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ABSTRACT
We study the vertex decremental Single-Source Shortest Paths

(SSSP) problem: given an undirected graphG = (V ,E) with lengths

ℓ(e ) ≥ 1 on its edges that undergoes vertex deletions, and a source

vertex s , we need to support (approximate) shortest-path queries in

G: given a vertexv , return a path connecting s tov , whose length is

at most (1 + ϵ ) times the length of the shortest such path, where ϵ
is a given accuracy parameter. The problem has many applications,

for example to flow and cut problems in vertex-capacitated graphs.

Decremental SSSP is a fundamental problem in dynamic algo-

rithms that has been studied extensively, especially in themore stan-

dard edge-decremental setting, where the input graphG undergoes

edge deletions. The classical algorithm of Even and Shiloach sup-

ports exact shortest-path queries in O (mn) total update time. A se-

ries of recent results have improved this bound toO (m1+o (1)
logL),

where L is the largest length of any edge. However, these improved

results are randomized algorithms that assume an oblivious adver-
sary. To go beyond the oblivious adversary restriction, recently,

Bernstein, and Bernstein and Chechik designed deterministic al-

gorithms for the problem, with total update time Õ (n2 logL), that
by definition work against an adaptive adversary. Unfortunately,

their algorithms introduce a new limitation, namely, they can only

return the approximate length of a shortest path, and not the path

itself. Many applications of the decremental SSSP problem, includ-

ing the ones considered in this paper, crucially require both that

the algorithm returns the approximate shortest paths themselves

and not just their lengths, and that it works against an adaptive

adversary.

Our main result is a randomized algorithm for vertex decre-

mental SSSP with total expected update time O (n2+o (1) logL), that
responds to each shortest-path query in Õ (n logL) time in expecta-

tion, returning a (1 + ϵ )-approximate shortest path. The algorithm

works against an adaptive adversary. The main technical ingredient
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of our algorithm is an Õ ( |E (G ) | + n1+o (1) )-time algorithm to com-

pute a core decomposition of a given dense graph G, which allows

us to compute short paths between pairs of query vertices in G
efficiently.

We use our result for vertex-decremental SSSP to obtain (1 + ϵ )-
approximation algorithms for maximum s-t flow and minimum s-t

cut in vertex-capacitated graphs, in expected time n2+o (1) , and an

O (log4 n)-approximation algorithm for the vertex version of the

sparsest cut problem with expected running time n2+o (1) . These
results improve upon the previous best known algorithms for these

problems in the regime wherem = ω (n1.5+o (1) ).
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1 INTRODUCTION
We consider the vertex-decremental Single-Source Shortest Paths

(SSSP) problem in edge-weighted undirected graphs, and its ap-

plications to several cut and flow problems in vertex-capacitated

graphs. In the vertex-decremental SSSP, we are given an undirected

graph G with lengths ℓ(e ) ≥ 1 on its edges, and a source vertex s .
The goal is to support (approximate) shortest-path queries from

the source vertex s , as the graph G undergoes a sequence of online

adversarial vertex deletions. We consider two types of queries: in

a path-query, we are given a query vertex v , and the goal is to

return a path connecting s to v , whose length is at most (1 + ϵ )
times the length of the shortest such path, where ϵ is the given

accuracy parameter. In a dist-query, given a vertex v , we need to

report an (approximate) distance from s to v . We will use the term

exact path-query when the algorithm needs to report the shortest

s-v path, and approximate path-query when a (1 + ϵ )-approximate

shortest s-t path is sufficient. We will similarly use the terms of

exact and approximate dist-query. We also distinguish between an

oblivious adversary setting, where the sequence of vertex deletions

is fixed in advance, and adaptive adversary, where each vertex in the

https://doi.org/10.1145/3313276.3316320
https://doi.org/10.1145/3313276.3316320
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deletion sequence may depend on the responses of the algorithm

to previous queries.

A closely related variation of this problem, that has been stud-

ied extensively, is the edge-decremental SSSP problem, where the

graphG undergoes edge deletions and not vertex deletions. Edge-

decremental SSSP captures the vertex-decremental version as a

special case, and has a long history with many significant develop-

ments just in the past few years. We start by briefly reviewing the

work on edge-decremental SSSP, focusing primarily on undirected

graphs. The two parameters of interest are the total update time,
defined as the total time spent by the algorithm on maintaining its

data structures over the entire sequence of deletions, and query time,
defined as the time needed to respond to a single path-query or

dist-query. A classic result of Even and Shiloach [10, 11, 18] gives an

algorithm that supports exact path-query and dist-query with only

O (mn) total update time over all edge deletions, with O (1) query
time for dist-query and O (n) query time for path-query. While

the O (mn) update time represents a significant improvement over

the naive algorithm that simply recomputes a shortest path tree

after each edge deletion, it is far from the near-linear total update

time results that are known for many other decremental problems

in undirected graphs. It remained an open problem for nearly 3

decades to improve upon the update time of the algorithm. Roditty

and Zwick [28] highlighted a fundamental obstacle to getting past

the O (mn) time barrier using combinatorial approaches, even for

unweighted undirected graphs, by showing that the long-standing

problem of designing fast combinatorial algorithms for Boolean

matrix multiplication can be reduced to the exact edge-decremental

SSSP. Furthermore, in a subsequent work, Henzinger et al. [17]
showed that, assuming online Boolean matrix-vector multiplica-

tion conjecture, theO (mn) time barrier for exact edge-decremental

SSSP holds even for arbitrary algorithms for the problem. The ob-

stacles identified by these conditional results, however, only apply

to supporting exact dist-query. Essentially all subsequent work on

edge-decremental SSSP has thus focused on the task of supporting

approximate path-query and dist-query. In the informal discussion

below we assume that the accuracy parameter ϵ is a constant and
ignore the dependence of the time bounds on it.

Bernstein and Roditty [6] made the first major progress in break-

ing the O (mn) update time barrier, by showing an algorithm that

supports approximate dist-query in undirected unweighted graphs

with n2+o (1) total update time, and O (1) query time. Subsequently,

Henzinger, Krinninger, and Nanogkai [15] improved this update

time toO (n1.8+o (1) +m1+o (1) ), and shortly afterwards, the same au-

thors [14] extended it to arbitrary edge lengths and improved it fur-

ther to an essentially optimal total update time of O (m1+o (1)
logL)

where L is the largest length of an edge. All three algorithms are

randomized, and moreover, they assume that the edge deletion se-

quence is given by an oblivious adversary. In particular, for these

results to apply, the deletion sequence cannot depend on the re-

sponses to queries previously returned by the algorithm. For many

applications, it is crucial that the algorithm can handle an adaptive
adversary, and support path-query. For instance, fast approxima-

tion schemes for computing a maximum multicommodity flow in

a graph (see, for instance, [12, 13]) rely on a subroutine that can

identify an approximate shortest s-t path under suitably chosen

edge lengths, and pushing flow along such a path. The edge lengths

are then updated for precisely the edges lying on the path; such

updates can be modeled by the deletion of edges or vertices on the

path. Thus, the edges that are deleted at any step strongly depend

on the responses to the approximate path queries from previous

steps. Moreover, these applications require that we obtain the actual

approximate shortest paths themselves, and not just approximate

distances.

The goal of eliminating the oblivious adversary restriction initi-

ated a search for deterministic edge-decremental SSSP algorithms,

which, by definition, can handle adaptive deletion sequences. Bern-

stein and Chechik [4] gave the first deterministic algorithm to break

the O (mn) total update time barrier. Their algorithm achieves a

total update time of Õ (n2) and an O (1) query time for approx-

imate dist-query. In a subsequent work [5], they improved this

bound further for sparse graphs, obtaining a total update time of

Õ (n5/4
√
m) = Õ (mn3/4), keeping the query time ofO (1) for approx-

imate dist-query. Both these results required that the underlying

graph is undirected and unweighted, that is, all edge lengths are
unit. In a further progress, Bernstein [3] extended these results to

edge-weighted undirected graphs, obtaining a total update time of

Õ (n2 logL), where L is the largest edge length, with query time of

O (1) for approximate dist-query. While all these results success-

fully eliminated the oblivious adversary restriction required by

the previous works that achieved o(mn) total update time, their

approach introduced another limitation: as noted in [3], all three

results only support approximate dist-query, but not approximate

path-query.
At a high level, the approach used in these results is based on par-

titioning the edges of the underlying graph into a light sub-graph,
where the average vertex degree is small and a heavy sub-graph,

where the degree of each vertex is high, say at least τ . Any shortest

s-v path can be decomposed into segments that alternately traverse

through the light and the heavy graph. The segments traversing

through the light graph are explicitly maintained using the ap-

proach of Even and Shiloach [10, 11, 18], exploiting the fact that

the edge density is low in the light graph. The segments traversing

through the heavy graph, on the other hand, are not maintained

explicitly. Instead, it is observed that any shortest s-v path may

contain at most O (n/τ ) edges from the heavy graph, so they do

not contribute much to the path length. This implicit guarantee on

the total length of segments traversing the heavy graph suffices for

obtaining an estimate on the shortest path length by only maintain-

ing shortest paths in the light graph. However, it leaves open the

task of finding these segments themselves.

