φ of graph G in

the plane, and assume that for some pair e, e ′ of edges, their images

φ(e),φ(e ′) cross at point p. Then we say that (e, e ′)p is a crossing
in the drawing φ (we may sometimes omit the subscript p if the

images of the two edges only cross at one point). We also say that

p is a crossing point of drawing φ. We denote by cr(φ) the total

number of crossings in the drawing φ.

Planar Graphs and Planar Drawings. A graphG is planar if there
is a drawing of G in the plane with no crossings. A drawing φ of a

graph G in the plane with cr(φ) = 0 is called a planar drawing of G .
We use the following result by Hopcroft and Tarjan.

Theorem 2.3 ([15]). There is an algorithm, that, given a graph G ,
correctly establishes whetherG is planar, and if so, computes a planar
drawing of G. The running time of the algorithm in O(|V (G)|).

2.2 Circular Orderings, Orientations, and
Rotation Systems

Suppose we are given a collection U = {u1, . . . ,ur } of elements.

Let D be any disc in the plane. Assume further that we are given,

for every element ui ∈ U , a point pi on the boundary of D, so
that all resulting points in {p1, . . . ,pr } are distinct. As we traverse
the boundary of the disc D in the clock-wise direction, the order

in which we encounter the points p1, . . . ,pr defines a circular or-
dering O of the elements of U . If we traverse the boundary of the

disc D in the counter-clock-wise direction, we obtain a circular

ordering O′
of the elements of U , which is the mirror image of the

ordering O. We say that the orderings O and O′
are identical but

their orientations are different, or opposite: O has a negative and

O′
has a positive orientation. Whenever we refer to an ordering O

of elements, we view it as unoriented (that is, the orientation can be

chosen arbitrarily). When the orientation of the ordering is fixed,

we call it an oriented ordering, and denote it by (O,b), where O is the

associated (unoriented) ordering of elements ofU , and b ∈ {−1, 1}

is the orientation, with b = −1 indicating a negative (that is, clock-

wise), orientation. Given a graphG and a vertexv ∈ V (G), a circular
ordering Ov of the edges of δG (v) is called a rotation. A collection

of circular orderings Ov for all verticesv ∈ V (G) is called a rotation
system for graph G.

2.3 Tiny v-Discs and Drawings that Obey
Rotations

Given a graph G, its drawing φ, and a vertex v ∈ V (G), we will
sometimes utilize the notion of a tiny v-disc, that we define next.

Definition 2.4 (Tiny v-Disc). Let G be a graph and let φ be a

drawing ofG on the sphere or in the plane. For each vertexv ∈ V (G),
we denote by Dφ (v) a very small disc containing the image of v in

its interior, and we refer to Dφ (v) as tiny v-disc. Disc Dφ (v) must

be small enough to ensure that, for every edge e ∈ δG (v), the image

φ(e) of e intersects the boundary of Dφ (v) at a single point, and
φ(e) ∩ Dφ (v) is a contiguous curve. Additionally, we require that
for every vertex u ∈ V (G) \ {v}, φ(u) < Dφ (v); for every edge

e ′ ∈ E(G) \ δG (v), φ(e
′) ∩Dφ (v) = ∅; and that no crossing point of

drawing φ is contained in Dφ (v). Lastly, we require that all discs in{
Dφ (v) | v ∈ V (G)

}
are mutually disjoint.

Consider now a graphG , a vertexv ∈ V (G), and a drawingφ ofG .
Consider the tiny v-disc D = Dφ (v). For every edge e ∈ δG (v), let
pe be the (unique) intersection point of the image φ(e) of e and the

boundary of the disc D. Let O be the (unoriented) circular ordering

in which the points of {pe }e ∈δG (v) appear on the boundary of

D. Then O naturally defines a circular ordering O∗
v of the edges

of δG (v): ordering O∗
v is obtained from O by replacing, for each

edge e ∈ δG (v), point pe with the edge e . We say that the images
of the edges of δG (v) enter the image of v in the order O∗

v in the

drawing φ. For brevity, we may sometimes say that the edges of

δG (v) enter v in the order O∗
v in φ. While we view the ordering

O∗
v as unoriented, drawing φ also defines an orientation for this

ordering. If the points in set {pe | e ∈ δG (v)} are encountered in

the order O∗
v when traversing the boundary of D in the counter-

clock-wise direction, then the orientation is 1; otherwise it is −1.

Assume now that we are given a graph G and a rotation system

Σ forG . Let φ be a drawing ofG . Consider any vertexv ∈ V (G), and
its rotation Ov ∈ Σ. We say that the drawing φ obeys the rotation
Ov ∈ Σ, if the order in which the edges of δG (v) enter v in φ is

precisely Ov (note that both orderings are unoriented). We say

that the orientation of v is −1, or negative, in the drawing φ if the

orientation of the ordering Ov of the edges of δG (v) as they enter

v is −1, and otherwise, the orientation ofv in φ is 1, or positive. We

say that drawing φ of G obeys the rotation system Σ, if it obeys the
rotation Ov ∈ Σ for every vertex v ∈ V (G).

