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ABSTRACT

We study the classical Node-Disjoint Paths (NDP) prob-
lem: given an n-vertex graph G and a collection M =
{(s1,%1),...,(sk,tr)} of pairs of vertices of G called demand
pairs, find a maximum-cardinality set of node-disjoint paths
connecting the demand pairs. NDP is one of the most basic
routing problems, that has been studied extensively. De-
spite this, there are still wide gaps in our understanding of
its approximability: the best currently known upper bound
of O(y/n) on its approximation ratio is achieved via a sim-
ple greedy algorithm, while the best current negative re-
sult shows that the problem does not have a better than
Q(logl/ 2-9 n)-approximation for any constant ¢, under stan-
dard complexity assumptions. Even for planar graphs no
better approximation algorithms are known, and to the best
of our knowledge, the best negative bound is APX-hardness.
Perhaps the biggest obstacle to obtaining better approxi-
mation algorithms for NDP is that most currently known
approximation algorithms for this type of problems rely on
the standard multicommodity flow relaxation, whose inte-
grality gap is Q(y/n) for NDP, even in planar graphs. In
this paper, we break the barrier of O(y/n) on the approx-
imability of NDP in planar graphs and obtain an O(n®/1°)-
approximation. We introduce a new linear programming
relaxation of the problem, and a number of new techniques,
that we hope will be helpful in designing more powerful al-
gorithms for this and related problems.
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1. INTRODUCTION

In the Node-Disjoint Paths (NDP) problem, we are given an
n-vertex graph G, and a collection M = {(s1,t1),...,(sk,tx)}
of pairs of vertices of G, called source-destination, or de-
mand, pairs. The goal is to route as many of the demand
pairs as possible, by connecting each routed pair with a path,
so that the resulting paths are node-disjoint. We denote by
NDP-Planar the special case of the problem where the input
graph G is planar, and by NDP-Grid the special case where
G is the (y/n x /n)-grid. NDP is one of the most basic
problems in the area of graph routing, and it was initially
introduced to the area in the context of VLSI design. In
addition to being extensively studied in the area of approx-
imation algorithms, this problem has played a central role
in Robertson and Seymour’s Graph Minor series. When the
number of the demand pairs k is bounded by a constant,
Robertson and Seymour |27, [29] have shown an efficient al-
gorithm for the problem, as part of the series. When k is a
part of input, the problem becomes NP-hard [15|[14], even in
planar graphs |22|, and even in grid graphs [21]. Despite the
importance of this problem and many efforts, its approxima-
bility is still poorly understood. The following simple greedy
algorithm achieves an O(y/n)-approximation [20]: while G
contains any path connecting any demand pair, choose the
shortest such path P, add P to the solution, and delete all
vertices of P from G. Surprisingly, this elementary algo-
rithm is the best currently known approximation algorithm
for NDP, even for planar graphs. Until recently, this was
also the best approximation algorithm for NDP-Grid. On
the negative side, it is known that there is no O(log'/?>=% n)-
approximation algorithm for NDP for any constant J, un-
less NP C ZPTIME(nP°1°5™) [4l 13]. To the best of our
knowledge, the best negative result for NDP-Planar and for



NDP-Grid is APX-hardness [12|. Perhaps the biggest obsta-
cle to obtaining better upper bounds on the approximability
of NDP is that the common approach to designing approx-
imation algorithms for this type of problems is to use the
multicommodity flow relaxation, where instead of connect-
ing the demand pairs with paths, we send a (possibly frac-
tional) multicommodity flow between them. The integrality
gap of this relaxation is known to be Q(y/n), even for planar
graphs, and even for grid graphs. In a recent work, Chuzhoy
and Kim [12] showed an O(n'/*)-approximation algorithm
for NDP-Grid, thus bypassing the integrality gap obstacle for
this restricted family of graphs. The main result of this pa-
per is an O(ng/lg)-approximation algorithm for NDP-Planar.
We also show that, if the value of the optimal solution to the
NDP-Planar instance is OPT, then we can efficiently route
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Doly logn> demand pairs. Our algorithm is motivated by
the work of |[12] on NDP-Grid, and it relies on approximation
algorithms for the NDP problem on a disc and on a cylinder,
that we discuss next.

We start with the NDP problem on a disc, that we denote
by NDP-Disc. In this problem, we are given a planar graph
G, together with a set M of demand pairs as before, but we
now assume that G can be drawn in a disc, so that all ver-
tices participating in the demand pairs lie on its boundary.
The NDP problem on a cylinder, NDP-Cylinder, is defined
similarly, except that now we assume that we are given a
cylinder ¥, obtained from the sphere, by removing two dis-
joint open discs (caps) from it. We denote the boundaries
of the discs by I'1 and I'z respectively. We assume that G
can be drawn on X, so that all source vertices participat-
ing in the demand pairs in M lie on I'1, and all destination
vertices lie on I';. Robertson and Seymour [28] showed an
algorithm, that, given an instance of the NDP-Disc or the
NDP-Cylinder problem, decides whether all demand pairs in
M can be routed simultaneously via node-disjoint paths,
and if so, finds the routing efficiently. Moreover, for each
of the two problems, they give an exact characterization
of instances for which all pairs in M can be routed in G.
Several other very efficient algorithms are known for both
problems (26, 31]. However, we need to consider the opti-
mization version of both problems, where we are no longer
guaranteed that all demand pairs in M can be routed, and
would like to route the largest possible subset of the de-
mand pairs. We are not aware of any results for these two
special cases of the NDP problem. In this paper, we provide
O(log k)-approximation algorithms for both problems.

Other Related Work. A problem closely related to NDP
is the Edge-Disjoint Paths (EDP) problem. It is defined
similarly, except that now the paths chosen to the solu-
tion are allowed to share vertices, and are only required
to be edge-disjoint. It is easy to show, by using a line
graph of the EDP instance, that NDP is more general than
EDP (though this transformation inflates the number of the
graph vertices, so it may not preserve approximation factors
that depend on n). This relationship breaks down in pla-
nar graphs, since the resulting NDP instance may no longer
be planar. The approximability status of EDP is very simi-
lar to that of NDP: there is an O(y/n)-approximation algo-
rithm [10], and it is known that there is no O(log!/?>~% n)-
approximation algorithm for any constant d, unless NP C
ZPTIME(nP¥18™) 4. 13]. We do not know whether our

techniques can be used to obtain improved approximation
algorithms for EDP in planar graphs. As in the NDP prob-
lem, we can use the standard multicommodity flow LP-
relaxation of the problem, in order to obtain an O(y/n)-
approximation algorithm, and the integrality gap of the LP-
relaxation is Q(y/n) even in planar graphs. For several spe-
cial cases of the problem better algorithms are known: Klein-
berg [17], building on the work of Chekuri, Khanna and
Shepherd [9} 8], has shown an O(log? n)-approximation LP-
rounding algorithm for even-degree planar graphs. Aumann
and Rabani [5] showed an O(log?n)-approximation algo-
rithm for EDP on grid graphs, and Kleinberg and Tardos |19}
18] showed O(logn)-approximation algorithms for broader
classes of nearly-Eulerian uniformly high-diameter planar
graphs, and nearly-Eulerian densely embedded graphs. Re-
cently, Kawarabayashi and Kobayashi [16] showed a factor
O(log n)-approximation algorithm for EDP when the input
graph is either 4-edge-connected planar or Eulerian planar.
It appears that the restriction of the graph G to be Eu-
lerian, or nearly-Fulerian, makes the EDP problem signifi-
cantly simpler, and in particular improves the integrality gap
of the LP-relaxation. The analogue of the grid graph for the
EDP problem is the wall graph: the integrality gap of the
standard LP-relaxation for EDP on wall graphs is Q(y/n),
and until recently, no better than O(y/n)-approximation al-
gorithms for EDP on walls were known. The work of [12]
gives an O(nl/ *)-approximation algorithm for EDP on wall
graphs.

A variation of the NDP and EDP problems, where small
congestion is allowed, has been a subject of extensive study.
In the NDP with congestion (NDPwC) problem, the input
is the same as in the NDP problem, and we are addition-
ally given a non-negative integer c¢. The goal is to route as
many of the demand pairs as possible with congestion at
most c¢: that is, every vertex may participate in at most c
paths in the solution. EDP with Congestion (EDPwC) is
defined similarly, except that now the congestion bound is
imposed on edges and not vertices. The classical randomized
rounding technique of Raghavan and Thompson [24] gives a
constant-factor approximation for both problems, if the con-
gestion c is allowed to be as high as ©(logn/loglogn). A
recent line of work (9} 23| 2 |25} |11} [13] |7} |6] has lead to
an O(poly log k)-approximation for both NDPwC and ED-
PwC problems, with congestion ¢ = 2. In planar graphs, a
constant-factor approximation with congestion 2 is known
for EDP [30]. All these algorithms perform LP-rounding
of the standard multicommodity flow LP-relaxation of the
problem and so it is unlikely that they can be extended to
routing with no congestion.