Our main technical contribution is to design an algorithm that

allows us to support approximate path-query against an adaptive

adversary, by explicitly maintaining short paths in the heavy graph.

Specifically, we design an algorithm that, given a pair of vertices

u,u ′, that belong to the same connected componentC of the heavy

graph, returns a short path connectingu tou ′ inC , where the length
of the path is close to the implicit bound that was used in [3, 4].

Formally, assume that we are given a simple undirected graph

G with a source vertex s and lengths ℓ(e ) > 0 on edges e ∈ E (G ),
that undergoes vertex deletions. Throughout the algorithm, for

every pair u,v of vertices, the distance dist(u,v ) between them is
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the length of the shortest path from u to v in the current graph

G, using the edge lengths ℓ(e ). We also assume that we are given

an error parameter 0 < ϵ < 1. We design an algorithm that sup-

ports approximate single-source shortest-path queries, denoted by

path-query(v ). The query receives as input a vertex v , and returns

a path connecting s tov in the current graphG , if such a path exists,
such that the length of the path is at most (1 + ϵ ) dist(s,v ). Our
main result for SSSP is summarized in the following theorem.

Theorem 1.1. There is a randomized algorithm, that, given a pa-
rameter 0 < ϵ < 1, and a simple undirected n-vertex graph G with
lengths ℓ(e ) > 0 on edges e ∈ E (G ), together with a special source
vertex s ∈ V (G ), such that G undergoes vertex deletions, supports
queries path-query(v ). For each query path-query(v ), the algorithm
returns a path from s to v in G, if such a path exists, whose length
is at most (1 + ϵ ) dist(s,v ). The algorithm works against an adap-
tive adversary. The total expected update time of the algorithm is

O
(
n2+o (1) ·log2 (1/ϵ ) ·log L

ϵ 2

)
, where L is the ratio of largest to small-

est edge length ℓ(e ), and each query is answered in expected time
O (n · poly logn · logL · log(1/ϵ )).

We emphasize that the algorithm is Las Vegas: that is, it always

returns a path with the required properties, but its running time is

only bounded in expectation. The adversary is allowed to view the

complete state of the algorithm, that is, the contents of all its data

structures.

One of the main technical contributions of our algorithm is a core
decomposition of dense graphs. Suppose we are given an n-vertex
graph G , such that every vertex in G has degree at least h, where h

is sufficiently large, say h ≥ n1/ log logn . Informally, a core K is an

expander-like sub-graph of G, such that every vertex of K has at

least h1−o (1) neighbors in K . The “expander-like” properties of the

core ensure that, even after h1−o (1) vertex deletions, given any pair

u,u ′ vertices of K , we can efficiently find a short path connecting u
tou ′ inK (the length of the path depends on the balancing of various

parameters in our algorithm, and is no (1) ). A core decomposition of

G consists of a collectionK1, . . . ,Kr of disjoint cores inG , such that

r ≤ n/h1−o (1) . Additionally, if we denote by U the set of vertices

of G that do not belong to any core, then we require that it is an

h-universal set: that is, even after h1−o (1) vertices are deleted from

G, every surviving vertex of U can reach one of the cores through

a path of length O (logn). We show a randomized algorithm that

with high probability computes a valid core decomposition in a

given graph G in time Õ ( |E (G ) | + n1+o (1) ).
While the result above leaves open the question if a similar

algorithm can also be obtained for edge-decremental SSSP, for

many cut and flow problems on vertex-capacitated graphs, the

vertex-decremental SSSP suffices as a building block. We describe

next some of these applications. We note here that the idea of

using dynamic graph data structures to speed up cut and flow

computations is not new. In particular, Madry [24] systematically

explored this idea for the maximum multicommodity flow and the

concurrent flow problems, significantly improving the previous

best known results for them.

Our first application shows that there is anO (n2+o (1) )-time algo-

rithm for computing approximate maximum s-t flow and minimum

s-t cut in vertex-capacitated undirected graphs. For approximate

maximum s-t flow problem in edge-capacitated undirected graphs, a

sequence of remarkable developments incorporating ideas from con-

tinuous optimization to speed-up maximum flow computation has

culminated in an Õ (m/ϵ2)-time algorithm for computing a (1 + ϵ )-
approximate flow [8, 20, 22, 27, 29].We refer the reader to [26] for an

excellent survey of these developments. However, no analogous re-

sults are known for maximum flow in vertex-capacitated undirected

graphs. The main technique for solving the vertex-capacitated ver-

sion appears to be via standard reduction to the edge-capacitated

directed case, and relying on fast algorithms for maximum s-t flow
problem in edge-capacitated directed graphs. Two recent break-

through results for exact maximum s-t flow in edge-capacitated

directed graphs include an Õ (m
√
n logO (1) C ) time algorithm by

Lee and Sidford [23], and an Õ (m10/7
logC ) time algorithm by

Madry [25]; here C denotes the largest integer edge capacity. The

two bounds are incomparable: the former bound is preferable for

dense graphs, and the latter for sparse graphs. For approximate

maximum s-t flow problem in edge-capacitated directed graphs,

approaches based on the primal-dual framework [12, 13] (or equiv-

alently, the multiplicative weights update method [1]) can be used

to compute a (1 + ϵ )-approximate s-t flow in f (n,m, ϵ )O (m/ϵ2)
time where f (n,m, ϵ ) denotes the time needed to compute a (1+ϵ )-
approximate shortest path from s to t . Our approach is based on

this connection between approximate shortest path computations

and approximate flows, and we obtain the following results.

Theorem 1.2. There is a randomized algorithm, that, given a
simple undirected graph G = (V ,E) with capacities c (v ) ≥ 0 on its
vertices, a source s , a sink t , and an accuracy parameter ϵ ∈ (0, 1],
computes a (1 + ϵ )-approximate maximum s-t flow, and a (1 + ϵ )-
approximate minimum vertex s-t cut inO (n2+o (1)/ poly(ϵ )) expected
time.

Our proof closely follows the analysis of the primal-dual ap-

proach for maximum multicommodity flow problem as presented

in [12, 13]; this algorithm simultaneously outputs an approximate

s-t flow and an approximate fractional s-t cut. The main primi-

tive needed for this framework is the ability to compute a (1 + ϵ )-
approximate shortest source-sink paths in a vertex-weighted graph

that is undergoing weight increases. We show that Theorem 1.1

can be used to implement these dynamic approximate shortest

path computations in O (n2+o (1)/ poly(ϵ )) total expected time. The

fractional s-t cut solution can be rounded in O (m) time by using

the standard random threshold rounding. The runtime obtained in

Theorem 1.2 outperforms previously known bounds in the regime

ofm = ω (n1.5+o (1) ).
Our second application is a new algorithm for approximating

vertex sparsest cut in undirected graphs. A vertex cut in a graph

G is a partition (A,X ,B) of its vertices, so that there is no edge

from A to B (where A or B may be empty). The sparsity of the cut is

|X |
min{ |A |, |B | }+ |X | . In the vertex sparsest cut problem, the goal is to

compute a vertex cut of minimum sparsity. We prove the following

theorem.

Theorem 1.3. There is a randomized algorithm, that, given a sim-
ple undirected graphG = (V ,E), computes anO (log4 n)-approximation
to the vertex sparsest cut problem in O (n2+o (1) ) expected time.
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To establish the above result, it suffices to design an algorithm

that runs in O (n2+o (1) ) expected time, and for any target value

α , either finds a vertex cut of sparsity O (α ) or certifies that the
sparsity of any vertex cut is Ω(α/ log4 n). We design such an al-

gorithm by using the cut-matching game of Khandekar, Rao, and

Vazirani [21]. The game proceeds in rounds where in each round

a bipartition of vertices is given, and the goal is to find a routing

from one set to the other with vertex congestion at most 1/α . This
is essentially the vertex-capacitated s-t flow problem, and we can

use ideas similar to the one in Theorem 1.2 to solve it. If every

round of the cut-matching game can be successfully completed,

then we have successfully embedded an expander that certifies that

vertex sparsity is Ω(α/ log4 n). On the other hand, if any round of

the game fails, then we show that we can output a vertex cut of

sparsity at most O (α ). The run-time of this approach is governed

by the time needed to solve the vertex-capacitated maximum s-t
flow problem, and we utilize Theorem 1.2 to implement this step

in O (n2+o (1) ) expected time. Alternatively, one can implement the

vertex-capacitated maximum s-t flow step using the algorithms for

computing maximum s-t flow in edge-capacitated directed graphs

in Õ (m
√
n) time in dense graphs [23], or in Õ (m10/7) time in sparse

graphs [25]. Thus an identical approximation guarantee to the one

established in Theorem 1.3 can be obtained in Õ (min{m
√
n,m10/7})

time using previously known results [23, 25]. Another approach

for vertex sparsest cut problem is to use the primal-dual framework

of Arora and Kale [2] who achieve an O (
√
logn) approximation to

the directed sparsest cut problem in Õ (m1.5 + n2+ϵ ) time and an

O (logn)-approximation in Õ (m1.5) time. Since directed sparsest

cut captures vertex sparsest cut in undirected graphs as a special

case, these guarantees also hold for the vertex sparsest cut problem.