Assume now that we are given a set Γ of curves in general

position, where each curve γ ∈ Γ is an open curve. Let p be any

point that serves as an endpoint of at least one curve in Γ, and let

Γ′ ⊆ Γ be the set of curves for which p serves as an endpoint. We

then define a tiny p-disc D(p) to be a small disc that contains the

point p in its interior; does not contain any other point that serves

as an endpoint of a curve in Γ; and does not contain any crossing

point of curves in Γ. Additionally, we ensure that, for every curve

γ ∈ Γ, if γ ∈ Γ′, then γ ∩ D(p) is a simple curve, and otherwise

γ ∩ D(p) = ∅. For every curve γ ∈ Γ′, let q(γ ) be the unique point
of γ lying on the boundary of the disc D(p). Note that all points
in {q(γ ) | γ ∈ Γ′} are distinct. Let O be the circular order in which

these points are encountered when we traverse the boundary of

D(p). As before, this ordering naturally defines a circular ordering

O′
of the curves in Γ′. We then say that the curves of Γ′ enter the

point p in the order O′
.

2.4 Problem Definitions and Trivial Algorithms
In theMinimumCrossing Number problem, the input is ann-vertex
graphG , and the goal is to compute a drawing ofG in the plane with

minimum number of crossings. The value of the optimal solution,

also called the crossing number of G, is denoted by OPTcr(G).
We also consider a closely related problem called Minimum

Crossing Number with Rotation System (MCNwRS). In this prob-

lem, the input is a graphG , and a rotation system Σ forG . Given an

instance I = (G, Σ) of theMCNwRS problem, we say that a drawing

φ of G is a feasible solution for I if φ obeys the rotation system Σ.
The cost of the solution is the number of crossings in φ. The goal
in theMCNwRS problem is to compute a feasible solution to the

given input instance I of smallest possible cost. We denote the cost

of the optimal solution of the MCNwRS instance I by OPTcnwrs(I ).
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We use the following two simple theorems about the MCNwRS
problem, whose proofs are deferred to the full version.

Theorem 2.5. There is an efficient algorithm, that, given an in-
stance I = (G, Σ) of MCNwRS, correctly determines whether or not
OPTcnwrs(I ) = 0, and, if so, computes a feasible solution to instance I
of cost 0.

Theorem 2.6. There is an efficient algorithm, that given an in-
stance I = (G, Σ) of MCNwRS, computes a feasible solution to I , of
cost at most |E(G)|2.

We refer to the solution computed by the algorithm from Theo-

rem 2.6 as a trivial solution.

2.5 A ν-Decomposition of an Instance
A central tool that we use in our divide-and-conquer algorithm is a

ν-decomposition of instances.

Definition 2.7 (ν-Decomposition of Instances). Let I = (G, Σ) be
an instance of MCNwRS with |E(G)| = m, and let ν ≥ 1 be a

parameter. We say that a collection I of instances ofMCNwRS is

a ν -decomposition of I , if the following hold:

(D1)

∑
I ′=(G′,Σ′)∈I |E(G ′)| ≤ m · (logm)O (1)

;

(D2)

∑
I ′∈I OPTcnwrs(I ′) ≤ (OPTcnwrs(I ) +m) · ν ; and

(D3) there is an efficient algorithm Alg(I), that, given, a feasible
solution φ(I ′) to every instance I ′ ∈ I, computes a feasible

solution φ to instance I , of cost cr(φ) ≤ O
(∑

I ′∈I cr(φ(I ′))
)
.

We say that a randomized algorithm Alg is a ν-decomposition
algorithm for a family I∗ of instances of MCNwRS if Alg is an effi-

cient algorithm, that, given an instance I = (G, Σ) ∈ I∗
, produces a

collection I of instances that has properties D1 and D3, and ensures

the following additional property (that replaces Property D2):

(D’2) E
[∑

I ′∈I OPTcnwrs(I ′)
]
≤ (OPTcnwrs(I ) + |E(G)|) · ν .

2.6 Subinstances
We use the following definition of subinstances.

Definition 2.8 (Subinstances). Let I = (G, Σ) and I ′ = (G ′, Σ′)
be two instances of MCNwRS. We say that instance I ′ is a subin-
stance of instance I , if there is a subgraph G̃ ⊆ G, and a collection

S1, . . . , Sr of mutually disjoint subsets of vertices of G̃, such that

graph G ′
can be obtained from G̃ by contracting, for all 1 ≤ i ≤ r ,

every vertex set Si into a supernode ui ; we keep parallel edges

but remove self-loops
3
. We do not distinguish between the edges

incident to the supernodes in graph G ′
and their counterparts in

graph G. For every vertex v ∈ V (G ′) ∩ V (G), its rotation O′
v in

Σ′ must be consistent with the rotation Ov ∈ Σ, while for every
supernode ui , its rotation O′

ui in Σ′ can be defined arbitrarily.

Observe that, if instance I ′ = (G ′, Σ′) is a subinstance of I =
(G, Σ), then |E(G ′)| ≤ |E(G)|. Also notice that the subinstance rela-

tion is transitive: if instance I1 is a subinstance of instance I0, and
instance I2 is a subinstance of I1, then I2 is a subinstance of I0.

3
Note that this definition is similar to the definition of a minor, except that we do not

require that the induced subgraphs G[Si ] of G are connected.