Our Results and Techniques.

Given an instance (G, M) of the NDP problem, we denote
by OPT(G, M) the value of the optimal solution to it. Our
first result is an approximation algorithm for NDP-Disc and
NDP-Cylinder.

Theorem 1.1 There is an efficient O(log k)-approzimation
algorithm for the NDP-Disc and the NDP-Cylinder problems,
where k is the number of the demand pairs in the instance.

The main result of our paper is summarized in the following
two theorems.



Theorem 1.2 There is an efficient O(ng/19 - poly logn)-
approximation algorithm for the NDP-Planar problem.

Theorem 1.3 There is an efficient algorithm, that, given
an instance (G, M) of NDP-Planar, computes a routing of

O ((opr(c,/\/t))l/19

Soly Tog T ) demand pairs of M wvia node-disjoint

paths in G.

Notice that when OPT(G, M) is small, Theorem [L.3] gives a
much better that O(n®/1°)-approximation.

We now give a high-level intuitive overview of the proof of
Theorem Given an instance (G, M) of the NDP prob-
lem, we denote by 7T the set of vertices participating in the
demand pairs in M, and we refer to them as terminals. We
start with a quick overview of the O(nl/ *)-approximation
algorithm of [12] for the NDP-Grid problem, since their al-
gorithm was the motivation for this work. The main obser-
vation of [12] is that the instances of NDP-Grid, for which
the multicommodity flow relaxation exhibits the Q(y/n) in-
tegrality gap, have terminals close to the grid boundary.
When all terminals are at a distance of at least Q(n!/%)
from the boundary of the grid, one can find an O(n'/*)-
approximation via LP-rounding (but unfortunately the inte-
grality gap remains polynomial in n even in this case). When
the terminals are close to the grid boundary, the integrality
gap of the LP-relaxation becomes Q(y/n). However, this spe-
cial case of NDP-Grid can be easily approximated via simple
dynamic programming; we omit the details here. Overall, we
partition the demand pairs of M into two subsets, depend-
ing on whether the terminals lie close to or far from the grid
boundary, and obtain an O(nl/ 4)—approximation for each of
the two resulting problem instances separately, selecting the
better of the two solutions as our output.

This idea is much more difficult to implement in general pla-
nar graphs. For one thing, the notion of the “boundary” of a
planar graph is meaningless - any face in the drawing of the
planar graph can be chosen as the outer face. We note that
the standard multicommodity flow LP-relaxation performs
poorly not only when all terminals are close to the boundary
of a single face (a case somewhat similar to NDP-Disc), but
also when there are two faces F' and F’, and for every de-
mand pair (s,t) € M, s is close to the boundary of F and ¢ is
close to the boundary of F’ (this setting is somewhat similar
to NDP-Cylinder). The notion of “distance”, when deciding
whether the terminals lie close to or far from a face bound-
ary is also not well-defined, since we can subdivide edges
and artificially modify the graph in various ways in order
to manipulate the distances without significantly affecting
routings. Intuitively, we would like to define the distances
between the terminals in such a way that, on the one hand,
whenever we find a set M’ C M of demand pairs, such that
all terminals participating in the pairs in M’ are far enough
from each other, then we can route a large subset of the
demand pairs in M’. On the other hand, if we find a set
M" C M of demand pairs, with all terminals participating
in the pairs in M” being close to the boundary of some face
(or a pair of faces), then we can find a good approximate
solution to instance (G, M") (for example, by reducing the
problem to NDP-Disc or NDP-Cylinder). Since we do not
know beforehand which face (or faces) will be chosen as the
“boundary” of the graph, we cannot partition the problem
into two sub-problems and employ different techniques to

solve each sub-problem as we did for NDP-Grid. Instead, we
need a single framework in which both cases can be handled.
We assume that every terminal participates in exactly one
demand pair, and that the degree of every terminal is 1.
This can be done via a standard transformation, where we
create several copies of each terminal, and connect them to
the original terminal. This transformation may introduce up
to O(n?) new vertices. Since we are interested in obtaining
an O(ng/lg)—approximation for NDP-Planar, we denote by N
the number of the non-terminal vertices in the new graph
G. Abusing the notation, we denote the total number of
vertices in the new problem instance by n. It is now enough
to obtain an O(N®/!)-approximation for the new problem
instance.

Our first step is to define a new LP-relaxation of the prob-
lem. We assume that we have guessed correctly the value
OPT of the optimal solution. We start with the standard
multicommodity flow LP-relaxation, where we try to send
OPT flow units between the demand pairs, so that the max-
imum amount of flow through any vertex is bounded by 1.
We then add the following new set of constraints to the LP:
for every subset M’ C M of the demand pairs, for every in-
teger OPT(G, M’) < z <k, the total amount of flow routed
between the demand pairs in M’ is no more than z. Adding
this type of constraints may seem counter-intuitive. We ef-
fectively require that the LP solves the problem exactly, and
naturally we cannot expect to be able to do so efficiently.
Since the number of the resulting constraints is exponential
in k, and since we do not know the values OPT(G, M’), we
indeed cannot solve this LP efficiently. In fact, our algorithm
does not attempt to solve the LP exactly. Instead, we em-
ploy the Ellipsoid algorithm, that in every iteration produces
a potential solution to the LP-relaxation. We then show an
algorithm that, given such a potential solution, either finds
an integral solution routing Q(OPT/N®/1%) demand pairs, or
it returns some subset M’ C M of demand pairs, whose cor-
responding LP-constraint is violated. Therefore, we use our
approximation algorithm as a separation oracle for the Ellip-
soid algorithm. We are then guaranteed that after poly(n)
iterations, we will obtain a solution routing the desired num-
ber of demand pairs, as only poly(n) iterations are required
for the Ellipsoid algorithm in order to find a feasible LP-
solution.

The heart of the proof of Theorem is then an algo-
rithm that, given a potential (possibly infeasible) solution to
the LP-relaxation, either finds an integral solution routing
Q(OPT/N®/1%) demand pairs, or returns some subset M’ C
M of demand pairs, whose corresponding LP-constraint is
violated. We can assume without loss of generality that
the fractional solution we are given satisfies all the standard
multicommodity flow constraints, as this can be verified ef-
ficiently. For simplicity of exposition, we assume that every
demand pair in M sends the same amount of w* flow units
to each other.

We assume for now that the set 7 of terminals is ouyr-
well-linked, for awr, = ©(w*/logn) - that is, for every pair
(T',T") of disjoint equal-sized subsets of vertices of T, we
can connect vertices of 7' to vertices of 7" by at least
awr. - |T'| node-disjoint paths. We discuss this assumption in
more detail below. We assume that we are given a drawing
of G on the sphere. Our first step is to define the notion of
distances between the terminals. In order to do so, we first
construct enclosures around them. Throughout the proof,



we use a parameter A = OPT?/1, We say that a curve 7 on
the sphere is a G-normal curve iff it intersects the drawing
of G only at its vertices. The length of such a curve is the
number of vertices of G it contains. An enclosure around a
terminal ¢ is a disc D; containing ¢, whose boundary, that
we denote by Cy, is a G-normal curve of length exactly A,
so that at most O(A/aw.) terminals lie in D;. We show
an efficient algorithm to construct the enclosures D; around
the terminals ¢, so that the following additional conditions
hold: (i) if Dy C Dy for any pair t,# € T of terminals,
then Dy = Dy; and (ii) if Dy N Dy = 0, then there are A
node-disjoint paths connecting the vertices of C; to the ver-
tices of Cy. We then define the distances between pairs of
terminals: for every pair (¢,t') of terminals, distance d(¢,t’)
is the length of the shortest G-normal curve, connecting a
vertex of C; to a vertex of Cy .

Next, we show that one of the following has to happen: ei-
ther there is a large collection M C M of demand pairs,
such that all terminals participating in the pairs in M are
at a distance at least Q(A) from each other; or there is a
large collection M’ C M of demand pairs, and two faces
F, F' in the drawing of G (with possibly F' = F”), such that
for every demand pair in M', one of its terminals is within
distance at most O(A) from the boundary of F, and the
other is within distance at most O(A) from the boundary of
F'. In the former case, we show that we can route a large
subset of the demand pairs in M via node-disjoint paths,
by constructing a special routing structure called a crossbar
(this construction exploits the well-linkedness of the termi-
nals and the paths connecting the enclosures). In the latter
case, we reduce the problem to NDP-Disc or NDP-Cylinder,
depending on the distance between the faces F' and F’, and
employ the approximation algorithms for these problems to

route (2 (%) demand pairs from M’ in G. If the

resulting number of demand pairs routed is close enough to
OPT, then we return this as our final solution. Otherwise,
we show that the LP-constraint corresponding to the set M’
of demand pairs is violated, or equivalently, the amount of
flow sent by the LP solution between the demand pairs in
M’ is greater than OPT(G, M’).