As before, the runtime obtained in Theorem 1.3 starts to outperform

previously known bounds in the regime ofm = ω (n1.5+o (1) ), albeit
achieving a worse approximation ratio than the one achieved in [2].

Subsequent Work. In a follow-up work, Chuzhoy and Saranu-

rak [9] have extended our results to edge-decremental SSSP, obtain-
ing total expected update time Õ (n2 logL/ϵ2). They also obtain the

first approximate algorithm for edge-decremental All-Pairs Shortest

Paths in unweighted undirected graphs with adaptive adversary,

whose running time is no (3) .
Organization. We start with an overview of our techniques in

Section 2, and preliminaries in Section 3. The proof of Theorem 1.1

is provided in Section 4. Due to lack of space, some of the proofs,

including those of Theorems 1.2 and 1.3, are deferred to the full

version of the paper.

2 OVERVIEW OF THE PROOF OF
THEOREM 1.1

We now provide an overview of our main result, namely, the proof

of Theorem 1.1. This informal overview is mostly aimed to convey

the intuition; in order to simplify the discussion, the values of

some of the parameters and bounds in this overview are given

imprecisely. As much of the previous work in this area, our results

use the classical Even-Shiloach trees [10, 11, 18] as a building block.

Given a graph G with integral edge lengths, that is subject to edge

deletions, a source vertex s , and a distance bound D, the Even-

Shiloach Tree data structure, that we denote by ES-Tree(G, s,D),

maintains a shortest-path tree T of G , rooted at s , up to distance D.
In other words, a vertex v ∈ V (G ) belongs to T iff distG (s,v ) ≤ D,
and for each such vertex v , distT (s,v ) = distG (s,v ). The total

update time of the algorithm is O ( |E (G ) | · D · logn). In addition to

maintaining the shortest-path treeT , the data structure stores, with
every vertex v ∈ V (T ), the value distG (s,v ).

At a high level, our algorithm follows the framework of [3, 4].

Using standard techniques, we can reduce the problem to a setting

where we are given a parameter D = Θ(n/ϵ ), and we only need to

correctly respond to path-query(v ) if D ≤ dist(s,v ) ≤ 4D; other-
wise we can return an arbitrary path, or no path at all. Let us assume

first for simplicity that all edges in the graph G have unit length.

In [3, 4], the algorithm proceeds by selecting a threshold τ ≈ n
ϵD ,

and splitting the graphG into two subgraphs, a sparse graph GL
,

called the light graph, and a dense graphGH
, called the heavy graph.

In order to do so, we say that a vertex v ∈ V (G ) is heavy if the

degree of v , d (v ) ≥ τ , and it is light otherwise. GraphGL
contains

all vertices of G and all edges e = (u,v ), such that at least one of

u,v is a light vertex; notice that |E (GL ) | ≤ nτ ≤ O (n2/ϵD). Graph
GH

contains all heavy vertices ofG , and all edges connecting them.

The algorithm also maintains the extended light graph ĜL
, that is

obtained from GL
, by adding, for every connected component C

of GH
, a vertex vC to ĜL

, and connecting it to every heavy ver-

tex u ∈ C with an edge of weight 1/2. So, in a sense, in ĜL
, we

create “shortcuts” between the heavy vertices that lie in the same

connected component ofGH
. The crux of the algorithm consists of

two observations: (i) for every vertex v , distG (s,v ) ≈ distĜL (s,v );

and (ii) since graph ĜL
is sparse, we can maintain, for every ver-

tex v ∈ G with distG (s,v ) ≤ 4D, the distances distĜL (s,v ) in

total update time O (n2/ϵ ). In order to see the latter, observe that

|E (ĜL ) | ≤ |E (GL ) | +O (n) ≤ O (n2/ϵD). We can use the data struc-

ture ES-Tree(ĜL , s,D), with total update timeO ( |E (ĜL ) | ·D ·logn) =
O (n2 logn/ϵ ) (in fact, the threshold τ was chosen to ensure that

this bound holds). In order to establish (i), observe that graph ĜL
is

obtained from graph G, by “shortcutting” the edges of GH
, and so

it is not hard to see that distĜL (s,v ) ≤ distG (s,v ) for all v ∈ V (G ).
The main claim is that distG (s,v ) ≤ (1 + ϵ ) distGL (s,v ), and in

particular that for any path P in ĜL
connecting the source s to

some vertex v ∈ V (G ), there is a path P ′ in G connecting s to

v , such that the length of P ′ is at most the length of P plus ϵD.
Assuming this is true, it is easy to verify that for every vertex

v with D ≤ dist(s,v ) ≤ 4D, distG (s,v ) ≤ distĜL (s,v ) (1 + ϵ ),
and so it is sufficient for the algorithm to report, as an answer

to a query dist-query(v ), the value distĜL (s,v ), which is stored

in ES-Tree(ĜL , s,D). Consider now some path P in ĜL
, and let C

be any connected component of GH
, such that vC ∈ P . Let u,u ′

be the vertices of the original graph G appearing immediately be-

fore and immediately after vC in P . Let Q (u,u ′) be the shortest

path connecting u to u ′ in the heavy graph GH
. As every vertex

in GH
is heavy, the length of Q (u,u ′) is bounded by 4|V (C ) |/τ :

indeed, assume that Q (u,u ′) = (u = u0,u1, . . . ,ur = u ′), and let

S = {ui | i = 1 mod 4} be a subset of vertices on Q (u,u ′). Then
for every pair ui ,uj of distinct vertices in S , the set of their neigh-
bors must be disjoint (or we could shorten the path Q (u,u ′) by
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connecting ui to uj through their common neighbor). Since ev-

ery vertex in GH
has at least τ neighbors, |S | ≤ |V (C ) |/τ , and so

Q (u,u ′) may contain at most 4|V (C ) |/τ vertices. Once we replace

each such vertex vC on path P with a path connecting the corre-

sponding pair u,u ′ of vertices in the original graph, the length of

P increases by at most

∑
C :vC ∈P 4|V (C ) |/τ ≤ 4n/τ = O (ϵD). This

argument allows the algorithms of [3, 4] to maintain approximate

distances from the source s to every vertex of G, by simply main-

taining the data structure ES-Tree(ĜL , s,D). However, in order to

recover the path connecting s to the given query vertex v inG , we
should be able to compute all required paths in the heavy graphGH

.

Specifically, we need an algorithm that allows us to answer queries

path-query(u,u ′,C ): given a connected component C of GH
, and

a pair u,u ′ of vertices of C , return a path connecting u to u ′ in C ,
whose length is at mostO ( |V (C ) |/τ ). The main contribution of this

work is an algorithm that allows us to do so, when the input graph

G is subject to vertex deletions. (We note that for technical rea-

sons, the value τ in our algorithm is somewhat higher than in the

algorithms of [3, 4], which translates to somewhat higher running

time O (n2+o (1) log2 (1/ϵ )/ϵ2), where o(1) = Θ(1/ log logn)).
A first attempt at a solution. For simplicity of exposition, let

us assume that all vertices in the heavy graph GH
have approx-

imately the same degree (say between h and 2h, where h ≥ τ is

large enough, so, for example, h ≥ n1/ log logn ), so the number of

edges in GH
is O (hn). Using the same argument as before, for ev-

ery connected component C in GH
, and every pair u,u ′ ∈ V (C )

of its vertices, there is a path connecting u to u ′ in C , of length
O ( |V (C ) |/h); we will attempt to return paths whose lengths are

bounded by this value in response to queries. A tempting simple

solution to this problem is the following: for every connected com-

ponent C of GH
, select an arbitrary vertex s (C ) to be its source,

and maintain the ES-Tree(C, s (C ),D (C )) data structure, for the dis-
tance bound D (C ) ≈ |V (C ) |/h. Such a tree can be maintained in

total time Õ ( |E (C ) | · |V (C ) |/h), and so, across all components of

GH
, the total update time is Õ ( |E (GH ) |n/h) = Õ (n2). Whenever

a query path-query(u,u ′,C ) arrives, we simply concatenate the

path connecting u to s (C ) and the path connecting u ′ to s (C ) in the

tree ES-Tree(C, s (C ),D (C )); using the same argument as before, it

is easy to show that the resulting path is guaranteed to be suffi-

ciently short. Unfortunately, this solution does not seem to work in

the case where the adversary is adaptive, since the adversary may

repeatedly delete edges incident to s (C ) until it becomes isolated

(in the vertex-decremental setting, neigbhors of s (C ) are repeatedly
deleted). In order to get around this issue, Henzinger et al. [16]

introduced moving ES-trees; but unfortunately the running time in

their approach is prohibitive for us.