3 AN ALGORITHM FOR MCNwRS
In this section we provide the proof of Theorem 1.1, with most of

the details deferred to the full version. Throughout the paper, we

denote by I∗ = (G∗, Σ∗) the input instance of theMCNwRS problem,

and we denotem∗ = |E(G∗)|. We also use the following parameter

that is central to our algorithm: µ = 2
c∗(logm∗)7/8 log logm∗

, where

c∗ is a large enough constant.

As mentioned already, our algorithm for solving theMCNwRS
problem is recursive, and, over the course of the recursion, we will

consider various other instances I of MCNwRS. Throughout the
algorithm, parametersm∗

and µ remain unchanged, and are defined

with respect to the original input instance I∗. The main technical

ingredient of the proof is the following theorem.

Theorem 3.1. There is a constant c ′′, and an efficient randomized
algorithm, that, given an instance I = (G, Σ) of MCNwRS with
|E(G)| =m, such that µc

′′

≤ m ≤ m∗, either returns FAIL, or computes
a collection I of instances ofMCNwRS with the following properties:

• for every instance I ′ = (G ′, Σ′) ∈ I, |E(G ′)| ≤ m/µ;
•
∑
I ′=(G′,Σ′)∈I |E(G ′)| ≤ m · (logm)O (1);

• there is an efficient algorithm called AlgCombineDrawings,
that, given a solution φ(I ′) to every instance I ′ ∈ I, computes
a solution φ to instance I ; and

• if OPTcnwrs(I ) ≤ |E(G)|2/µc
′′

, then with probability at least
15/16, all of the following hold: (i) the algorithm does not return
FAIL; (ii) I , ∅; (iii)

∑
I ′∈I OPTcnwrs(I ′) ≤ (OPTcnwrs(I ) +

m) · 2O ((logm)3/4 log logm); and (iv) if AlgCombineDrawings
is given as input a solution φ(I ′) to every instance I ′ ∈ I, then
the resulting solution φ to instance I that it computes has cost
at most: O

( ∑
I ′∈I cr(φ(I ′))

)
+ (OPTcnwrs(I ) +m) · µO (1).

In the next subsection, we prove Theorem 1.1 using Theorem 3.1.

3.1 Proof of Theorem 1.1
Throughout the proof, we assume that m∗

is larger than a suf-

ficiently large constant, since otherwise we can return a trivial

solution to instance I∗, from Theorem 2.6.

We let cд > 100 be a large enough constant, so that, for ex-

ample, when the algorithm from Theorem 3.1 is applied to an

instance I = (G, Σ) with m = |E(G)|, such that µc
′′

≤ m ≤

m∗
holds, it is guaranteed to return a family I of instances of

MCNwRS, with
∑
I ′=(G′,Σ′)∈I |E(G ′)| ≤ m · (logm)cд . We say that

the algorithm from Theorem 3.1 is successful if all of the following
hold: (i) the algorithm does not return FAIL; (ii) if I is the col-

lection of instances returned by the algorithm, then I , ∅; (iii)∑
I ′∈I OPTcnwrs(I ′) ≤ (OPTcnwrs(I ) + m) · 2cд ((logm)3/4 log logm)

;

and (iv) if algorithm AlgCombineDrawings is given a solution φ(I ′)
to every instance I ′ ∈ I, then it computes a solution φ to instance

I , of cost at most cд · (
∑
I ′∈I cr(φ(I ′)) + (OPTcnwrs(I ) +m) · µcд .

By letting cд be a large enough constant, Theorem 3.1 guarantees

that, if OPTcnwrs(I ) ≤ |E(G)|2/µc
′′

, then with probability at least

15/16 the algorithm is successful. We assume that the parameter c∗

in the definition of µ is sufficiently large, so that, e.g., c∗ > 2cд .
We use a simple recursive algorithm called AlgRecursiveCNwRS,

that appears in Figure 1.
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AlgRecursiveCNwRS
Input: an instance I = (G, Σ) of MCNwRS with |E(G)| ≤ m∗

.

Output: a feasible solution to instance I .

(1) Use the algorithm from Theorem 2.5 to determine whether

OPTcnwrs(I ) = 0. If so, use the algorithm from Theorem 2.5

to compute a solution to I of cost 0. Return this solution,

and terminate the algorithm.

(2) Use the algorithm from Theorem 2.6 to compute a trivial

solution φ ′ to instance I .

(3) If |E(G)| ≤ µc
′′

, return the trivial solution φ ′ and terminate.

(4) For 1 ≤ j ≤ ⌈logm∗⌉:

(a) Apply the algorithm from Theorem 3.1 to instance I .
(b) If the algorithm returns FAIL, let φ j = φ

′
be the trivial

solution to instance I , and set Ij (I ) = ∅.

(c) Otherwise:

(i) Let Ij (I ) be the instances computed by the algorithm.

(ii) For every I ′ ∈ Ij (I ), apply AlgRecursiveCNwRS to in-
stance I ′, to obtain a solution φ(I ′) to this instance.

(iii) Apply AlgCombineDrawings from Theorem 3.1 to

{φ(I ′)}I ′∈Ij (I ), to obtain a solution φ j to instance I .