So far we have assumed that the terminals participating
in the demand pairs in M are awp-well-linked. In gen-
eral this may not be the case. Using standard techniques,
we can perform a well-linked decomposition: that is, com-
pute a subset U C V(G) of at most OPT/64 vertices, such
that, if we denote the set of all connected components of
G\ U by {Gi1,...,G,}, and for each 1 < ¢ < r, we de-
note by M; C G; the set of the demand pairs contained in
G, then the terminals participating in the demand pairs
in M; are awi-well-linked in G;. We are then guaran-
teed that Y7 OPT(Gi, M;) > S2OPT. It is then tempt-
ing to apply the algorithm described above to each of the
graphs separately. Indeed, if, for each 1 < i < r, we find a

OPT(G;, M)

N?/19~poly logn>
demand pairs of M; in G; (where N; denotes the num-
ber of the non-terminal vertices in G;), then we obtain an
O(N®/1® . poly log n)-approximate solution overall. Assume
now that for some 1 < i < r, we find a subset M, C M, of
demand pairs, such that OPT(G;, M}) < w*|Mj|/16. Un-
fortunately, the set M} of demand pairs does not necessar-
ily define a violated LP-constraint, since it is possible that

set P; of node-disjoint paths, routing Q(

OPT(G, Mj) >> OPT(G;, M;), if the optimal routing uses
many vertices of U (and possibly from some other graphs
G;). In general, the number of vertices in set U is relatively
small compared to OPT, so in the global accounting across
all instances (G, M), only a small number of paths can
use the vertices of U. But for a specific instance (G;, M;),
it is possible that most paths in the optimal solution to in-
stance (G, M;) use the vertices of U. In order to overcome
this difficulty, we need to perform a careful global accounting
across all resulting instances (G, M/).

Organization.

We start with preliminaries in Section Section [3] is de-
voted to the proof of Theorem [1.1l Due to lack of space,
we only provide a brief sketch of the proof. Sections [@H{7] are
devoted to the proof of Theorem Section {4 provides an
overview of the algorithm and some initial steps; Section [f]
introduces the main technical tools that we use: enclosures,
shells, and a partition of the terminals into subsets; and Sec-
tions |§| and [7] deal with Case 1 (when many terminals are
far from each other) and Case 2 (when many terminals are
close to the boundaries of at most two faces), respectively.
We prove Theorem[I.3]in Section[8] All proofs omitted from
this extended abstract can be found in the full version of the
paper available on Arxiv.

2. PRELIMINARIES

Given any graph G and a set M of demand pairs in G, for
any subset M’ C M of the demand pairs, we denote by
T (M) the set of all vertices participating in the demand
pairs in M’. For any subset M’ C M of the demand pairs,
and any sub-graph H C G, let OPT(H, M’) denote the value
of the optimal solution to instance (H, M’).

Given a drawing of any planar graph H in the plane, and
given any cycle C' in H, we denote by D(C) the unique disc
in the plane whose boundary is C. Similarly, if C' is a closed
simple curve in the plane, D(C) is the unique disc whose
boundary is C. When the graph H is drawn on the sphere,
there are two discs whose boundaries are C. In such cases
we will explicitly specify which of the two discs we refer to.
Given any disc D (in the plane or on the sphere), we use
D° to denote the disc D without its boundary. We say that
a vertex of H belongs to disc D, and denote v € D, if v is
drawn inside D or on its boundary. Given a planar graph
G, drawn on a surface X, we say that a curve C in X is
G-normal, iff it intersects the drawing of G at vertices only.
The set of vertices of G lying on C' is denoted by V(C'), and
the length of C is £(C) = |V(C)|. For any disc D, whose
boundary is a G-normal curve, we denote by V(D) the set
of all vertices of G lying inside D or on its boundary.

Sparsest Cut.

In this paper we use the node version of the sparsest cut
problem, defined as follows. Suppose we are given a graph
G = (V,E) with a subset T C V of its vertices called ter-
minals. A vertex cut is a tri-partition (A, C, B) of V, such
that there are no edges in G with one endpoint in A and the
other in B. If (AUC)NT, (BUC)NT # 0, then the sparsity
of the cut (A, C, B) is min{lAﬁT\,\‘gr“]T\}-HCﬂT\’ The sparsest
cut in G with respect to the set T of terminals is a vertex
cut (A, C, B) with (AUC)NT, (BUC)NT # 0, whose spar-
sity is the smallest among all such cuts. Amir, Krauthgamer




and Rao [1] showed an efficient algorithm, that, given any
planar graph G with a set 7 C V(G) of terminal vertices,
computes a vertex cut (A, C, B) in G, whose sparsity with
respect to T is within a constant factor of the optimal one.
We denote this algorithm by Axxr, and the approximation
factor it achieves by aakr, S0 aaxr 1S an absolute constant.

Tight Concentric Cycles.

Definition 2.1 Given a planar graph H drawn in the plane
and a vertex v € V(H) that is not incident to the infinite
face, min-cycle(H,v) is the cycle C in H, such that: (i)
v € D°(C); and (i) among all cycles satisfying (i), C is the
one for which D(C') is minimal inclusion-wise.

It is easy to see that min-cycle(H,v) is uniquely defined.
Indeed, consider the graph H \ v, and the face F in the
drawing of H \ v where v used to reside. Then the boundary
of F' contains exactly one cycle C with D(C) containing v,
and C = min-cycle(H,v). We next define a family of tight
concentric cycles.

Definition 2.2 Suppose we are given a planar graph H,
an embedding of H in the plane, a simple closed H-normal
curve C, and an integral parameterr > 1. A family of r tight
concentric cycles around C is a sequence Z1,Za,...,Zr of
disjoint simple cycles in H, with the following properties:

e D(C) S D(21) S D(%:) G - € D(Z,);

e if H' is the graph obtained from H by contracting all
vertices lying in D(C) into a super-node a, then Z1 =
min-cycle(H’,a); and

e for every 1 < h < r, if H' is the graph obtained from
H by contracting all vertices lying in D(Zp_1) into a
super-node a, then Zy = min-cycle(H’,a).

3. ROUTING ON A DISC AND ON A CYLIN-
DER

In this section we prove Theorem [[-I] In order to do so, we
define a new problem, called Demand Pair Selection Problem
(DPSP), and show an 8-approximation algorithm for it. We
then show that both NDP-Disc and NDP-Cylinder reduce to
DPSP.

Demand Pair Selection Problem.

We assume that we are given two disjoint directed paths, o
and o', and a collection M = {(s1,t1),..., (sk,tx)} of pairs
of vertices of o U ¢’ that are called demand pairs, where
all vertices of S = {s1,...,sk} lie on o, and all vertices of
T = {t1,...,tx} lie on o’ (not necessarily in this order).
We refer to the vertices of S and T as the source and the
destination vertices, respectively. Note that the same vertex
of o may participate in several demand pairs, and the same
is true for the vertices of ¢’. Given any pair a, a’ of vertices
of o, with a lying before @’ on o, we sometimes denote by
(a,a’) the sub-path of o between a and a’ (that includes
both these vertices). We define sub-paths of ¢’ similarly.
For every pair v,v’ € V(o) of vertices, we denote v < v’ if v
lies strictly before v’ on o, and we denote v < v, if v < v’
or v = v’ hold. Similarly, for every pair v,v" € V(o’) of

vertices, we denote v < v if v lies strictly before v’ on o',
and we denote v < v', if v < v’ or v = v’ hold. We need the
following definitions.

Definition 3.1 Suppose we are given two pairs (a,b) and
(a',b") of vertices of o Ud’, with a,a’ € o and b,b' € o'.
We say that (a,b) and (a’,b’) cross iff one of the following
holds: either (i) a = a'; or (ii) b =1V'; or (iii) a < o’ and
b <b; or (iv)a <aandb<b.

Definition 3.2 We say that a subset M’ C M of demand
pairs is non-crossing iff for all distinct pairs (s, t),(s',t') €
M, (s,t) and (s',t') do not cross.

Our goal is to select the largest-cardinality non-crossing sub-
set M’ C M of demand pairs, satisfying a collection K of
constraints. Set K of constraints is given as part of the prob-
lem input, and consists of four subsets, Ki1,..., /K4, where
constraints in set IC; are called type-i constraints. Every con-
straint K € K is specified by a quadruple (i, a, b, w), where
i € {1,2,3,4} is the constraint type, a,b € V(o Uo’), and
1 <w < | M| is an integer.

For every type-1 constraint K = (1,a,b,w) € K1, we have
a,b € V(o) with a < b. The constraint is associated with the
sub-path I = (a,b) of . We say that a subset M’ C M of
demand pairs satisfies K iff the total number of the source
vertices participating in the demand pairs of M’ that lie on
I is at most w.

Similarly, for every type-2 constraint K = (2,a,b,w) € K2,
we have a,b € V(¢') with a < b, and the constraint is asso-
ciated with the sub-path I = (a,b) of o’. A set M’ C M of
demand pairs satisfies K iff the total number of the destina-
tion vertices participating in the demand pairs in M’ that
lie on [ is at most w.