Solution: core decomposition. A natural approach to overcome

this difficulty is to create, in every connected component C of GH

a “super-source”, that would be difficult to disconnect from the rest

of the component C . This motivates the notion of cores that we
introduce. Recall that for the sake of exposition, we have assumed

that the degrees of all vertices in GH
are between h and 2h, where

h ≥ n1/ log logn . Intuitively, a core is a highly-connected graph. For

example, a good core could be an expander graphK , such that every

vertex v ∈ V (H ) has many neighbors in K (say, at least h/no (1) ).
If we use a suitable notion of expander, this would ensure that,

even after a relatively long sequence of vertex deletions (say up

to h/no (1) ), every pair of vertices in K has a short path connecting

them. Intuitively, we would like to use the core as the “super-source”

of the ES-Tree structure. Unfortunately, the bad scenario described

above may happen again, and the adversary can iteratively delete

vertices in order to isolate the core from the remainder of the graph.

To overcome this difficulty, we use the notion of core decomposition.
A core decomposition is simply a collection of disjoint cores inGH

,

but it has an additional important property: If U is the set of all

vertices ofGH
that do not lie in any of the cores, then it must be an

h-universal set: namely, after a sequence of up to h/no (1) deletions
of vertices fromGH

, each remaining vertex ofU should be able to

reach one of the cores using a short path (say, of length at most

poly logn). Our algorithm then uses the cores as the “super-source”,

in the following sense. We construct a new graph G̃, by starting

from GH
and contracting every core K into a super-node z (K ). We

also add a new source vertex s , that connects to each resulting

super-node. Our algorithm then maintains ES-Tree(G̃, s, poly logn),
that allows us to quickly recover a short path connecting any given

vertex in GH
to some core. The main technical contribution of this

paper is an algorithm that computes a core decomposition in time

Õ ( |E (GH ) | + n1+o (1) ). Before we discuss the core decomposition,

we quickly summarize how our algorithm processes shortest-path

queries, and provide a high-level analysis of the total update time.

Responding to queries. Recall that in path-query(u,u ′,C ), we
are given a connected component C of GH

, and a pair u,u ′ of
its vertices. Our goal is to return a path connecting u to u ′, whose
length is at mostO ( |V (C ) |/τ ); in fact we will return a path of length
at most O ( |V (C ) |/h). Recall that for every core K , we require that

every vertex v ∈ K has at least h/no (1) neighbors in K , and that

all cores in the decomposition are disjoint. Therefore, the total

number of cores contained in C is at most |V (C ) |no (1)/h. We will

maintain a simple spanning forest data structure in graph GH
that

allows us, given a pair u,u ′ of vertices that belong to the same

connected component C of GH
, to compute an arbitrary path P

connecting u to u ′ in C . Next, we label every vertex w of P with

some core K : if w belongs to a core K , then the label of w is K ;
otherwise, the label of w is any core K , such that w can reach K
via a short path (of length poly logn). The labeling is performed

by exploiting the ES-Tree(G̃, s, poly logn) data structure described
above. Once we obtain a label for every vertex on the path P , we
“shortcut” the path through the cores: if two non-consecutive ver-

tices of P have the same label K , then we delete all vertices lying on

P between these two vertices, and connect these two vertices via

the core K . As the number of cores in C is at most |V (C ) |no (1)/h,
eventually we obtain a path connecting u to u ′, whose length is

|V (C ) |no (1) poly logn/h = |V (C ) |no (1)/h, as required.
Running time analysis. As already mentioned, our algorithm for

computing the core decomposition takes time Õ ( |E (G ) |+n1+o (1) ) =

O (n1+o (1)h); it seems unlikely that one can hope to obtain an algo-

rithm whose running time is less than Θ( |E (GH ) |) = Θ(nh). Our

core decomposition remains “functional” for roughly h/no (1) iter-

ations, that is, as long as fewer than h/no (1) vertices are deleted.

Once we delete h/no (1) vertices from the graph, we are no longer

guaranteed that pairs of vertices within the same core have short

paths connecting them (in fact they may become disconnected),
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and we are no longer guaranteed that the vertices ofU can reach

the cores via short paths. Therefore, we partition our algorithm into

phases, where every phase consists of the deletion of up to h/no (1)

vertices. Once h/no (1) vertices are deleted, we recompute the core

decomposition, the graph G̃, and the ES-Tree(G̃, s, poly logn) data
structure that we maintain. Note that, since G has n vertices, the

number of phases is bounded by n1+o (1)/h, and recall that we spend

O (n1+o (1)h) time per phase to recompute the core decomposition.

Therefore, the total update time of the algorithm is O (n2+o (1) ) (we
have ignored multiplicative factors that depend on ϵ).
Why our algorithm only handles vertex deletions. As men-

tioned above, it is unlikely that we can compute a core decom-

position in less than Θ( |E (GH ) |) = Θ(nh) time. If our goal is an

algorithm for SSSP with total update time of O (n2+o (1) ), then we

can afford at mostO (n1+o (1)/h) computations of the core decompo-

sition. If we allow edge deletions, this means that a phase may in-

clude up to roughlyh2/no (1) edge deletions, since |E (GH ) | = Θ(nh).
Since the degrees of the vertices are between h and 2h, the cores
cannot handle that many edge deletions, as they can cause an ex-

pander graph to become disconnected, or some vertices ofU may

no longer have short paths connecting them to the cores. However,

in the vertex-deletion model, we only need to tolerate the deletion

of up to roughly h/no (1) vertices per phase, which we are able to

accommodate, as the degrees of all vertices are at least h.
The core decomposition. The main technical ingredient of our

algorithm is the core decomposition. In the vertex-deletion model,

it is natural to define a core K as a vertex expander : that is, for every
vertex-cut (X ,Y ,Z ) in K (so no edges connect X to Z in K), |Y | ≥

min {|X |, |Z |} /no (1) must hold. Additionally, as mentioned above,

we require that every vertex inK has at least h/no (1) neighbors that
lie in K . Unfortunately, these requirements appear too difficult to

fulfill. For instance, a natural way to construct a core-decomposition

is to iteratively decompose the graphGH
into connected clusters, by

computing, in every current cluster R, a sparse vertex cut (X ,Y ,Z ),
and then replacing R with two new graphs: R[X ∪ Y ] and R[Y ∪
Z ]. We can continue this process, until every resulting graph is a

vertex expander. Unfortunately, this process does not ensure that

the resulting cores are disjoint, or that every vertex in a core has

many neighbors that also belong to the core. Moreover, even if all

pairs of vertices within a given core K have short paths connecting

them, it is not clear how to recover such paths, unless we are willing

to spend O ( |E (K ) |) time on each query. Therefore, we define the

cores somewhat differently, by using the notion of a core structure.
Intuitively, a core structure consists of two sets of vertices: set K of

vertices – the core itself, and an additional setU (K ) of at most |K |
vertices, called the extension of the core. We will ensure that all core-

sets K are disjoint, but the extension sets may be shared between

the cores. Additionally, we are given a sub-graphGK
ofGH

, whose

vertex set is K ∪U (K ). We will ensure that all such sub-graphs are

“almost” disjoint in their edges, in the sense that every edge of GH

may only belong to at most O (logn) such graphs, as this will be

important in the final bound on the running time. Finally, the core

structure also contains a witness graphW K
- a sparse graph, that

is a 1/no (1)-expander (in the usual edge-expansion sense), whose

vertex set includes every vertex of K , and possibly some additional

vertices fromU (K ). We also compute an embedding ofW K
intoGK

,

where each edge e = (u,v ) ∈ E (W K ) is mapped to some path Pe
in GK

, connecting u to v , such that all such paths Pe are relatively

short, and they cause low vertex-congestion in GK
. The witness

graphW K
and its embedding into GK

allow us to quickly recover

short paths connecting pairs of vertices in the core K .
One of the main building blocks of our core decomposition algo-

rithm is an algorithm that, given a subgraphH ofG , either computes

a sparse and almost balanced vertex-cut in H , or returns a core con-

taining most vertices of H . The algorithm attempts to embed an

expander into H via the cut-matching game of [21]. If it fails, then

we obtain a sparse and almost balanced vertex-cut in H . Otherwise,

we embed a graphW into H , that is with high probability an ex-

pander. GraphW then serves as the witness graph for the resulting

core. The cut-matching game is the only randomized part of our

algorithm. If it fails (which happens with low probability), then

one of the queries to the heavy graph may return a path whose

length is higher than the required threshold (that is known to the

algorithm). In this case, we simply recompute all our data struc-

tures from scratch. This ensures that our algorithm always returns

a correct approximate response to path-query, with the claimed

expected running time, and is able to handle an adaptive adversary.