Return the solution from

{
φ ′,φ1, . . . ,φ ⌈logm∗ ⌉

}
that has

fewest crossings.

Figure 1: AlgRecursiveCNwRS

In order to analyze the algorithm, it is convenient to associate

a partitioning tree T with it, whose vertices correspond to all in-

stances ofMCNwRS considered over the course of the algorithm.

Let L = ⌈logm∗⌉. We start with the tree T containing a single root

vertexv(I∗), representing the input instance I∗. Consider now some

vertexv(I ) of the tree, representing some instance I = (G, Σ). When

Algorithm AlgRecursiveCNwRS was applied to instance I , if it did
not terminate after the first three steps, it constructed L collections

I1(I ), . . . ,IL(I ) of instances (some of which may be empty, in case

the algorithm from Theorem 3.1 returned FAIL in the corresponding

iteration). For each such instance I ′ ∈
⋃L
j=1 Ij (I ), we add a vertex

v(I ′) representing instance I ′ to T , that becomes a child vertex of

v(I ). This concludes the description of the partitioning tree T .
We denote by I∗ = {I | v(I ) ∈ V (T )} the set of all instances of

MCNwRS, whose corresponding vertex appears in the tree T . For
each such instance I ∈ I∗

, its recursive level is the distance from
vertex v(I ) to the root vertex v(I∗) in the tree T (so the recursive

level of v(I∗) is 0). For j ≥ 0, we denote by
ˆIj ⊆ I∗

the set of all

instances I ∈ I∗
, whose recursive level is j. Lastly, the depth of

the tree T , denoted by dep(T ), is the largest recursive level of any
instance in I∗

. In order to analyze the algorithm, we start with the

following two simple observations, whose proofs are deferred to

the full version.

Observation 3.1. dep(T ) ≤ (logm∗)1/8

c∗ log logm∗ .

Observation 3.2.

∑
I=(G,Σ)∈I∗ |E(G)| ≤ m∗ · 2(logm

∗)1/8 .

We use the following immediate corollary of Observation 3.2.

Corollary 3.2. The number of instances I = (G, Σ) ∈ I∗ with
|E(G)| ≥ µc

′′

is at mostm∗.

We say that an instance I ∈ I∗
is a leaf instance, if vertexv(I ) is a

leaf vertex of the treeT , and we say that it is a non-leaf instance oth-
erwise. Consider now a non-leaf instance I = (G, Σ) ∈ I∗

. We say

that a bad event E(I ) happens, if 0 < OPTcnwrs(I ) ≤ |E(G)|2/µc
′′

,

and, for all 1 ≤ j ≤ L, the jth application of the algorithm from The-

orem 3.1 to instance I was unsuccessful. Clearly, from Theorem 3.1,

Pr [E(I )] ≤ (1/16)L ≤ 1/(m∗)4. Let E be the bad event that event

E(I ) happened for any instance I ∈ I∗
. From the Union Bound and

Corollary 3.2, we get that Pr [E] ≤ 1/(m∗)2. We use the following

immediate observation.

Observation 3.3. If Event E does not happen, then for every leaf
vertexv(I ) ofT with I = (G, Σ), either |E(G)| ≤ µc

′′

; orOPTcnwrs(I ) =
0; or OPTcnwrs(I ) > |E(G)|2/µc

′′

.

We use the next lemma to complete the proof of Theorem 1.1.

Lemma 3.3. If Event E does not happen, thenAlgRecursiveCNwRS
computes a solution for instance I∗ = (G∗, Σ∗) of cost at most
2
O ((logm∗)7/8 log logm∗) · (OPTcnwrs(I∗) + |E(G∗)|).

Proof. Consider a non-leaf instance I = (G, Σ), and letI1(I ), . . . ,
IL(I ) be families of instances ofMCNwRS thatAlgRecursiveCNwRS
computed, when applied to instance I . Recall that, for each 1 ≤

j ≤ L with Ij (I ) , ∅, the algorithm computes a solution φ j to
instance I , by first solving each of the instances in Ij (I ) recur-
sively, and then combining the resulting solutions using Algorithm

AlgCombineDrawings. Eventually, the algorithm returns the best

solution of {φ ′,φ1, . . . ,φL}, where φ
′
is the trivial solution, whose

cost is at most |E(G)|2. We fix an arbitrary index 1 ≤ j ≤ L, such
that the jth application of the algorithm from Theorem 3.1 to in-

stance I was successful. Note that the cost of the solution to instance
I that the algorithm returns is at most cr(φ j ). We then mark the

vertices of

{
v(I ′) | I ′ ∈ Ij (I )

}
and the root in the tree T . Let T ∗

be

the subgraph ofT induced by all marked vertices. It is easy to verify

that T ∗
is a tree, and moreover, if Event E did not happen, every

leaf vertex ofT ∗
is also a leaf vertex ofT . For a vertex v(I ) ∈ V (T ∗),

we denote by h(I ) the length of the longest path in tree T ∗
, con-

necting vertex v(I ) to any of its descendants in the tree. We use the

following claim, whose proof is deferred to the full version.