For each type-3 constraint K = (3,a,b,w) € K3, we have
a € V(o) and b € V(¢'). The constraint is associated with
the sub-path L, of o between the first vertex of ¢ and a
(including both these vertices), and the sub-path R, of o’
between b and the last vertex of ¢’ (including both these
vertices). We say that a demand pair (s,t) € M crosses K
iff s € Ly, andt € Ry. A set M’ C M of demand pairs
satisfies K iff the total number of pairs (s,t) € M’ that
cross K is bounded by w.

Finally, for each type-4 constraint K = (4,a,b,w) € Ka,
we also have a € V(o) and b € V(o'). The constraint is
associated with the sub-path R, of o between a and the
last vertex of o (including both these vertices), and the sub-
path L, of ¢’ between the first vertex of ¢’ and b (including
both these vertices). We say that a demand pair (s,t) € M
crosses K iff s € R, and t € L. A set M’ C M of demand
pairs satisfies K iff the total number of pairs (s,t) € M’
that cross K is bounded by w.

Given the paths o, 0’, the set M of the demand pairs, and
the set /C of constraints as above, the goal in the DPSP prob-
lem is to select a maximum-cardinality non-crossing subset
M' C M of demand pairs, such that all constraints in K are
satisfied by M’. The proof of the following theorem relies on
dynamic programming, and is omitted from this extended
abstract.

Theorem 3.1 There is an efficient 8-approrimation algo-
rithm for DPSP.



We use Theorem in order to design efficient algorithms
for NDP-Disc and NDP-Cylinder, achieving a factor O(log k)-
approximation for both problems, by reducing them to DPSP
with an O(logk) loss in the approximation factor. The re-
duction from NDP-Disc to DPSP uses the characterization of
routable instances of NDP-Disc due to Robertson and Sey-
mour [28]. We then reduce NDP-Cylinder to NDP-Disc and
DPSP directly. The remainder of the proof is omitted from
this extended abstract.

4. ALGORITHM SETUP

The rest of this paper mostly focuses on proving Theo-
rem [I[.2} we prove Theorem [I-3] using the techniques we em-
ploy for the proof of Theorem in Section

We assume without loss of generality that the input graph G
is connected - otherwise we can solve the problem separately
on each connected component of G. Let 7 = T(M). It is
convenient for us to assume that every terminal participates
in exactly one demand pair, and that the degree of every
terminal is 1. This can be achieved via a standard transfor-
mation of the input instance, where we add a new collection
of terminals, connecting them to the original terminals. This
transformation preserves planarity, but unfortunately it can
increase the number of the graph vertices. If the original
graph G contained n vertices, then |M| can be as large as
n?, and so the new graph may contain up to n? 4 n vertices,
while our goal is to obtain an O(n%!?)-approximation. In
order to overcome this difficulty, we denote by N the num-
ber of the non-terminal vertices in the new graph G, so N
is bounded by the total number of vertices in the original
graph, and by n the total number of all vertices in the new
graph, so n = O(N?). Our goal is then to obtain an efficient
O(N®/'° . poly log n)-approximation for the new problem in-
stance. From now on we assume that every terminal partic-
ipates in exactly one demand pair, and the degree of every
terminal is 1. We denote |[M| = k. Throughout the algo-
rithm, we define a number of sub-instances of the instance
(G, M), but we always use k to denote the number of the
demand pairs in this initial instance. We can assume that
k > 100, as otherwise we can return a routing of a single
demand pair.

We assume that we are given a drawing of G on the sphere.
Throughout the algorithm, we will sometimes select some
face of GG as the outer face, and consider the resulting planar
drawing of G.

4.1 LP-Relaxations

Let us start with the standard multicommodity flow LP-
relaxation of the problem. Let G’ be the directed graph,
obtained from G by bi-directing its edges. For every edge
e € E(G"), for each 1 <4 < k, there is an LP-variable f;(e),
whose value is the amount of the commodity-i flow through
edge e. We denote by z; the total amount of commodity-7
flow sent from s; to t;. For every vertex v, let 6+(v) and
0~ (v) denote the sets of its out-going and in-coming edges,
respectively. We denote [k] = {1,...,k}. The standard
LP-relaxation of the NDP problem, that we denote by (LP-
flowl), appears in Figure

We make two changes to (LP-flowl). First, we assume
that we know the value X™ of the optimal solution, and
instead of the objective function, we add the constraint
Zle x; > X*. We can do so using standard methods, by
repeatedly guessing the value X™* and running the algorithm

for each such value. It is enough to show that the algorithm

X
routes Q2 (Ng/lg‘poly onn

is guessed correctly.

Recall that for a subset M’ C M of the demand pairs,
and a sub-graph H C G, OPT(H, M') denotes the value of
the optimal solution to instance (H, M’). For every subset
M’ C M of the demand pairs, we add the constraint that
the total flow between all pairs in M’ is no more than z, for
all integers z between OPT(G, M’) and k. We now obtain
a linear program, denoted by (LP-flow2), that has no objec-
tive function, so we are only interested in finding a feasible
solution (see Figure[2).

We say that a solution to (LP-flow2) is semi-feasible iff all
constraints of types 7 and @ are satisfied. Notice that
the number of the constraints in (LP-flow2) is exponential in
k. In order to solve it, we use the Ellipsoid Algorithm with a
separation oracle, where our approximation algorithm itself
will serve as the separation oracle. This is done via the
following theorem, which is our main technical result.

) demand pairs, when the value X ™

Theorem 4.1 There is an efficient algorithm, that, given a
semi-feasible solution to (LP-flow2), either computes a rout-

Z’flg Of at least (m
node-disjoint paths, or returns a constraint of type (@, that

is violated by the current solution.

) demand pairs of M via

We can now obtain an O (N9/19 - poly log n)—approximation

algorithm for NDP-Planar via the Ellipsoid algorithm. In
every iteration, we start with some semi-feasible solution to
(LP-flow2), and apply the algorithm from Theorem to it.

If the outcome is a solution routing at least 2 (W)
-poly logn
demand pairs in M, then we obtain the desired approxi-
mate solution to the problem, assuming that X* was guessed
correctly. Otherwise, we obtain a violated constraint of
type , and continue to the next iteration of the Ellipsoid
Algorithm. Since the Ellipsoid Algorithm is guaranteed to
terminate with a feasible solution after poly(n) iterations,
this gives an efficient algorithm that is guaranteed to return

*

. X
a solution of value 2 (Ng/lg'polylogn

focus on proving Theorem

We now assume that we are given some semi-feasible solution
(z, f) to (LP-flow2), and define a new fractional solution
based on it, where the flow between every demand pair is
either 0 or w*, for some value w* > 0. First, for each demand
pair (s;,t;) with z; < i7 we set £; = 0 and we set the
corresponding flow values f;(e) for all edges e € E(G’) to 0.
Since we can assume that X* > 1 if the graph is connected,
the total amount of flow between the demand pairs remains
at least X*/2. We then partition the remaining demand
pairs into ¢ = [log2k] subsets, where for 1 < j < ¢, set
M contains all demand pairs (s;,¢;) with 2% <x; < 2%1
There is some index 1 < j* < ¢, such that the total flow
between the demand pairs in M« is at least Q(X*/logk).
Let w* = 2% We further modify the LP-solution, as follows.
First, for every demand pair (s;,t;) € M=, we set z; = 0,
and the corresponding flow values f;(e) for all edges e €
E(G") to 0. Next, for every demand pair (s;,t;) € M=,
we let 8; = w*/x;, so Bi < 1. We set z; = w”, and the
new flow values fi(e) are obtained by scaling the original
values by factor 8;. This gives a new solution to (LP-flow2),
that we denote by (2, f'). The total amount of flow sent

From now on we



(LP-flow1)

ZeeéJr(Si) file) = x;
Decst ) Ji(€) = Xees— () file)
2 ees+ (o) Sk file) <1
D(sityemr Ti S 2
fi(e) >0

max Zf:l Ty
s.t.
Zeeé‘*’(si) fi(e) =i Vi € [k]
Peestw Ji(€) = Xocs— () file) Vi€ [k],Vve V(G {54, 1} (flow conservation)
Dees+(v) SF L file) <1 Yo € V(G (vertex capacity constraints)
file) >0 Vi € [k],Ve € E(G")
Figure 1: Basic LP
(LP-flow2)
S > X 1

Figure 2: Extended LP

Vi € [k

Vi € [k],Vv € V(G')\ {si,t;} (flow conservation)
Vv € V(G) (vertex capacity constraints)
VM CM,Vz€Z:0PT(G,M) <2<k

Vi € [k],Ve € E(G")

in this solution is Q(X*/logk), and it is easy to verify that
constraints 7 and @ are satisfied. For every demand
pair (si,t;) € M+, x; = w*, and for all other demand pairs
(si,ti), 5 = 0. It is easy to see that for every demand pair
(siyti), T; < ;. Therefore, if we find a constraint of type (5)
that is violated by the new solution, then it is also violated
by the old solution. Our goal now is to either find a feasible
N9/19<)1§01y logn
a constraint of type (5] violated by the new solution. Since
from now on we only focus on demand pairs in M=, for
simplicity we denote M = M ;=.

solution routing 2 ) demand pairs, or to find

4.2 Well-Linked Decomposition

Like many other approximation algorithms for routing prob-
lems, we decompose our input instance into a collection of
sub-instances that have some useful well-linkedness proper-
ties. Since the routing is on node-disjoint paths, we need to
use a slightly less standard notion of node-well-linkedness,
defined below. Throughout this paper, we use a parameter
awy, = ’LU*/(512 * OLAKR * log k)

Definition 4.1 Given a graph H and a set T’ of its ver-
tices, we say that T' is aw.-well-linked in H iff for every
pair Ti, T2 of disjoint equal-sized subsets of T, there is a set
P of at least awr, - |T1| node-disjoint paths in H, connecting
vertices of T1 to vertices of Ta.