Handling arbitrary vertex degrees. Recall that so far we have

assumed that all vertices in GH
have similar degrees. This was

necessary because, if some vertices ofGH
have low degrees (say d),

but |E (GH ) | is high (say O (nh) for some h ≫ d), then we would be

forced to recompute the core decomposition very often, every time

that roughly d vertices are deleted, while each such computation

takes at least Θ(n1+o (1)h) time, resulting in a total running time

that is too high. To overcome this difficulty, we partition the heavy

graph GH
into graphs Λ1, . . . ,Λr that we call layers, where for

each 1 ≤ i ≤ r , all vertices in graph Λi have degree at least hi ,

while |E (Λi ) | ≤ n1+o (1)hi . We ensure thath1 ≥ h2 ≥ . . . , ≥ hr , and
that these values are geometrically decreasing. We maintain a core

decomposition for each such graph Λi separately. For all 1 ≤ i ≤ r ,

roughly every hi/n
o (1)

vertex deletions, we recompute the layers

Λi , . . . ,Λr , and their corresponding core decompositions.

Handling arbitrary edge lengths. So far we have assumed that

all edge lengths are unit. When the edge lengths are no longer the

same, we need to use the approach of [3]. We partition all edges into

classes, where class i contains all edges whose length is between 2
i

and 2
i+1

. Unfortunately, we can no longer use the same threshold

τ for the definition of the heavy and the light graph for all edge

lengths. This is since we are only guaranteed that, whenever two

vertices u,u ′ belong to the same connected component C of GH
,

there is a path containing at most |V (C ) |/τ edges connecting u to

u ′ in C . But as some edges may now have large length, the actual

length of this path may be too high. Following [3], we need to

define different thresholds τi for each edge class i , where roughly

τi = τ · 2
i
, for the original threshold τ . This means that graph ĜL

may now become denser, as it may contain many edges from classes

i where i is large. We use the Weight-Sensitive-Even-Shiloach data

structure of [3] in order to handle ĜL
.

3 PRELIMINARIES
We follow standard graph theoretic-notation. All graphs in this

paper are undirected, unless explicitly said otherwise. Graphs may
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have parallel edges, except for simple graphs, that cannot have

them. Given a graph G = (V ,E) and two disjoint subsets A,B of

its vertices, we denote by EG (A,B) the set of all edges with one

endpoint in A and another in B, and by EG (A) the set of all edges
with both endpoints in A. We also denote by outG (A) the set of all
edges with exactly one endpoint in A. We may omit the subscript

G when clear from context. Given a subset S ⊆ V of vertices of G,
we denote by G[S] the sub-graph of G induced by S .
Decremental Connectivity/Spanning Forest. We use the re-

sults of [19], who provide a deterministic data structure, that we

denote by CONN-SF(G ), that, given an n-vertex unweighted undi-

rected graph G, that is subject to edge deletions, maintains a span-

ning forest of G, with total running time O ((m + n) log2 n), where
n = |V (G ) | andm = |E (G ) |. Moreover, the data structure supports

connectivity queries: given a pair u,v of vertices of G, return “yes”

if u and v are connected in G, and “no” otherwise. The running

time to respond to each such query isO (logn/ log logn); we denote
by conn(G,u,u ′) the connectivity query for u and u ′ in the data

structure. Since the data structure maintains a spanning forest for

G , we can also use it to respond to a query path(G,u,v ): given two

vertices u and v in G, return any simple path connecting u to v in

G if such a path exists, and return ∅ otherwise. If u and v belong to

the same connected component C of G, then the running time of

the query is O ( |V (C ) |).
Even-Shiloach Trees [10, 11, 18]. Suppose we are given a graph

G = (V ,E) with integral lengths ℓ(e ) ≥ 1 on its edges e ∈ E, a
source s , and a distance bound D ≥ 1. Even-Shiloach Tree (ES-Tree)
is a deterministic data structure that maintains, for every vertex

v with dist(s,v ) ≤ D, the distance dist(s,v ), under the deletion

of edges from G. Moreover, it maintains a shortest-path tree from

vertex s , that includes all vertices v with dist(s,v ) ≤ D. We denote

the corresponding data structure by ES-Tree(G, s,D). The total run-
ning time of the algorithm, including the initialization and all edge

deletions, is O (m · D logn), wherem = |E |.
Low-Degree PruningProcedure. ProcedureDeg-Prune(H ,d ) takes
as input a simple graph H and an integer d , and computes a parti-

tion (J1, J2) of V (H ), as follows: start with J1 = ∅ and J2 = V (H ).
While there is a vertex v ∈ J2, such that fewer than d neighbors

of v lie in J2, move v from J2 to J1. The procedure can be imple-

mented to run in time O ( |E (H ) | + |V (H ) |). Moreover, it is not hard

to show that the total number of edges incident to the vertices of J1
is O (d |J1 |), and that for any other partition (J ′, J ′′) of V (H ), such
that the degree of every vertex in H [J ′′] is at least d , J ′′ ⊆ J2 must

hold. The proof is deferred to the full version of the paper.

4 DECREMENTAL SINGLE-SOURCE
SHORTEST PATHS

This section contains the proof of Theorem 1.1, with some details

deferred to the full version of the paper. Using standard arguments,

it suffices to prove the following theorem.

Theorem 4.1. There is a randomized algorithm, that, given pa-
rameters 0 < ϵ < 1 and D > 0, and a simple undirected n-vertex
graph G with lengths ℓ(e ) > 0 on edges e ∈ E (G ), together with a
special source vertex s ∈ V (G ), such thatG undergoes vertex deletions,
supports queries path-queryD (v ). For each query path-queryD (v ),
the algorithm returns a path from s to v in G, of length is at most

(1 + ϵ ) dist(s,v ), if D ≤ dist(s,v ) ≤ 2D; otherwise, it either re-
turns an arbitrary path connecting s to v , or correctly establishes
that dist(s,v ) > 2D. The algorithm works against an adaptive ad-

versary. The total expected running time is O
(
n2+o (1) ·log2 (1/ϵ )

ϵ 2

)
, and

each query is answered in expected time O (n poly logn log(1/ϵ )).

We now focus on the proof of Theorem 4.1. Throughout the

proof, we denote by G the current graph, obtained from the input

graph after the current sequence of vertex deletions, and n is the

number of vertices present inG at the beginning of the algorithm. A

standard transformation can be used to ensure thatD = ⌈4n/ϵ⌉, and
that all edge lengths are integers between 1 and 2D. At a very high

level, our proof follows the algorithm of [3]. We partition all edges

of G into λ =
⌊
log(4D)

⌋
classes E1, . . . ,Eλ , where for 1 ≤ i ≤ λ,

edge e belongs to Ei iff 2
i ≤ ℓ(e ) < 2

i+1
. Next, for each 1 ≤ i ≤ λ,

we define a threshold value τi . For technical reasons, these values
are somewhat different from those used in [3]. In order to define

τi , we need to introduce a number of parameters that we will use

throughout the algorithm. First, we let α∗ = 1/23
√
logn

– this will

be the expansion parameter for the cores. The second parameter is

ℓ∗ =
16c∗ log12 n

α ∗ , for some large enough constant c∗. This parameter

will serve as an upper bound on the lengths of paths between

pairs of vertices in a core. Observe that ℓ∗ = 2
O (
√
logn)

. Our third

main parameter is ∆ = 128c∗ log20 n/α∗ = 2
O (
√
logn) = no (1) . This

parameter will be used in order to partition the algorithm into

phases. Lastly, For each 1 ≤ i ≤ λ, we let τi be the maximum

between 4n2/ log logn and
n
ϵD · 2

20 · ℓ∗ · ∆ · log4 n · λ · 2i . Notice that

τi = max

{
no (1) ,

n1+o (1) ·2i ·logD
ϵD

}
.

Bernstein [3] used the threshold values τi in order to partition

the edges of G into two subsets, which are then used to define two

graphs: a light graph and a heavy graph. We proceed somewhat

differently. First, it would be more convenient for us to define a

separate heavy graph for each edge class, though we still keep a

single light graph. Second, our process of partitioning the edges

between the heavy graphs and the light graph is somewhat different

from that in [3]. However, we still ensure that for each 1 ≤ i ≤ λ,
the light graph may contain at most nτi edges of Ei throughout the
algorithm; this is a key property that the algorithm of [3] exploits.

Fix an index 1 ≤ i ≤ λ, and letGi be the sub-graph ofG induced

by the edges in Ei . We run Procedure Deg-Prune on graph Gi and

degree threshold d = τi . Recall that the procedure computes a

partition (J ′, J ′′) ofV (Gi ), by starting with J ′ = ∅ and J ′′ = V (Gi ),
and then iteratively moving from J ′′ to J ′ vertices v whose degree

in Gi [J
′′
] is less than d . The procedure can be implemented to run

in timeO ( |Ei |+n). We say that the vertices of J ′ are light for class i ,
and the vertices of J ′′ are heavy for class i . We now define the graph

GH
i – the heavy graph for class i , as follows. The set of vertices of

GH
i contains all vertices that are heavy for class i . The set of edges

contains all edges of Ei whose both endpoints are heavy for class i .
We also define a light graphGL

i for class i , though we will not use it

directly. Its vertex set isV (G ), and the set of edges contains all edges
of Ei that do not belong to graph GH

i . Clearly, every edge of GL
i is

incident to at least one vertex that is light for class i , and it is easy to
verify that |E (GL

i ) | ≤ nτi . As the algorithm progresses and vertices

are deleted from G, some vertices that are heavy for class i may
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become light for it (this happens when a vertex v that is currently

heavy for class i has fewer than τi neighbors that are also heavy

for class i). Once a vertex v becomes light for class i , every edge

in GH
i that is incident to v is removed from GH

i and added to GL
i ,

and v is deleted fromGH
i . In particular, E (GH

i ) and E (GL
i ) always

define a partition of the current set Ei of edges. Moreover, it is easy

to verify that the total number of edges that are ever present in GL
i

is bounded by nτi , and that, throughout the algorithm, every vertex

ofGH
i has degree at least τi inG

H
i . The main technical contribution

of this paper is the next theorem, that allows us to deal with the

heavy graphs.