Claim 3.1. Assume that Event E did not happen. Then there is
a fixed constant c̃ ≥ max

{
c ′′, cд , c

∗
}
, such that, for every vertex

v(I ) ∈ V (T ∗), whose corresponding instance is denoted by I = (G, Σ),
the cost of the solution that the algorithm computes for I is at most:

2
c̃h(I )(logm∗)3/4 log logm∗

µc
′′cд · OPTcnwrs(I )

+ (logm∗)4cдh(I )µ2c
′′c̃ |E(G)|.

We are now ready to complete the proof of Lemma 3.3. Recall

that h(I∗) = dep(T ∗) ≤ dep(T ) ≤ (logm∗)1/8

c∗ log logm∗ from Observation 3.1.

Therefore, fromClaim 3.1, the cost of the solution that the algorithm
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computes for instance I∗ is bounded by:

2
O (dep(T ))·(logm∗)3/4 log logm∗

· µO (1) · OPTcnwrs(I∗)

+ (logm∗)O (dep(T )) · µO (1) ·m∗

≤ 2
O ((logm∗)7/8) · µO (1) · OPTcnwrs(I∗)

+ (logm∗)O ((logm∗)1/8/log logm∗) · µO (1) ·m∗

≤ 2
O ((logm∗)7/8 log logm∗) ·

(
OPTcnwrs(I∗) + |E(G∗)|

)
.

□

In order to complete the proof of Theorem 1.1, it is now enough

to prove Theorem 3.1, which we do in the next subsection.

3.2 Proof of Theorem 3.1 – Main Definitions
and Theorems

We classify instances of MCNwRS into wide and narrow. Wide

instances are, in turn, classified into well-connected and not well-

connected instances. We then provide different algorithms for de-

composing instances of each of the resulting three kinds. We use

the following notion of a high-degree vertex.

Definition 3.4 (High-degree vertex). Let G be any graph. A vertex

v ∈ V (G) is a high-degree vertex, if degG (v) ≥ |E(G)|/µ4.

We are now ready to define wide and narrow instances.

Definition 3.5 (Wide and Narrow Instances). Let I = (G, Σ) be
an instance ofMCNwRS with |E(G)| =m. We say that I is a wide
instance, if there is a high-degree vertex v ∈ V (G), a partition

(E1,E2) of the edges of δG (v), such that the edges of E1 appear

consecutively in the rotation Ov ∈ Σ, and so do the edges of E2,
and there is a collection P of at least

⌊
m/µ50

⌋
simple edge-disjoint

cycles in G, such that every cycle P ∈ P contains one edge of E1
and one edge of E2. An instance that is not wide is called narrow.

Note that there is an efficient algorithm to check whether a given

instance I of MCNwRS is wide, and, if so, to compute the corre-

sponding set P of cycles, via standard algorithms for maximum

flow. (For every vertex v ∈ V (G), we try all possible partitions

(E1,E2) of δG (v) with the required properties, as the number of

such partitions is bounded by |δG (v)|
2
.) We will use the following

simple observation regarding narrow instances, whose proof is

deferred to the full version.

Observation 3.4. If an instance I = (G, Σ) ofMCNwRS is narrow,
then for every pairu,v of distinct high-degree vertices ofG , and any set
P of edge-disjoint paths connecting u to v inG , |P | ≤ 2

⌈
|E(G)|/µ50

⌉
must hold.

Next, we define well-connected wide instances.

Definition 3.6 (Well-Connected Wide Instances). Let I = (G, Σ) be
a wide instance of MCNwRS with |E(G)| = m. We say that it is a

well-connected instance iff for every pair u,v of distinct vertices of

G with degG (v), degG (u) ≥ m/µ5, there is a collection of at least

8m/µ50 edge-disjoint paths connecting u to v in G.

The proof of Theorem 3.1 relies on the following three theorems,

whose proofs are deferred to the full version. The first theorem

deals with wide instances that are not necessarily well-connected.

Theorem 3.7. There is an efficient randomized algorithm, whose
input is a wide instance I = (G, Σ) of MCNwRS, withm = |E(G)|,
such that µ20 ≤ m ≤ m∗. The algorithm computes a ν -decomposition
I of I , for ν = 2

O ((logm)3/4 log logm), where every instance I ′ =
(G ′, Σ′) ∈ I is a subinstance of I , such that either |E(G ′)| ≤ m/µ; or
I ′ is a narrow instance; or I ′ is a wide and well-connected instance.

The second theorem deals with wide well-connected instances.

Theorem 3.8. There is an efficient randomized algorithm, whose
input is a wide and well-connected instance I = (G, Σ) of MCNwRS,
with m = |E(G)|, such that µc

′

≤ m ≤ m∗ holds, for some large
enough constant c ′. The algorithm either returns FAIL, or computes
a non-empty collection I of instances of MCNwRS, such that the
following hold:

•
∑
I ′=(G′,Σ′)∈I |E(G ′)| ≤ 2|E(G)|;

• for every instance I ′ = (G ′, Σ′) ∈ I, either |E(G ′)| ≤ m/µ, or
instance I ′ narrow;

• there is an efficient algorithm called AlgCombineDrawings′,
that, given a solution φ(I ′) to every instance I ′ ∈ I, computes
a solution φ to instance I ; and

• if OPTcnwrs(I ) ≤ m2/µc
′

then, with probability at least 1 −
1/µ2, all of the following hold: (i) the algorithm does not return
FAIL; (ii)

∑
I ′∈I OPTcnwrs(I ′) ≤ OPTcnwrs(I ) · (logm)O (1);

and (iii) if algorithm AlgCombineDrawings′ is given as input
a solution φ(I ′) to every instance I ′ ∈ I, then the resulting
solution φ to instance I that it computes has cost at most:
cr(φ) ≤

∑
I ′∈I cr(φ(I ′)) +OPTcnwrs(I ) · µO (1).