Definition 4.2 Given a sub-graph H C G and a subset
M C M of demand pairs with T(M') C V(H), we say
that (H, M") is a well-linked instance, iff T(M') is awr-
well-linked in H.

The following theorem uses standard techniques, and its
proof is omitted from this extended abstract.

Theorem 4.2 There is an efficient algorithm to compute
a collection G1,...,G, of disjoint sub-graphs of G, and for
each 1 < §j < 7, a set MI C M of demand pairs with
T(MP) CV(Gy), such that:

e Foralll<j<r, (Gj, M?) is a well-linked instance;

e Forall1 < j#j <, there is no edge in G with one
endpoint in G; and the other in G;;

o YI_, [MI| > 63| M|/64; and
VG (Upoy V(G | < 224,

For each 1 < j <r, let W; = w*|M’| be the contribution of
the demand pairs in M’ to the current flow solution and let
W =37 W; =QX"/logk). Let n; = |[V(G;)|, and let
N; be the number of the non-terminal vertices in G;. The
main tool in proving Theorem [{.]is the following theorem.

Theorem 4.3 There is an efficient algorithm, that com-
putes, for every 1 < j <, one of the following:



1. Either a collection P’ of node-disjoint paths, routing
Q (le/lg/poly log n) demand pairs of M? in G;; or

2. A collection M? C M of demand pairs, with |M’| >
|MI|/2, such that OPT(G;, M?) < w*|M7|/8.

Before we prove Theorem [£:3] we show that Theorem [4]]
follows from it. We apply Theorem to every instance
(G4, M%), for 1 < j < r. We say that instance (G, M) is
a type-1 instance, if the first outcome happens for it, and
we say that it is a type-2 instance otherwise. Let [ =
{j | (Gj, M?) is a type-1 instance}, and we define I simi-
larly for type-2 instances. We now consider two cases.

The first case happensif 3., W; > W/2. We show that in
_ox
N9/19~poly logn
demand pairs. We need the following lemma, whose proof is
omitted here. The proof uses standard techniques: namely,
we show that the treewidth of each graph G; is at least
Q(W;/logk), and so G; must contain a large grid minor.

this case, our algorithm returns a routing of 2 (

Lemma 4.1 For each 1 < j <r, N; > Q(W}/log” k).

The number of the demand pairs we route in each type-1
instance (Gj, M) is then at least:

1/19
18/19
poly logn w; - poly logn

W;

( (\ /Nj log k) 18/19 poly logn)

—a(— Wi
N9/19 . polylogn )

W; > W/2, the number of the demand

Overall, since >
pairs routed is 2 (

JeE

w -0 X*

N9/19~p01y logn - N9/19-poly logn ) °

Consider now the second case, where >, W; > W/2. Let
- MJ

M =U;cp, M. Then M| =5, M| >3, B>

%Z;:l |MI| > M;%I. We claim that the following 1nequal—

ity, that is violated by the current LP-solution, is a valid

constraint of (LP-flow2):

S a <M )

(sists)EM/

In order to do so, it is enough to prove that OPT(G, M’) <
w*|M’|/2. Assume otherwise, and let P* be the optimal
solution for instance (G, M’), so |P*| > w*|M'|/2. We
say that a path P € P* is bad if it contains a vertex of
V(G)\ (U;zl V(Gj)). The number of such bad paths is
bounded by the number of such vertices - namely, at most

‘M‘ < WM o \7’2| Therefore, at least w*|M'|/4
paths in P* are good. Each such path must be contained
in one of the graphs G; corresponding to a type-2 instance.
For each j € Iz, let ./\;tj C M’ be the set of the demand
pairs routed by good paths of P*. Then, on the one hand,
Yjen M| > w* | M|/4 = w* Yien | M| /4, while, on the
other hand, since all demand pairs in M’ can be routed
simultaneously in G, for all j € I, M| < w*|M7|/8, a

contradiction. We conclude that OPT(G, M') < w*|M’|/2,
and (7)) is a valid constraint of (LP-flow2).

From now on, we focus on proving Theorem Since from
now on we only consider one instance (G, M?), for sim-
plicity, we abuse the notation and denote G; by G, and
MI by M. As before, we denote T = T(M). We de-
note by W = w* - [M| the total amount of flow sent be-
tween the demand pairs in the new set M in the LP so-
lution (note that this is not necessarily a valid LP-solution
for the new instance, as some of the flow-paths may use
vertices lying outside of Gj). We use n to denote the num-
ber of vertices in G. Value k - the number of the demand
pairs in the original instance - remains unchanged. Our
goal is to either find a collection of node-disjoint paths rout-
ing Q(W/°/ poly(log(nk))) demand pairs of M in G, or
to find a collection M C M of at least |M|/2 demand
pairs, such that OPT(G, M) < w*|M|/8. We will rely
on the fact that all terminals are awy-well-linked in G, for
awr = O(w*/logk). We assume that G is connected, since
otherwise all terminals must be contained in a single con-
nected component of G and we can discard all other con-
nected components.

We assume that we are given an embedding of G into the
sphere. For every pair v,v" € V(G) of vertices, we let
denc(v,v") be the length of the shortest G-normal curve
connecting v to v’ in this embedding, minus 1. It is easy
to verify that denc is a metric: that is, danc(v,v) = 0,
denc(v,v") = denc(v',v), and the triangle inequality holds
for danc. The value done(v,v") can be computed efficiently,
by solving an appropriate shortest path problem instance in
the graph dual to G. Given a vertex v and a subset U of ver-
tices of G, we denote by danc(v, U) = minycv {denc(v,u)}.
Similarly, given two subsets U,U’ of vertices of G, we de-
note danc(U,U’) = minyepwev’ {donc(u,u’)}.  Finally,
given a G-normal curve C, and a vertex v in G, we let
danc (v, C) = mingev () {danc(v,u)}.

Over the course of the algorithm, we will sometimes select
some face of the drawing of G as the outer face and consider
the resulting drawing of G in the plane. The function daxc
remains unchanged, and it is only defined with respect to
the fixed embedding of G into the sphere.

S. ENCLOSURES, SHELLS, AND TERMI-
NAL SUBSETS

In this section we develop some of the technical machinery
that we use in our algorithm, and describe the first steps of
the algorithm, starting with enclosures for the terminals.

5.1 Constructing Enclosures

Throughout the algorithm, we use a parameter A = [WQ/ 19—‘ .
We assume that W > Q(A), since otherwise W is bounded
by a constant, and we can return the routing of a single de-
mand pair. The goal of this step is to construct enclosures
around the terminals, that are defined below.

Definition 5.1 An enclosure for terminalt € T is a simple
disc Dy containing the terminal t, whose boundary is denoted
by Ct, that has the following properties. (Recall that V (Dy)
is the set of all vertices of G contained in Dy.)

e C; is a simple closed G-normal curve with £(Ct) = A;

Ld |Tﬁ V(Dt)| S 4A/O¢\\'L; and



e V(Dy) induces a connected graph in G.

The following theorem, whose proof is omitted due to lack
of space, allows us to construct a collection of enclosures
around the terminals with additional useful properties.

Theorem 5.1 There is an efficient algorithm that constructs
an enclosure Dy for every terminal t € T, such that for
all t,t' € T: (i) if Dy C Dy, then Dy = Dy; and (ii) if
DN Dy =0, then there are A node-disjoint paths between
V(C:) and V(Cy) in G.

Distances between terminals.

For every pair t,t’ of terminals, we define the distance d(t,t’)
between ¢t and ' to be the length of the shortest G-normal
open curve, with one endpoint in V(C;) and another in
V(Cy). (Notice that if Dy N Dy # 0, then d(¢,t") = 1).