Theorem 4.2. There is a randomized algorithm, that, for a fixed
index 1 ≤ i ≤ λ, supports queries path-query(u,v,C ): given two
vertices u and v that belong to the same connected component C of
graph GH

i , return a path, connecting u to v in C , that contains at

most 213 |V (C ) |
τi · ∆ · ℓ∗ · log4 n edges. The total expected update time

of the algorithm is O (n2+o (1) ), and each query path-query(u,v,C )
is processed in expected time O ( |V (C ) | log4 n). The algorithm works
against an adaptive adversary.

With the above theorem in hand, a simple modification of the

approach used in [3] suffices to obtain Theorem 4.1. We defer these

details to the final version of the paper and focus on the proof of

Theorem 4.2 in the remainder of this section. In order to simplify

the notation, we will denote the graphGH
i byG∗ from now on. We

also denote τ = τi , and we will use the fact that τ ≥ 4n2/ log logn ,
and that every vertex in G∗ has degree at least τ . The central no-
tions that we use in our proof are those of a core structure and

a core decomposition. Our algorithm will break the graph G∗ into
sub-graphs and will compute a core decomposition in each such

subgraph. In every subgraph that we will consider, the degrees of

all vertices are at least n1/ log logn . In the following subsections we

define core structures and a core decomposition and develop the

technical machinery that we need to construct and maintain them.

4.1 Core Structures and Cores
In this subsection, we define core structures and cores, that play

a central role in our algorithm. We also establish some of their

properties, and provide an algorithm that computes short paths

between a given pair of vertices of a core.

Throughout this subsection, we will assume that we are given

some graph, that we denote by Ĝ , that is a subgraph of our original

n-vertex graphG . Therefore, throughout this subsection, we assume

that |V (Ĝ ) | ≤ n. We also assume that we are given a parameter

h > n1/ log logn , and that every vertex in Ĝ has degree at least h.

Definition. Given a graph Ĝ with |V (Ĝ ) | ≤ n, a core structure
K in Ĝ consists of the following four ingredients: (i) two disjoint
vertex sets: a set K , ∅ of vertices, that we refer to as the core itself,
and a set U (K ) of at most |K | vertices, that we call the extension
of K ; (ii) a connected subgraph ĜK ⊆ Ĝ[K ∪U (K )], with V (ĜK ) =
K ∪U (K ); (iii) a graphW K , that we refer to as the witness graph for
K , with K ⊆ V (W K ) ⊆ K ∪U (K ), such that the maximum vertex
degree ofW K is at most log3 n; and (iv) for every edge e = (x ,y) ∈

E (W K ), a path P (e ) in ĜK , that connects x to y, such that every
path in set Ψ(W K ) =

{
P (e ) | e ∈ E (W K )

}
contains at most c∗ log8 n

vertices (here c∗ is the constant that appears in the definition of ℓ∗);
and every vertex of ĜK participates in at most c∗ log19 n paths of
Ψ(W K ). If, additionally,W K is an α∗-expander, then we say that
K = (K ,U (K ),GK ,W K ) is a perfect core structure.

We call the set Ψ(W K ) =
{
P (e ) | e ∈ E (W K )

}
of paths the em-

bedding ofW K into ĜK
, and we view this embedding as part of the

witness graphW K
.

Definition. We say that a core structreK = (K ,U (K ),GK ,W K )
is an h-core structure iff every vertex v ∈ K of the core has degree at
least h/(32 logn) inGK . A perfect core structure with this property is
called a perfect h-core structure.

The following theorem allows us to compute short paths between

pairs of vertices within a core. The proof is deferred to the full

version of the paper.

Theorem 4.3. There is a deterministic algorithm, that, given a
graph Ĝ with |V (Ĝ ) | ≤ n, undergoing at most h/∆ vertex deletions,
and an h-core structure K = (K ,U (K ), ĜK ,W K ) in Ĝ, supports
queries core-path(u,v ) for pairs u,v ∈ K of vertices. Given such a
query, the algorithm either returns a path from u to v in the current
graph ĜK , of length at most ℓ∗, or correctly determines that K is not
a perfect core structure, (that is,W K is not an α∗-expander). The total
running time of the algorithm isO ( |E (ĜK ) | poly logn), and the total
time to process each query is O (ℓ∗ + |K | log3 n).

We emphasize that, if the core structure K that serves as input

to Theorem 4.3 is a perfect h-core structure, then the algorithm is

guaranteed to return a path from u to v of length at most ℓ∗ in the

current graph ĜK
.

4.2 Core Decomposition
In addition to core structures, our second main tool is a core de-

composition. In this subsection we define core decompositions and

we state a theorem that allows us to compute them. Before we

define a core decomposition, we need to define an h-universal set
of vertices.

Definition. Suppose we are given a subgraph Ĝ ⊆ G , and a set S
of its vertices. Let J be another subset of vertices of Ĝ. We say that J
is an h-universal set with respect to S iff for every vertex u ∈ J and
for every subset R of at most h/∆ vertices of Ĝ \ {u}, there is a path
in Ĝ[S ∪ J ] \ R, connecting u to a vertex of S , whose length is at most
logn.

Finally, we are ready to define a core decomposition.

Definition. Anh-core decomposition of a graph Ĝ with |V (Ĝ ) | ≤

n is a collection F =
{
(Ki ,U (Ki ), Ĝ

Ki ,W Ki )
}r
i=1

of h-core struc-

tures in Ĝ, such that K1, . . . ,Kr are mutually disjoint (but a vertex
v ∈ V (Ĝ ) may belong to a number of extension setsU (Ki ), in addi-
tion to belonging to some core Kj ), and every edge of Ĝ participates
in at most logn graphs ĜK1 , . . . , ĜKr . Additionally, if we denote
K̃ =
⋃r
i=1 Ki and J = V (Ĝ ) \ K̃ , then set J is h-universal with respect

to K̃ . We say that this decomposition is a perfect h-core decomposi-

tion iff every core structure in F is a perfect h-core structure.

The main building block of our algorithm is the following theo-

rem, whose proof is deferred to full version of the paper.
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Theorem 4.4. There is a randomized algorithm, that, given a
sub-graph Ĝ ⊆ G and a parameter h ≥ n1/ log logn , such that
every vertex of Ĝ has degree at least h in Ĝ, computes an h-core
decomposition of Ĝ. Moreover, with high probability, the resulting
core decomposition is perfect. The running time of the algorithm is
O (( |E (Ĝ ) | + |V (Ĝ ) |1+o (1) ) poly logn).

4.3 Completing the Proof of Theorem 4.2
We use the parameter ∆ defined in previous subsections; recall

that ∆ = 128c∗ log20 n/α∗ = 2
O (
√
logn) = no (1) . We start with a

high-level intuition to motivate our next steps. Consider the graph

G∗ = GH
i , and let d be its average vertex degree. For simplicity,

assume that d = ∆j for some integer j. Let us additionally assume,

for now, that the degree of every vertex in G∗ is at least h = ∆j−1

(this may not be true in general). We can then compute an h-core
decomposition F of G∗ using Theorem 4.4. Note that, as long as

we delete fewer than h/∆ vertices from G∗, the current core de-

composition remains functional, in the following sense: for every

core structure K = (K ,U (K ), (G∗)K ,W K ) ∈ F , for every pair

u,v ∈ K of vertices in the core that were not deleted yet, we can

use Theorem 4.3 to compute a path of length at most ℓ∗ between u
and v; and for every vertex w of G∗ that does not lie in any core

K , there is a path of length at most logn connecting it to some

core, from the definition of the h-universal set. Both these proper-

ties are exploited by our algorithm in order to respond to queries

path-query. Note that computing the core decomposition takes

time O (( |E (G∗) | + n1+o (1) ) poly logn) = O (n1+o (1)∆j ), and the to-

tal time required to maintain the data structures from Theorem 4.3

for every core is also bounded by this amount, since every edge of

G∗ may belong to at most logn graphs (G∗)K , where K is a core

in the decomposition. We can partition the algorithm into phases,

where in every phase, h/∆ = ∆j−2 vertices are deleted from G∗.
Once a phase ends, we recompute the core decomposition. Since

the number of phases is bounded by n/∆j−2, and the total running

time within each phase is O (n1+o (1)∆j ), the total running time of

the algorithm would be at most n2+o (1) , as required. The main dif-

ficulty with this approach is that some vertices of G∗ may have

degrees that are much smaller than the average vertex degree. Even

though we could still compute the core decomposition, we are only

guaranteed that it remains functional for a much smaller number of

iterations – the number that is close to the smallest vertex degree

in G∗. We would then need to recompute the core decomposition

too often, resulting in a high running time.