The third theorem deals with narrow instances.

Theorem 3.9. There is an efficient randomized algorithm, whose
input is a narrow instance I = (G, Σ) of MCNwRS, withm = |E(G)|,
such that µ50 ≤ |E(G)| ≤ 2m∗. The algorithm either returns FAIL,
or computes a ν-decomposition I of I , for ν = 2

O ((logm)3/4 log logm),
such that, for every instance I ′ = (G ′, Σ′) ∈ I, |E(G ′)| ≤ m/(2µ).
Moreover, if OPTcnwrs(I ) < m2/µ21, then the probability that the
algorithm returns FAIL is at most O(1/µ2).

We now complete the proof of Theorem 3.1 using Theorems

3.7, 3.8, and 3.9. Recall that we are given an instance I = (G, Σ)

of MCNwRS, with µc
′′

≤ |E(G)| ≤ m∗
, for some large enough

constant c ′′. We assume that c ′′ > 100c ′, where c ′ is the constant
in Theorem 3.8. We use another large constant c ′д , and we assume

that c∗ > c ′д > c ′′, where c∗ is the constant in the definition of the

parameter µ. Throughout, we denotem = |E(G)|. We compute the

desired collection I∗
of instances in three steps.

Step 1. Assume first that the input instance I is a wide instance.

We apply the algorithm from Theorem 3.7 to I . Let ˆI be the re-

sulting collection of instances. We partition the set
ˆI of instances

into three subsets. The first set, denoted by
ˆIsmall, contains all in-

stances I ′ = (G ′, Σ′) ∈ ˆI with |E(G ′)| ≤ m/µ. The second set,

denoted by
ˆI
(n)
large, contains all narrow instances in

ˆI \ ˆIsmall. The

third set, denoted by
ˆI
(w )

large, contains all remaining instances of

ˆI. From Theorem 3.7, every instance in
ˆI
(w )

large is wide and well-

connected. Since every instance I ′ = (G ′, Σ′) ∈ ˆI is a subinstance of
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I , |E(G ′)| ≤ |E(G)| ≤ m∗
must hold. Recall that, from Theorem 3.7,

ˆI is a ν1-decomposition for I , for ν1 = 2
O ((logm)3/4 log logm)

, so∑
I ′=(G′,Σ′)∈ ˆI

|E(G ′)| ≤ m · (logm)
c ′д , (1)

and E
[∑

I ′∈ ˆI
OPTcnwrs(I ′)

]
≤ (OPTcnwrs(I ) +m) · ν1.

Bad Event E1. We say the bad event E1 happens, iff∑
I ′∈ ˆI

OPTcnwrs(I ′) > 100(OPTcnwrs(I ) +m)ν1.

From the Markov Bound, Pr [E1] ≤ 1/100. Note that, if event E1

did not happen, then for each instance I ′ ∈ ˆI, OPTcnwrs(I ′) ≤

100(OPTcnwrs(I )+m)ν1. We need the following simple observation,

whose proof is deferred to the full version.

Observation 3.5. Assume that OPTcnwrs(I ) ≤ m2/µc
′′

, and that
Event E1 did not happen. Then for every instance I ′ = (G ′, Σ′) ∈

ˆI
(n)
large ∪

ˆI
(w )

large, OPTcnwrs(I
′) ≤ |E(G ′)|2/µc

′

.

Assume now that instance I is a narrow instance. Thenwe simply

set
ˆI = ˆI

(n)
large = {I } and ˆIsmall =

ˆI
(w )

large = ∅. This completes the

description of the first step.

Step 2. In the second step, we apply the algorithm from Theorem 3.8

to every instance I ′ ∈ ˆI
(w )

large. If the algorithm returns FAIL, then

we terminate our algorithm and return FAIL as well. Assume now

that the algorithm from Theorem 3.8, when applied to instance I ′,

did not return FAIL. We let
˜I(I ′) be the collection of instances that

the algorithm computes. Recall that we are guaranteed that, for

each instance Ĩ = (G̃, Σ̃) ∈ ˜I(I ′), either Ĩ is a narrow instance, or

|E(G̃)| ≤ |E(G′) |
µ ≤ m

µ (we have used the fact that |E(G ′)| ≤ m, since

I ′ = (G ′, Σ′) is a subinstance of I ). Additionally, we are guaranteed
that: ∑

Ĩ=(G̃, Σ̃)∈ ˜I(I ′)

|E(G̃)| ≤ 2|E(G ′)|. (2)

In particular, for every instance Ĩ = (G̃, Σ̃) ∈ ˜I(I ′), |E(G̃)| ≤
2|E(G ′)| ≤ 2m ≤ 2m∗

.