5.2 Constructing Shells

Suppose we are given some terminal ¢ € 7 and an integer
r > 1. In this section we show how to construct a shell of
depth r around t. Shells play a central role in our algorithm.
In order to construct the shell, we need to fix a plane drawing
of the graph G, by choosing one of the faces F} of the drawing
of G on the sphere as the outer face. The choice of the
face F; will affect the construction of the shell, but once
the face F; is fixed, the shell construction is fixed as well.
We require that for every vertex v on the boundary of Fi,
donc(v,Cy) > r+ 1, and that C; separates all vertices on
the boundary of F} from t. We note that when we construct
shells for different terminals ¢,¢’, we may choose different
faces Fi, Fys, and thus obtain different embeddings of G into
the plane. We now define a shell.

Definition 5.2 Suppose we are given a terminal t € T, a
face Fy in the drawing of G on the sphere, and an inte-
ger r, such that for every verter v on the boundary of Fi,
danc(v,Ct) > r+ 1, and C: separates t from the boundary
Of Ft .
A shell Z7(t) of depth r around t with respect to F is a col-
lection Z"(t) = (Z1(t), Z2(t), ..., Zr(t)) of v tight concentric
cycles around Cy. In other words, all cycles Zy(t) are sim-
ple and disjoint from each other, and the following properties
hold. For each 1 < h < r, let D(Zy(t)) be the disc whose
boundary is Zn(t) in the planar drawing of G with Fy as the
outer face. Then:
J1. Dy € D(Zy(t) € D(Z2()) € -+ € D(Z,(t)); and
J2. for every 1 < h < 7, if H is the graph obtained from
G by contracting all vertices lying in D(Zy—1(t)) into
a super-node a, then Zp(t) = min-cycle(H,a) (when
h =1, we contract Dy into a super-node a).

Notice that from this definition we immediately obtain the
following additional properties:

J3. For every 1 < h < r, for every vertex v € V(Zy(t)),
there is a G-normal curve of length 2 connecting v to
some vertex of V(Z,_1(t)) (or to a vertex of V(C}) if
h=1).

J4. For every 1 < h < r, for every vertex v € V(Zn(t)),
there is a G-normal curve ~(v) of length h + 1 con-
necting v to some vertex of V(C}), so that y(v) C
D(Zn(t))-

We also need the following two observations.

Observation 5.1 For all 1 < h < 7, if Uy is the set of
vertices of G lying in D(Zx(t)), then G[Uy] is connected.

Observation 5.2 Let t,t' be any pair of terminals, and let
r,7’ > 0 be any integers, such that d(t,t') > r+ 7 + 1. Let
Z7(t) = (Z1(t), ..., Zr(t)) be a shell of depth r around t with
respect to some face Fy, and let 27 (t') = (Zo(t') ..., Zws (t'))
be a shell of depth v’ around t’ with respect to some face Fr.
Then for all1 <h<rand 1 <h' <7v', Zp,(t)N Zp (t') = 0.

5.3 Terminal Subsets

Let Ap = 20( [logw/g n—‘ + 1)A = O(Alogn). Our next
step is to define a family of disjoint subsets of terminals,
so that the terminals within each subset are close to each
other, while the terminals belonging to different subsets are
far enough from each other. We will ensure that almost all
terminals of 7 belong to one of the resulting subsets. The
proof of the following theorem uses standard techniques and
is omitted from this extended abstract.

Theorem 5.2 There is an efficient algorithm to compute a
collection X = {X1,..., X4} of disjoint subsets of terminals
of T, such that:

e for each 1 < i < q, for every pair t,t' € X, of termi-
nals, d(t,t') < Ao;

e forall1 <i+#j<gq, for every pairt € X;, t' € X; of
terminals d(t,t') > 5A; and

o Y, 1Xi| > 0.97].

We use a parameter 7 = W%/ We say that a set X € X
of terminals is heavy if w*|X| > 7, and we say that it is light
otherwise. We say that a demand pair (s, t) is heavy iff both
s and t belong to heavy subsets of terminals in X. We say
that it is light if at least one of the two terminals belongs to
a light subset, and the other belongs to some set of X'. Note
that a demand pair (s, ¢) may be neither heavy nor light, for
example, if s or ¢ lie in T\ Uycr X. Let Mo be the set
of all demand pairs that are neither heavy nor light. Then
[Mo| < 0.2|M]. We say that Case 1 happens if there are
at least 0.1| M| light demand pairs, and we say that Case 2
happens otherwise. Notice that in Case 2, at least 0.7| M|
of the demand pairs are heavy. In the next two sections we
handle Case 1 and Case 2 respectively.

6. CASE 1: LIGHT DEMAND PAIRS

Let M% C M be the set of all light demand pairs, so |[ M| >
0.1|M|. We assume w.l.o.g. that for every pair (s,t) € M,
t belongs to a light set in X. Let S, TF C T be the sets of
the source and the destination vertices of the demand pairs
in ML, respectively, and let £ C X be the set of all light
terminal subsets. Recall that we have assumed that every
terminal participates in exactly one demand pair. The goal
of this section is to prove the following theorem.



Theorem 6.1 Let p* = O
cient algorithm, that computes a set of node-disjoint paths in
G, routing at least min {Q(p*), Q ( )} demand pairs.

(M) There is an effi-

Tlogn

A
p*logn

We first show that Theorem concludes the proof of The-
orem for Case 1. Indeed, since |[M¥| > 0.1| M|, we get

* _ awn M|\ _ w* | M| wt/1o
that p —9(%) —®(W1s/1910gn10gk) = (lognlogk)
. W2/19 108 k
Notice that @ (=257 ) = @ (Yariisst ) = @ (W logk).
Therefore, the algorithm routes 2 (%) demand pairs
ognlog

via node-disjoint paths. The rest of this section is devoted
to proving Theorem

Our first step is to compute a large subset Mo C M of light
demand pairs, so that, if we denote by Sy and Ty the sets of
the source and the destination vertices of the demand pairs
in Mo, then there is a set Q of |Mpy| node-disjoint paths
connecting the vertices of Sy to a subset of vertices of T,
that we denote by T’. Additionally, we ensure that every
terminal set X € £, | X NT'| <1, and | X NTp| < 1. We
note that the sets Sop and T’ do not necessarily form demand
pairs. We will eventually route a subset of the pairs of M.

Theorem 6.2 There is an efficient algorithm to compute a
L
subset Mo C M" of ko = © (%) demand pairs, and

a subset T' C TL of ko terminals, such that, if we denote by
So and Ty the sets of the source and the destination vertices
of the demand pairs in Mo, then:

e There is a set Q of ko node-disjoint paths connecting
the vertices of So to the vertices of T'; and

e Foreachset X € L, | X NT'| <1, and | X NTp| < 1.

We assume that |Mg| > 1000, as otherwise we can route a

. L
single demand pair, and obtain a solution routing 2 (M)

demand pairs.

Recall that every set X € L contains at most one termi-
nal from Tp. Since |So| = |To|, there is some set Xo € Tp,
that contains exactly one terminal to € Tp, and at most one
additional terminal from So. We will view t9 as our “cen-
ter” terminal, and we discard from Mg the demand pairs in
which ¢o and the terminal in SoN Xy (if it exists) participate.
The main tool in our algorithm for Case 1 is a crossbar, that
we define below. Let A; = |A/6] and Ay = |A1/3]. Given
a shell Z(t) = (Z1(¢),...,Za,(t)) of depth Ay around some
terminal ¢, we will always denote by D*(t) = D(Za, (t)), and
by D(t) = D(Za,(t)). We will view the cycles Zi(t), ..., Za,(t)
as the “inner” part of the shell Z(t). The crossbar is defined
with respect to some subset M* C M of demand pairs (see

Figure .

Definition 6.1 Suppose we are given a subset M* C My
of demand pairs and an integer p > 1. Let S* and T™ be the
sets of all source and all destination vertices participating in
the demand pairs of M”*, respectively. A p-crossbar for M*
consists of:

e For each terminal t € T U {to}, a shell Z(t) of depth
A1 around t, such that for all t,t' € T*U{to}, D*(t)N
D*(t') = 0, and for all s € S* and t' € T* U {to},
s g€ D*(t); and

e Foreachv € S*UT*, a collection P(v) of paths, where:

— For each s € S*, P(s) contains ezactly one path,
connecting s to a verter of Ct,;

— For each t € T*, P(t) contains exactly p paths,
where each path connects a vertex of Cy to a vertex
of Cy; and

— All paths in P = J,cg«up+ P(v) are node-disjoint
from each other.

In order to route a large subset of the demand pairs in M™,
we need a crossbar with slightly stronger properties, that we
call a good crossbar, and define below. We say that a path
P is monotone with respect to a cycle C' iff PN C is a path.

Definition 6.2 Given a set M* C My of demand pairs,
where S™,T* are the sets of the source and the destination
vertices of the demand pairs in M* respectively, and an inte-

ger p > 1, a p-crossbar ({Z(t)}teT*U{to} , {P(U)}UES*UT*)
is a good crossbar, if the following additional properties
hold:

C1. For allt € T" and all v € (S"UT™)\ {t}, all paths in
P(v) are disjoint from D(t).