In order to overcome this difficulty, we partition the vertices ofG∗

into “layers”. Let z1 be the smallest integer, such that the maximum

vertex degree inG∗ is less than ∆z1 , and let z2 be the largest integer,
such that ∆z2 < τ/(32 logn). Let r = z1 − z2, so r ≤ logn. We

emphasize that the values z1, z2 and r are only computed once

at the beginning of the algorithm and do not change as vertices

are deleted from G∗. We will split the graph G∗ into r layers, by
defining sub-graphs Λ̃1, . . . , Λ̃r of G∗, that are disjoint in their

vertices. For each 0 ≤ j ≤ r , we use a parameter hj = ∆z1−j , so
that h0 = ∆z1 upper-bounds the maximum vertex degree in G∗,
hr = ∆z2 < τ/(32 logn), and for 1 < j ≤ r , hj = hj−1/∆. We

will ensure that for each 1 ≤ j ≤ r , graph Λ̃j contains at most

nhj−1 edges, and that every vertex in Λ̃j has degree at least hj .
Additionally, for each 1 < j ≤ r , we will define a set D j of discarded
vertices: intuitively, these are verticesv , such thatv does not belong

to layers 1, . . . , j − 1, but almost all neighbors of v do. We need to

remove these vertices since otherwise the average vertex degree in

subsequent layers may fall below τ , even while some high-degree

vertices may still remain. For each 1 ≤ j ≤ r , we also define a

graph Λj , which is the sub-graph of G∗ induced by all vertices of

Λ̃j , . . . , Λ̃r and of D j+1, . . . ,Dr (for consistency, we set D1 = ∅).

For each 1 ≤ j ≤ r , roughly every hj/∆ iterations (that is, when

hj/∆ vertices are deleted), our algorithm will recompute the graphs

Λ̃j , . . . , Λ̃r , the corresponding sets D j+1, . . . ,Dr of vertices, and

the hj′-core decomposition of each graph Λ̃j′ , for all j ≤ j ′ ≤ r .
This is done using Procedure Constr-Layers(Λj ), that is formally

defined in Figure 1. This procedure is also used at the beginning

of the algorithm, with Λ1 = G∗, to compute the initial partition

into layers. Note that some layers may be empty. Note also that,

from our choice of parameters, hr ≥ τ/(32∆ logn) ≥ n1/ log logn ,

since τ ≥ 4n2/ log logn , ∆ = 2
O (
√
logn)

, and n is large enough. This

ensures that we can apply Theorem 4.4 to each graph Λ̃j .

When a vertex is deleted from the original graph G, we will

use procedure Del-Vertex(G∗,v ) that we describe later, in order

to update our data structures. As the result of this deletion, some

vertices may stop being heavy for class i , and will need in turn

be deleted from G∗. Procedure Del-Vertex(G∗,v ) will iteratively
delete all such vertices from the current graph, and then procedure

Constr-Layers may be triggered as needed, as part of Procedure

Del-Vertex. When we say that some invariant holds throughout

the algorithm, we mean that it holds between the different calls

to Del-Vertex(G∗,v ), and it may not necessarily hold during the

execution of this procedure.

Note that the running time of Procedure Constr-Layers(Λj , j ),
excluding the recursive calls to the same procedure with graphΛj+1,

isO (n1+o (1)hj ). Since the valueshj form a geometrically decreasing

sequence, the total running time of Procedure Constr-Layers(Λj , j ),

including all recursive calls is also bounded by O (n1+o (1)hj ). We

will invoke this procedure at most n∆/hj times over the course of

the algorithm – roughly every hj/∆ vertex deletions. Therefore, in

total, all calls to Procedure Constr-Layerswill take timeO (n2+o (1) ).
Throughout the algorithm, for each 1 ≤ j ≤ r , we denote by

K∗j the set of all vertices that lie in the cores of Fj , that is, K
∗
j =⋃

(K,U (K ),Λ̃Kj ,W
k )∈Fj

K , and byK
∗

j the set of the remaining vertices

of Λ̃j ; recall that these vertices form an h-universal set in Λ̃j with

respect to K∗j .

We prove that, throughout the algorithm, for all 1 < j ≤ r , for
every vertex v ∈ D j , there is a path P of length at most j logn,
connecting v to a vertex of

⋃
j′<j K

∗
j′ , such that every vertex of P

lies in

(⋃
j′<j Λ̃j′

)
∪
(⋃

j′≤j D j′
)
. Thus each discarded vertex can

reach a core vertex via a short path. The details are deferred to the

full version of the paper.

Data Structures.Our algorithmmaintains the following data struc-

tures.

First, we maintain the connectivity/spanning data structure

CONN-SF(G∗) for the graphG∗. Recall that the total time required
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Procedure Constr-Layers(Λj , j )

Input: an integer 1 ≤ j ≤ r and a vertex-induced subgraph

Λj ⊆ G∗ containing at most ∆nhj edges, such that the degree
of every vertex in Λj is at least hr .

(1) If j = r , then set Λ̃r = Λr ; Compute the hr -
core decomposition Fr of Λ̃r in time O (( |E (Λ̃r ) | +

n1+o (1) ) poly logn) = O (∆nhr + n1+o (1) ) =

O (n1+o (1)hr ) and terminate the algorithm.

From now on we assume that j < r .
(2) Run Procedure Deg-Prune(Λj ,hj ) to partition V (Λj )

into two subsets, J1, J2, in timeO ( |E (Λj ) |+ |V (Λj ) |) =
O (∆nhj ).

(3) Set Λ̃j = G
∗
[J2]; observe that every vertex in Λ̃j has

degree at least hj and |E (Λ̃j ) | ≤ ∆nhj .

(4) Compute the hj -core decomposition of Λ̃j in time

Õ ( |E (Λ̃j ) | + n1+o (1) ) = O (n1+o (1)hj ). Denote by Fj
the resulting set of core structures.

(5) Temporarily set Λj+1 = G∗[J1]. Observe that Λj+1
has at most nhj = n∆hj+1 edges.

(6) Run Procedure Deg-Prune(Λj+1,hr ), to compute a

partition (R′,R′′) of V (Λj+1), so that every vertex

of R′′ has at least hr neighbors in R′′, in time

O ( |E (Λ̃j+1) | + |V (Λ̃j+1) |) ≤ O (nhj ).
(7) Set D j+1 = R′ and delete all vertices of R′ from Λj+1.

(8) Run Constr-Layers(Λj+1, j + 1).

Figure 1: Procedure Constr-Layers

to maintain this data structure under edge deletions is Õ ( |E (G∗) | +
n) = Õ (m + n), where m = |E (G ) | is the total number of edges

in the original input graph G. Recall that the data structure can

process queries of the form path(G∗,u,v ): given two vertices u and

v in G∗, return any simple path connecting u to v in G∗ if such a

path exists, and return ∅ otherwise. If u and v belong to the same

connected component C of G∗, then this query can be processed in

time O ( |V (C ) |).
For every level 1 ≤ j ≤ r , we maintain the graphs Λj and Λ̃j ,

together with the hj -core decomposition Fj of Λ̃j , and the set D j of

discarded vertices. As already discussed, all these are recomputed

at most n∆/hj times over the course of the algorithm, by calling

procedure Constr-Layers(Λj , j ). Each call to the procedure requires

running time n1+o (1)hj , and so overall, the running time spent on

executing the procedure Constr-Layers(Λj , j ), over the course of

the algorithm, for all 1 ≤ j ≤ r , is at most n2+o (1) .
For every pair 1 ≤ j < j ′ ≤ r of indices, for every vertex

v ∈ Λ̃j′ ∪ D j′ , we maintain a set Lj (v ) of all neighbors of v that

lie in Λ̃j ∪ D j . In order to maintain these sets, every time proce-

dure Constr-Layers(Λj , j ) is called, we construct the sets Lj (v ) of
vertices for all v ∈ Λj+1. This can be done in time O ( |E (Λj ) |) =

n1+o (1)hj , without increasing the asymptotic running time of the

procedure. Additionally, whenever a vertex u ∈ Λ̃j ∪ D j is deleted,

we will update the lists Lj (v ) of all its neighbors v ∈ Λj+1.

For every level 1 ≤ j ≤ r , and every core structure K =

(K ,U (K ), Λ̃Kj ,W
K ) ∈ Fj , we maintain the data structure from The-

orem 4.3, that supports queries core-path(u,v ) for pairs u,v ∈ K

of vertices. The total running time required to maintain this data

structure for K is O ( |E (Λ̃Kj ) | poly logn). Since the core decompo-

sition of Λ̃j ensures that every edge of Λ̃j belongs to at most logn

graphs Λ̃Kj , where K is a core from the decomposition, the total

time required to maintain this data structure for all cores in Fj
is at most |E (Λ̃Kj ) | poly logn = Õ (n∆hj ) = O (n1+o (1)hj ). The core

decomposition for Λ̃j is computed at most n∆/hj times over the

course of the algorithm, and for each such new core decomposi-

tion, we may spend up to O (n1+o (1)hj ) time maintaining its cores.