We say that the application of the algorithm from Theorem 3.8

to an instance I ′ = (G ′, Σ′) ∈ ˆI
(w )

large is successful, if (i) the algorithm

does not return FAIL; (ii)

∑
Ĩ ∈ ˜I(I ′)OPTcnwrs(Ĩ ) ≤ OPTcnwrs(I ′) ·

(logm)
c ′д
; and (iii) there is an efficient algorithm, that we call

AlgCombineDrawings′, that, given a solutionφ(Ĩ ) to every instance
Ĩ ∈ ˜I(I ′), computes a solution φ(I ′) to instance I ′ with cr(φ(I ′)) ≤∑
Ĩ ∈ ˜I(I ′) cr(φ(Ĩ )) +OPTcnwrs(I

′) · µc
′
д
.

Bad Event E2. For an instance I ′ = (G ′, Σ′) ∈ ˆI
(w )

large, we say that a

bad event E2(I
′) happens if the algorithm from Theorem 3.8, when

applied to instance I ′, was not successful. From Theorem 3.8 and Ob-

servation 3.5, if OPTcnwrs(I ) ≤ m2/µc
′′

, then Pr [E2(I
′) | ¬E1] ≤

1/µ2 (since we can assume that c ′д is a large enough constant). We

let E2 be the bad event that at least one of the events in{
E2(I

′) | I ′ ∈ ˆI
(w )

large

}
happened. Recall that, from the definition

of the set I
(w )

large of instances, for every instance I ′ = (G ′, Σ′) ∈

ˆI
(w )

large, |E(G
′)| ≥ m

µ holds. On the other hand, from Equation 1,∑
I ′=(G′,Σ′)∈ ˆI

(w )

large
|E(G ′)| ≤

∑
I ′=(G′,Σ′)∈ ˆI

|E(G ′)| ≤ m · (logm)
c ′д .

Therefore, we get that | ˆI
(w )

large | ≤ µ ·(logm)
c ′д
. From the Union Bound,

if OPTcnwrs(I ) ≤ m2/µc
′′

, then Pr [E2 | ¬E1] ≤
µ ·(logm)

c′д

µ2 ≤ 1

100
.

Let
˜I =

⋃
I ′∈ ˆI

(w )

large

˜I(I ′). Note that, from Inequalities 1 and 2, we

get that: ∑
Ĩ=(G̃, Σ̃)∈ ˜I

|E(G̃)| ≤ 2m · (logm)
c ′д . (3)

We partition the instances in set
˜I into two subsets: set

˜Ismall,

containing all instances Ĩ = (G̃, Σ̃) in ˜I with |E(G̃)| ≤ m/µ, and set

˜I
(n)
large, containing all remaining instances. From Theorem 3.8, every

instance Ĩ ∈ ˜I
(n)
large is narrow. This completes the description of the

second step.

Step 3. We focus on four sets of instances that we have constructed

so far:
ˆIsmall, ˆI

(n)
large,

˜Ismall, ˜I
(n)
large. Recall that, if instance I

′ = (G ′, Σ′)

belongs to set
ˆIsmall ∪

˜Ismall, then |E(G ′)| ≤ m/µ. If instance

I ′ = (G ′, Σ′) belongs to set ˆI
(n)
large,∪

˜I
(n)
large, thenm/µ < |E(G ′)| ≤ 2m,

and instance I ′ is narrow. We use the following simple observation,

whose proof is deferred to the full version.

Observation 3.6. If OPTcnwrs(I ) ≤ m2/µc
′′

, and neither of the
events E1, E2 happened, then for every instance I ′ = (G ′, Σ′) ∈

ˆI
(n)
large ∪

˜I
(n)
large, OPTcnwrs(I

′) < |E(G ′)|2/µ21.

Next, we process every instance I ′ ∈ ˆI
(n)
large ∪

˜I
(n)
large one by one.

Notice that for each such instance I ′ = (G ′, Σ′), |E(G ′)| ≥ m/µ ≥

µ50 must hold, sincem ≥ µc
′′

. Additionally, as observed already,

|E(G ′)| ≤ 2m ≤ 2m∗
. When instance I ′ = (G ′, Σ′) is processed, we

apply the algorithm from Theorem 3.9 to it. If the algorithm returns

FAIL, then we terminate the algorithm and return FAIL as well.

Otherwise, we obtain a collection I(I ′) of instances ofMCNwRS.
From Theorem 3.9, for every instance I ′′ = (G ′′, Σ′′) ∈ I(I ′),

|E(G ′′)| ≤
|E(G′) |
2µ ≤ m

µ . Moreover, from the definition of a ν-

decomposition of an instance, and from the fact that |E(G ′)| ≤ 2m,∑
I ′′=(G′′,Σ′′)∈I(I ′)

|E(G ′′)| ≤ |E(G ′)| · (logm)
c ′д . (4)

Bad Events E3 and E. For an instance I ′ = (G ′, Σ′) ∈ ˆI
(n)
large ∪

˜I
(n)
large, we say that the event E3(I

′) happens if the algorithm from

Theorem 3.9, when applied to instance I ′, returns FAIL. From Theo-

rem 3.9, if OPTcnwrs(I ′) < |E(G ′)|2/µ21, then the algorithm returns

FAIL with probability O(1/µ2). Therefore, from Observation 3.6, if

OPTcnwrs(I ) ≤ m2/µc
′′

, then Pr [E3(I
′) | ¬E1 ∧ ¬E2] ≤ O(1/µ2).