C2. For allt € T™, all paths in P(t) are monotone with re-
spect to (Z1(t),...,Zna,(t)). Also, for all v € S* U
T*, all paths in P(v) are monotone with respect to
(Z1(t0), - - - s Zay(to)).

C38. There is a partition X = {o(v) | v € S*UT*} of Za, (to)
into |S*| 4+ |T™| disjoint segments, such that for all
v,v' € S*UT* withv # v, a(v) NP() = 0.

Figure 3: A crossbar. The center vertex ¢y is shown
in blue, the vertices of S* in red, and the vertices of
T* in green.

The following theorem shows that, given a p-crossbar in G,
where p is large enough, we can route many demand pairs
in M*. We omit the proof due to lack of space.

Theorem 6.3 Suppose we are given a subset M* C My
of k demand pairs, where S* and T* are the sets of all
source and all destination vertices of the demand pairs in
M, respectively. Assume further that we are given a good

p-crossbar ({Z(t)}teT*U{tO} 7{P(v)}v€S*UT*) for M*, and



let g = min{Aq, |(p—1)/2]|,[k/2]}. Then there is an effi-
cient algorithm that routes at least q demand pairs in M*
via node-disjoint paths in G.

In order to complete the proof of Theorem|[6.1] we use the fol-
lowing theorem, whose proof is omitted from this extended
abstract, that allows us to construct a good crossbar.

Theorem 6.4 There is an efficient algorithm that either
finds a routing of Q(ko) demand pairs in Mo, or computes a
subset M™ C Mo of Q(ko/logn) demand pairs, and a good
p-crossbar for M*, with p = Q(A/ko).

Ko
logn

Letting p* =

T

Q (M), from Theorem , we can efficiently find a

Tlogn

routing of at least min {Q(p*)7 Q ﬁ)} demand pairs,

concluding the proof of Theorem

Recall that ko = © (M .

7. CASE 2: HEAVY DEMAND PAIRS.

In this case, we assume that at least 0.7| M| demand pairs
are heavy. Let H = {X1,...,Xq} C X be the collection of
all heavy subsets of terminals, so ¢ < 2W/7, and let M
be the set of all heavy demand pairs, so for all (s,t) € M",
both s and ¢ lie in the sets of . We partition the set M”"
of demand pairs into ¢ subsets, where for 1 < i,j < g,
set M ; contains all demand pairs (s,t) with s € X; and
t € X; (notice that it is possible that ¢ = j). We then find an
approximate solution to each resulting problem separately.
The main theorem of this section is the following.

Theorem 7.1 There is an efficient algorithm, that for each

1 <1i,j < q, computes a subset ./\/l;] C M;,; of at least

5| M., ;|/6 demand pairs, and a collection P; ; of node-disjoint

paths routing a subset of the demand pairs in M ; in G, with
PT L

[Pesl 2 min { ST, Sy

constants c1 and ca.

|
L1 8 for some universal

Before we prove this theorem, we show that it concludes the
proof of Theorem for Case 2. Let set 7 contain all pairs
(i,) with 1 < i, < ¢, such that |M; ;| > 0.1|M|/q?, and
let M = U(i’j)eﬂ M ;. Since the total number of heavy
demand pairs is at least 0.7| M|, it is easy to verify that
M| > 0.6| M.

We apply Theorem to compute, for each (i,j) € m, the
subset Mj ; C M, ; of at least 5| M, ;|/6 demand pairs and
the corresponding set P;,; of paths routing a subset of the
demand pairs in M; ;. Let M’ C M be the set of all demand
pairs in U(m.)E7r M; ;. Then:

M= D IMi = D 5IMal/6 = 51M|/6 > |M]/2.

(i,5)em (4,5)em

If, for any (¢,j) € m, we obtain a solution with |P;;
W .
T o Ann 1 e AN TogT nlog then we return the set P; ; as

our final solution. Substituting A¢ = O(Alogn), A =
[Wg/lg—‘, q=O0(W/7), and 7 = W19 we get that:

wr?
Piil >Q
[Pisl 2 (WZAslognnlogk>

- W36/19 o Wi/
- (W . Wlﬁ/lglog“nlogk) N (log“nlogk) '

Otherwise, for all (i,j) € m, the resulting solution |P; ;| <
!/
Pl Re— c162q2A8 g gk We then return the subset M

of demand pairs. As observed above, |M'| > [M]/2, so it is
now enough to show that OPT(G, M’) < w*|M'|/8.

Assume otherwise, and let P* be a solution to instance
(G, M), routing a subset M* C M’ of at least w*|M’|/8 >
w*|M|/16 demand pairs. Then there is a pair of indices

(i,j) € m, such that |M* N M;,| > wl*(i‘"

OPT(G, M; ;) > = "M From Theorem |7 . we compute a

1642
set P;,; of paths, routing a subset of demand pairs of M,

OPT(G,Mj ; awr M]S|
with either |P; ;| > m, or |Pi ;] W

Therefore,

1,59

\Y

. In
the former case,
OPT(G, M; ;) w* M| w

P, il > 2 > = R
[Pesl 2 c1A8log®n T 16c1q2A8log®n  16c1¢2Adlog3 n

while in the latter case, observe that |[M; ;| > 5| M ;|/6 >
|M|/(12¢%) from the definition of = and M. Therefore,

Qw, - |M;7]| > w* . ‘M|
co A2 T 12512 askr - c2¢?A2logk
w
213 . qaig - c1e2q2 A8 log nlogk’

[Pij| >

a contradiction.

From now on we focus on proving Theorem [7.I] We fix a
pair of indices 1 < 7,j < ¢. In order to simplify the nota-
tion, we denote M, ; by N, X; by X and X; by Y. Our
goal is to compute a subset NV C N of at least 5|N|/6
demand pairs, together with a set P containing at least

; OPT(G.N) awr [N :
min {Q ( ASlog3n ) ,Q ( A2 )} paths, routing a subset

of the demand pairs in N’. Let z € X and y € Y be any pair
of terminals. Recall that for every terminal ¢ € T(N) N X,
d(t,z) < Ay, and for every terminal t € T(N)NY, d(t,y) <
Ap. We consider two subcases. The first subcase happens
when d(z,y) > 5A¢, and otherwise the second subcase hap-
pens, so the second subcase includes the case where X =Y.

7.1 Subcase 2a: d(z,y) > 57
In this case, we set N/ = N. We will compute a set P of

at least €2 (%ﬁ;ﬁ?) node-disjoint paths, routing a subset
of the demandﬂ pairs in N. We start by defining a simpler
special case of the problem, and show that we can find a
good approximation algorithm for this special case. The
special case is somewhat similar to routing on a cylinder,
and we solve it by reducing it to this setting.

A Special Case

Suppose we are given a connected planar graph G embedded
on the sphere, and two disjoint simple cycles Z, Z’ in G.
Suppose also that we are given a set M of demand pairs,
where all source vertices lie on Z and all destination vertices
lie on Z' (we note that the same vertex may participate



in a number of demand pairs). Let D(Z),D(Z’) be two
discs with boundaries Z and Z', respectively, so that D(Z)N
D(Z’) = 0. Assume additionally that we are given a closed
G-normal curve C of length at most A, that is contained
in D°(Z), so that for every vertex v € Z, there is a G-
normal curve vy(v) of length at most 2A¢ connecting v to
a vertex of C, and v(v) is internally disjoint from Z and
C. Similarly, assume that we are given a closed G-normal
curve C’ of length at most A, that is contained in D°(Z’),
so that for every vertex v’ € Z' there is a G-normal curve
~(v") of length at most 2A¢, connecting v’ to a vertex of C”,
and y(v') is internally disjoint from Z’ and C” (see Figure 4.
This finishes the definition of the special case. The following
theorem shows that we can obtain a good approximation for
it. The proof is omitted from this extended abstract.

Z A

Figure 4: The special case, with the terminals shown
in red

Theorem 7.2 There is an efficient algorithm, that, given
any instance (G, M) of the NDP problem as above, computes
a solution of value at least §2 (%)

Completing the Proof

We now complete the proof of Theorem [7-1] for Case 2a, by
reducing it to the special case defined above. We assume
that OPT(G,N) > 2'3A§, since otherwise we can route a
single demand pair and obtain a valid solution. We denote
by S and T the sets of all source and all destination vertices
of the demand pairs in A/, respectively.

Our first step is to construct shells Z(z) = (Z1(z), ...,

and Z(y) = (Z1(y), . . ., Z2a,(y)) of depth 2A¢ around = and
y, respectively. We would like to ensure that disc D(Z2a, (z))
contains all terminals of X and no terminals of Y, and
similarly, disc D(Z2a,(y)) contains all terminals of ¥ and
no terminals of X. In order to ensure this, when con-
structing the shell Z(z), we let the face F, (that is viewed
as the outer face in the plane embedding of G when con-
structing the shell) be the face incident on the terminal
y, and similarly we let F, be the face incident on z (re-
call that d(z,y) > 5Ao, so this choice of faces is consis-
tent with the requirement that the shell depth is bounded
by min {dgnc(v,Cz)} — 1 over all vertices v lying on the
boundary of Fy). Let Z(z) = (Zi(),...,Z2a,(x)) and
Z(y) = (Z1(y), ..., Z2a,(y)) be the resulting shells.