Therefore, the total time spent on maintaining all cores, across all

levels 1 ≤ j ≤ r , is at most O (n2+o (1)∆ logn) = O (n2+o (1) ).
For every level 1 ≤ j ≤ r , we maintain a counter N (j ), for the

number of vertices that were deleted from G∗ since the last call to
Constr-Layers(Λj , j ).

Finally, we need to maintain data structures that allow us to

find short paths from the vertices of K
∗

j to the vertices of K∗j for all

1 ≤ j ≤ r , and from the vertices of D j to the vertices of

⋃
j′<j K

∗
j .

Let us fix a level 1 ≤ j ≤ r .
First, we construct a new graph Hj , obtained from graph Λ̃j ,

as follows. Let K1, . . . ,Kz ∈ Fj be the core structures that are

currently in the core decomposition, and let K1, . . . ,Kz be their

corresponding cores. Starting from graph Λ̃j , we contract every

core Ky into a vertex v (Ky ). We then add a source vertex s , and
connect it to each such new vertex v (Ky ). All edges have unit

length. The resulting graph is denoted by Hj . We maintain an

Even-Shiloach tree for Hj , from the source vertex s , up to distance

(logn + 1): ES-Tree(Hj , s, (logn + 1)). The total time required to

maintain this tree is O ( |E (Hj ) | log
2 n) = O (n∆hj log

2 n). Graph Hj
and the tree ES-Tree(Hj , s, (logn + 1)) will be recomputed at most

n∆/hj times – every time that the procedure Constr-Layers(Λj , j )
is called. Therefore, the total time needed to maintain all these trees

throughout the algorithm is O (n2+o (1) ).
Lastly, we construct a new graph H ′j , as follows. We start with

G∗[D j ], and add a source s , that connects with an edge to every

vertex v ∈ D j that has a neighbor in
⋃
j′<j (D j′ ∪ Λ̃j′ ). We main-

tain an Even-Shiloach tree of H ′j , from the source vertex s , up to

distance (logn + 1): ES-Tree(H ′j , s, (logn + 1)). The total time re-

quired to maintain this tree is O ( |E (H ′j ) | logn) = O (n∆hj logn).

Graph H ′j and the tree ES-Tree(H ′j , s, (logn + 1)) will be recom-

puted at most n∆/hj−1 = n/hj times – every time that the pro-

cedure Constr-Layers(Λj−1, j − 1) is called. Therefore, the total

time needed to maintain all these trees throughout the algorithm is

O (n2+o (1) ).
Vertex Deletion. We now describe an update procedure when a

vertex v is deleted from the graph G. First, if v < G∗, then there is

nothing to be done. Otherwise, we will maintain a set Q of vertices

to be deleted, that is initialized to Q = {v}. While Q , ∅, we let u
be any vertex in Q . We delete u fromG∗, updating the connectivity
data structure CONN-SF(G∗), and from all graphs Λj , Λ̃j , Hj , H

′
j ,

to whichu belongs. We also update the affected Even-Shiloach trees

forHj andH
′
j for all j . For every neighboru

′
ofu inG∗, we decrease

d (u ′) by 1. If d (u ′) < τ but u ′ < Q , we add u ′ to Q . Otherwise, if
u belonged to Λ̃j ∪ D j , and u

′ ∈ Λj+1, for some 1 ≤ j ≤ r , then
we remove u from Lj (u

′). We also update the counters N (j ) with
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the number of deleted vertices. Once Q = ∅, we check whether

we need to call procedure Constr-Layers(Λj , j ) for any index j. In
order to do so, for every 1 ≤ j ≤ r , we check whether N (j ) ≥ hj/∆.
If this is true for any j, we select the smallest such j, and run the

procedure Constr-Layers(Λj , j ). We also set the counters N (j ′) for
all j ′ ≥ j to 0. We have already accounted for the time needed to

maintain all our data structures. Additional running time required

by the vertex deletion procedure is bounded by the sum of degrees

of all vertices deleted from G∗ plus O (logn), and so the total time

incurred by the vertex deletion procedure over the course of the

algorithm isO ( |E (G∗) | logn). Overall, the total running time of the

whole algorithm is n2+o (1) . It now remains to describe an algorithm

for responding to queries.

Responding toQueries. Supposewe are given path-query(u,u ′,C ),
whereC is some connected component ofG∗, andu,u ′ ∈ V (C ). Our
goal is to return a path connecting u to u ′ in C , of length at most

2
13 |V (C ) | · ∆ · ℓ∗ · log4 n/τ , in expected time O ( |V (C ) | log4 n). Our
first step is to compute a simple path P connecting u to u ′ in C , by
calling Procedure path(G∗,u,u ′) in the connectivity data structure

CONN-SF(G∗). This query can be processed in timeO ( |V (C ) |). We

denote this path by (u1,u2, . . . ,uz ), where u1 = u and uz = u
′
.

Let R be the collection of all core sets K , whose corresponding
core structure K lies in

⋃r
j=1 Fj . We let R ′ ⊆ R be the set of

cores K that are contained in C . In our next step, we compute, for

every vertex ua ∈ V (P ), a core K (a) ∈ R ′, and path Pa of length

at most log
2 n in C , connecting ua to some vertex of K (a), in time

O ( |V (C ) | log2 n), by exploiting the data structures Hj and H ′j for

1 ≤ j ≤ r ; we defer the details to the full version of the paper.

For every vertex ua ∈ V (P ), we label ua with the corresponding

coreK (a). Our next step is to “shortcut” the path P , by an algorithm,

that, in time O ( |V (C ) |), computes a sequence Q = (q1,q2, . . . ,qz′ )
of vertices on path P , such that q1 = u; qz′ = u ′; and for every

consecutive pair qa ,qa+1, either there is an edge between qa ,qa′

in G∗, or these two vertices have the same label. Moreover, the

algorithm ensures that every label K may appear at most twice in

Q , as a label of two consecutive vertices, and the length of Q is at

most 2
13 |V (C ) |∆ log

2 n/τ .
Finally, we turn Q into a path in G∗, by iteratively performing

the following process. Let qa ,qa+1 be a pair of consecutive ver-

tices on Q , such that there is no edge connecting qa to qa+1 in G
∗
.

Then both qa and qa+1 have the same label, that we denote by K ,
and we have stored to paths: path P (qa ), connecting qa to some

vertex q′a ∈ K , and path P (qa+1), connecting qa+1 to some vertex

q′a+1 ∈ K . The lengths of both paths are at most log
2 n. Assume that

the core structure K corresponding to K lies in Fj . We then run

the algorithm from Theorem 4.3 onK , q′a and q′a+1. If the outcome

of this algorithm is a path Qa , of length at most ℓ∗, connecting q′a
to q′a+1 in the current graph Λ̃Kj , then we insert the concatenation

of the paths P (qa ),Qa , P (qa+1) between qa and qa+1 into Q , and
continue to the next iteration. Otherwise, the algorithm correctly es-

tablishes that the core structureK is not perfect, that is,W K
is not

an α∗-expander. Since our core decomposition algorithm ensures

that with high probability every core structure it computes is per-

fect, the probability that this happens is at most 1/nc for some large

constant c . In this case, we run Procedure Constr-Layers(Λ1, 1) and
restart the algorithm for computing the path connecting u to u ′

in C from scratch. The running time in this case is bounded by

O (n2+o (1) ), but, since the probability of this event is at most 1/nc ,
the expected running time in this case remains O (ℓ∗ + |K | log3 n).

We now assume that every time Theorem 4.3 is called, a path

connecting the two corresponding vertices q′a and q′a+1 is returned.
Once we process every consecutive pair qa ,qa+1 of vertices on

Q that have no edge connecting them in G∗, we obtain a path

connecting u to u ′ in C . The length of the path is bounded by

|Q |(ℓ∗ + log2 n), where |Q | is the length of the original sequenceQ ,

so |Q | ≤ 2
13 |V (C ) |∆ log

2 n/τ . Therefore, the final length of the path
that we obtain is at most 2

13 |V (C ) |ℓ∗∆ log
4 n/τ . We now bound the

total expected running time of the last step. We invoke Theorem 4.3

at most once for every core K that serves as a label of a vertex

on Q , and each such call takes expected time O (ℓ∗ + |K | log3 n).
Recall that for all 1 ≤ j ≤ r , for all core structures K ∈ Fj , their
corresponding cores are vertex-disjoint. Therefore, the total run-

ning time of this step is bounded by O (ℓ∗ |Q| + r |V (C ) | log3 n) =
O (ℓ∗∆|V (C ) | log2 n/τ ) + O ( |V (C ) | log4 n) = O ( |V (C ) | log4 n), as
τ ≥ ℓ∗∆.
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