We let E3 to be the bad event that E3(I
′) happened for any in-

stance I ′ ∈ ˆI
(n)
large ∪ ˜I

(n)
large. Recall that, for every instance I ′ =

(G ′, Σ′) ∈ ˆI
(n)
large ∪

˜I
(n)
large, |E(G

′)| ≥ m
µ . On the other hand, from

Inequality 1,

∑
I ′=(G′,Σ′)∈ ˆI

(n)
large

|E(G ′)| ≤ m · (logm)
c ′д
, and from
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Inequality 3,

∑
I ′=(G′,Σ′)∈ ˜I

(n)
large

|E(G ′)| ≤ 2m · (logm)
c ′д
. Therefore,

| ˆI
(n)
large ∪

˜I
(n)
large | ≤ 3µ · (logm)

c ′д
. From the Union Bound, assuming

that the constant c∗ in the definition of the parameter µ is large

enough, if OPTcnwrs(I ) ≤ m2/µc
′′

, then Pr [E3 | ¬E1 ∧ ¬E2] ≤

O
( µ ·(logm)

c′д

µ2
)
≤ 1

100
. Lastly, we define bad event E to be the

event that at least one of the events E1, E2, E3 happened. Note that

Pr [E] ≤ Pr [E1] + Pr [E2 | ¬E1] + Pr [E3 | ¬E1 ∧ ¬E2]. There-

fore, altogether, if OPTcnwrs(I ) ≤ m2/µc
′′

, then Pr [E] ≤ 3

100
≤ 1

30
.

Note that, if bad event E does not happen, then the algorithm does

not return FAIL.

If the third step of the algorithm did not terminate with a FAIL,

we let Ismall =
⋃
I ′∈ ˆI

(n)
large∪

˜I
(n)
large

I(I ′). By combining Inequalities 1,

3 and 4, we get that:∑
I ′′=(G′′,Σ′′)∈Ismall

|E(G ′′)| ≤ 3m · (logm)
2c ′д . (5)

The output of the algorithm is the collection I∗ = ˆIsmall ∪
˜Ismall ∪

Ismall of instances of MCNwRS. From the above discussion, for

every instance I ′′ = (G ′′, Σ′′) ∈ I∗
, |E(G ′′)| ≤ m/µ. As discussed

already, if bad event E does not happen, then the algorithm does

not return FAIL.

From now on we assume that the algorithm did not return

FAIL. From Inequalities 1, 3 and 5,

∑
I ′′=(G′′,Σ′′)∈I∗ |E(G ′′)| ≤ 6m ·

(logm)
2c ′д .

Next, we provide Algorithm AlgCombineDrawings in the fol-

lowing claim, whose proof is conceptually straightforward but

somewhat technical, and is deferred to the full version.

Claim 3.2. There is an efficient algorithm AlgCombineDrawings,
that, given a solution φ(I ′′) to every instance I ′′ ∈ I∗, computes
a solution φ(I ) to instance I . Moreover, if OPTcnwrs(I ) ≤ m2/µc

′′

,
and event E did not happen, then cr(φ(I )) ≤ O(

∑
I ′′∈I∗ cr(φ(I ′′))) +

(OPTcnwrs(I ) +m) · µO (1).

The following observation, whose proof is deferred to the full

version, will complete the proof of Theorem 3.1.

Observation 3.7. If OPTcnwrs(I ) ≤ |E(G)|2/µc
′

and bad event E
did not happen, then for some constant c , with probability at least 0.99:∑
I ′′∈I∗ OPTcnwrs(I ′′) ≤ (OPTcnwrs(I ) +m) · 2c(logm)3/4 log logm .

We define E ′
to be the bad event that

∑
I ′′∈I∗ OPTcnwrs(I ′′) >

(OPTcnwrs(I ) +m) · 2c(logm)3/4 log logm
. Clearly, if OPTcnwrs(I ) ≤

m2/µc
′′

, then the probability that either of the events E or E ′
hap-

pens is at most Pr [E] + Pr [E ′ | ¬E] ≤ 1/16. Therefore, we con-

clude that, if OPTcnwrs(I ) ≤ m2/µc
′′

, then with probability at least

15/16, all of the following hold: (i) the algorithm does not return

FAIL; (ii) I∗ , ∅; (iii)
∑
I ′′∈I∗ OPTcnwrs(I ′′) ≤ (OPTcnwrs(I ) +m) ·

2
O ((logm)3/4 log logm)

; and (iv) if algorithm AlgCombineDrawings is
given as input a solution φ(I ′′) to every instance I ′′ ∈ I∗

, then the

resulting solution φ to instance I that it computes has cost at

most: O
( ∑

I ′′∈I∗ cr(φ(I ′′))
)
+ (OPTcnwrs(I ) +m) · µO (1)

. This con-

cludes the proof of Theorem 3.1 from Theorems 3.7, 3.8, and 3.9.
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