Claim 7.1 Disc D(Zan,(x)) contains all terminals of X
and no terminals of Y, and similarly, disc D(Zan,(y)) con-
tains all terminals of Y and no terminals of X. Moreover,

D(Zano(x)) N D(Z2y(y)) = 0.

Z280 (1))

For consistency of notation, we will denote Zo(x) = C, and
Zo(y) = Cy, even though both C, and C, are G-normal
curves and not cycles.

Let U = ;29 V(Zn(x)), and let U’ = (220 V(Zw ().
For each 1 < h < 2Ay, let Uy be the set of vertices lying
in D°(Zn(x)) \ D(Znh-1(x)), and let Ry be the set of all
connected components of G[Up]. For each 1 < h' < 2A,, we
define Uy, and R/}, with respect to the shell Z(y) similarly.
Let R = J;29 Ry, and let R' = [J:7, R},

Our next step is to define a mapping 8 : S — 2V of all source
vertices in S to subsets of vertices of U, and a mapping
BT — 2U" of all destination vertices in T to subsets of
vertices of U’. Every vertex in S U T will be mapped to a
subset of at most three vertices. We will then replace each
demand pair (s,t) with the set 3(s) x 8’(t) of demand pairs.
Eventually, for every pair 0 < h, h' < 2/ of indices, we will
define a subset My, ;s of the new demand pairs, containing
all pairs whose sources lie on Zx(z) and destinations lie on
Zn(y), to obtain an instance of the special case, that will
then be solved using Theorem

We start by defining the mapping of the sources. First, for
every source vertex s € SNU, we set B(s) = {s}. Next,
fix any vertex v* € V(C;). For every source vertex s €
V(D2) \ V(Cz), we set B(s) = {v*}. Finally, consider some
component R € Ry, for some 1 < h < 2Ay, and let s €
S N V(R) be any source lying in R. If R has at most three
neighbors in G \ R, then we let §(s) be the set of these
three neighbors. Otherwise, R has at most one neighbor in
Zy(z), and at least three neighbor in Zj,_,(z). We then let
B(s) contain a single vertex, which is a neighbor of R lying
on Zp_1(x). We define the mapping 8 : T — 2V for the
destination vertices ¢t € T' similarly.

Let M = Us,iyenr B(s) x B'(¢). In the following two the-
orems, we show that the problems (G, N) and (G, M) are
equivalent to within relatively small factors. The proofs are
omitted due to lack of space.

Theorem 7.3 There is an efficient algorithm, that, given
any solution to instance (G, M), that routes k demand pairs,
finds a solution to instance (G,N), routing at least 5%
demand pairs.

Theorem 7.4 OPT(G, M) > OPQTI(ZON>.

For each 0 < h, hi < 2o, let /\;ihyh/ - {\;l be the set of all
demand pairs (§,t) with § € Z,(x) and t € Zp/ (y).

If h = 0 or A = 0, then, since |V(Cy)|,|V(Cy)| < A,
OPT(G, M, ) < A. We route any demand pair in Mh W
to obtain a factor-A approximation to the problem (G, ./\/lh h)-
If both h,h’ > 0, then we apply Theorem [7.2] to obtain a

OPT(G, M
collection Py, 5, of at least Q (W) disjoint paths,

routing demand pairs in ./\;lh,h/. We then take the best
among all resulting solutions.

Notice that {./\;lh,h/ [0 < h,h < 2Ao} partition the set M
of demand pairs, and so there is a pair 0 < h, h’ < 2A¢ of
indices with OPT(G,thh/) > OPT(G.M) () (%%’N)).

(2A0+1)2 =
OPT(G,N)) de-

Therefore, we obtain a routing of at least (2 ( AC log n
0

mand pairs.



7.2 Subcase 2b: d(z,y) < 54

Due to lack of space, we only provide an informal overview
of the proof of Theorem [7.]] for Case 2b. We start again by
defining a special case of the problem, which is similar to the
problem of routing on a disc. We show an approximation al-
gorithm for this special case that reduces it to the problem of
routing on a disc, and we later use this special case in order
to handle the general problem in Case 2b. The remainder of
the algorithm follows the general outline of the algorithm for
Case 2a: we construct a shell around the terminal z, map
all terminals to the vertices participating in the cycles of the
shell, and then reduce the resulting instance to the special
case. However, Case 2b is technically more challenging than
Case 2a, for several reasons. First, when defining the shell
Z(z) around z, it is now possible that some connected com-
ponent R € R may contain many demand pairs. In this case,
our mapping of the terminals to the vertices of the shell is
no longer guaranteed to approximately preserve the optimal
solution. Therefore, the construction of the shell is more
involved technically, and we ensure that each resulting com-
ponent R € R contains relatively few terminals. We then
attempt to route demand pairs contained in the components
of R — at most one demand pair per component. If we man-
age to route a large enough number of demand pairs, then
we terminate the algorithm. Otherwise, there are relatively
few demand pairs that are contained in the components of
R, and we will ignore them for the remainder of the algo-
rithm. The step that maps the remaining terminals to the
vertices lying on the cycles of the shells is very similar to the
one in Case 2a. The reduction to the special case is more
challenging, since we now need to ensure that all terminals
lie on a single cycle of the shell. This is done by first se-
lecting two cycles Z;(x), Z;(x) of the shell, so that a large
number of demand pairs have a source lying on Z;(x) and
a destination lying on Z;(z), and then carefully moving the
terminals lying on Z;(x) to Z;(x).

8. PROOF OF THEOREM 3

We perform a transformation to instance (G, M) as before,
to ensure that every terminal participates in at most one
demand pair, and the degree of every terminal is 1. The
number of vertices in the new instance is bounded by 2n2,
and abusing the notation we denote this number by n. We
use the following analogue of Theorem [£.1]

Theorem 8.1 There is an efficient algorithm, that, given
any semi-feasible solution to (LP-flow2), either computes
(x*)1/19
poly log n
node-disjoint paths, or returns a constraint of type (5), that
is violated by the current solution.

a routing of at least (2 ( ) demand pairs in M via

Using the same reasoning as in the proof of Theorem[I.2] it is
easy to verify that the above theorem implies Theorem |1.3
We now focus on proving Theorem [B-1}

We again process the fractional solution (z, f) to obtain a
new fractional solution (', f’), where every demand pair
sends either 0 or w* flow units, in the same way as described
in Section {4l We let M’ C M denote the set of the demand
pairs (s;,t;) with non-zero flow value x in this new solution.
As before, the total low between the demand pairs in M’
is at least Q(X™/logk) in the new solution, and, if we find
a subset M"” C M’ of demand pairs with OPT(G, M") <

w*|M"|/2, then set M" defines a violated constraint of type
(5) for (LP-flow2). Therefore, we focus on set M’ and for
simplicity denote M = M’.

We decompose the input instance (G, M) into a collection
of well-linked instances {(G;, M’ )};;1 using Theorem
For each 1 < j < r, let W; = w"|M’| be the contribution
of the demand pairs in M’ to the current flow solution and
let W=73""_, W; =Q(X"/logk). Theorem guarantees
that for each 1 < j < r, we can obtain one of the follow-
ing: either (i) a collection P’ of node-disjoint paths, routing
Q(W].l/lg/poly logn) demand pairs of M7 in Gj; or (ii) a
collection M? C M7 of demand pairs, with |M?| > |M7|/2,
such that OPT (G, M’) < w*|M?|/8.

We say that instance (Gj, M’) is a type-1 instance, if the
first outcome happens for it, and we say that it is a type-2 in-
stance otherwise. Let I1 = {j | (G;, M) is a type-1 instance},
and similarly, I> = {j | (G;, M) is a type-2 instance}. We
consider two cases. The first case happens when 7, W; >
W/2, and the second case when } .., W; > W/2. In the

second case, we let M’ = U].EI2 /\;lj, and by the same rea-
soning as in Section [ the following inequality, that is vi-
olated by the current LP-solution, is a valid constraint of
(LP-flow2): 37 yeap Ti < w'M']/2.

We now focus on Case 1, where the number of paths routed
for each instance (G, M?) with j € I is at least |P7| =

1/19
). Since Y .., W; > W/2=Q(X"/logk), the

w!
total number of paths routed is:

Q J
_ i
T > [¢) J
Z L Z <polylogn

polylogn jely

Jj€l Jje€l1
Wi
> j
- J%;l @ <W18/19 - poly logn)
_q W1/19 _ 0 (X*)l/lg
o polylogn / — polylogn |-
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