Allocating Goods to Maximize
Fairness

Deeparnab Chakrabarty  Julia Chuzhoy Sanjeev Khanna
U. of Waterloo TTI-C U. of Pennsylvania



Max Min Allocation

Input:
e Set A of m agents
e Set/of nitems

-

=

Notation

n - number of items
m - number of agents

* Utilities u, ; of agent A for item 1.
Output: assignment of items to agents.
e Utility of agent A: > w4 ; for items i assigned

to A.

Goal: Maximize minimum utility of any agent.
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Max-Min Allocation

e Captures a natural notion of fairness in
allocation of indivisible goods.

e Approximation is still poorly understood.

* An interesting special case: Santa Claus
problem.



The Santa Claus Problem

All edges adjacent to an item have identical utility



Santa Claus: Known Results

 Natural LP has €2(m) integrality gap.
e [Bansal, Sviridenko ‘06]:

— Introduced a new configuration LP
— O(log log m/logloglog m)-approximation algorithm

* Non-constructive constant upper bounds on
integrality gap of the LP [Feige ‘08], [Asadpour, Feige,
Saberi ‘08].

Bad news: Configuration LP has Q(y/m) integrality

gap for Max-Min Allocation [Bansal, Sviridenko ‘06].



Known Results for
Max Min Allocation

(n-m+1)-approximation [Bezakova, Dani ‘05].
O(+v/m)-approximation via the configuration LP
[Asadpour, Saberi ‘07].

Configuration LP has Q(y/m) integrality gap
[Bansal, Sviridenko ‘06].

Best current hardness of approximation factor:
2 [Bezakova, Dani '05]

— Valid even in very restricted settings



Our Main Result

¢ O (n€)-approximation algorithm in time n
— Poly-logarithmic approximation in quasi-
polynomial time.

O(1/€)

—nS-approximation in poly-time for any constant €.

* We use an LP with Q)(\/m) integrality gap as a
building block.



Independent Work
[Bateni, Charikar, Guruswami ‘09] obtained similar
results for special cases of the problem:

e All utilities arein {0, 1, M},
where OPT=M.

* |In the graph induced by utility-
M edges:

— All items have degree at
most 2, or

— Graph contains no cycles

* An O (n°)-approximation in
time n9(1/¢ for these cases




Independent Work

, , /" In this talk we also focus )
[Bateni, Charikar, Guruswan| o the {0,1,M} setting

results for special case but without the
additional assumptions. /

e All utilities arein {0, 1, M},
where OPT=M.

* |In the graph induced by utility-
M edges:

— All items have degree at
most 2, or

— Graph contains no cycles

* An O (n°)-approximation in
time n9(1/¢ for these cases




The O (n)-Approximation Algorithm

For simplicity, assume all utilities are in {0,1,M}, and
OPT=M.



heavy item

light item
for A

for A
ltems
Agents
A
OPT=M An item can be light
- for some agents and
utility 1 heavy for others.
utility M




heavy item

light item
for A

for A
ltems
Agents
A
OPT=M Opnmql solghon
- Each agent A is assigned:
utility 1 .
- *One heavy item or
uaiity *M light items




heavy item

light item
for A

for A
ltems
Agents
A
OPT-M oz—approxmate.solutlon
Glity 1 Each agent A is assighed:
Uil .
| yM *One heavy item or
Wity Mlight items

M/«



Canonical Instances

All agents are either heavy or light.

Heavy Agent Light Agent

N4

All adjacent items are
heavy




Canonical Instances

All agents are either heavy or light.

Heavy Agent

All adjacent items are

heavy

Light Agent

|

distinct for each }::;7

light agent

*One heavy item
*Rest of adjacent
items are light.



Any Instance to Canonical Instance

ltems

Agent

OPT=M
utility 1
utility M

From now on
we assume
w.l.0.g. that
our instance is
canonical




Notation

Light agent
Heavy agent

tem



Step 1: Turn the Assighnment Problem
into a Network Flow Problem!



Main ldea

* Temporarily assign private items to agents
— |tem can be private for at most one agent

— If i is private for A then u, =M



Assignment of Private [tems

Light Agent

A

distinct for each
light agent




Assignment of Private [tems

Light Agent

A

{ distinct for each
light agent ]7 Private item }

L for A )




Assignment of Private [tems

Light Agent Heavy Agent
A
Ve N\
_ _ Find maximal matching
PSS Ll W between remaining

L for A )

_items and heavy agents




Main ldea

* Temporarily assign private items to agents
— Item can be private for at most one agent
— If iis private for A then u, =M

* |If every agent got a private item: done
— terminals: heavy agents with no private item
— S: set of items that are not assigned to any agent.

e Re-assignment of items:

— An agent releases its private item iff it is satisfied by other
items.

— Can be simulated by flow.
— Flow is sent from items in S towards the terminals.
— Goal: find flow satisfying the terminals.



The Flow Network

e Start with the incidence graph of agents and
items.

 Will build a directed flow network.

 We now go over pieces of the network,
showing direction of edges, flow constraints,
etc.



The Flow Network

Heavy agent w. private item

Private
item




The Flow Network

Heavy agent w. private item

Sends 1 flow

: unit iff receives
Private 11 it
__— OW Uuni




The Flow Network

Heavy agent w. private item

|

Private
item

;

Sends 1 flow
unit iff receives
1 flow unit

Terminal

X

Must receive
1 flow unit




The Flow Network

Heavy agent w. private item

Terminal

Sends 1 flow
: unit iff receives Must receive
Private a i 11 it
item 1 flow unit oW uni
Light Agent
Sends 1 flow

unit iff receives
M flow units




The Flow Network

Heavy agent w. private item

Terminal

Sends 1 flow
S unit iff receives Must receive
[ tem L 1 flow unit 1 flow unit
Light Agent Source s and itemsin S
S

Sends 1 flow

unit iff receives £

M flow units S




The Flow Network

Heavy agent w. private item Terminal
Sends 1 flow
: unit iff receives Must receive
Private : .
{ o L 1 flow unit 1 flow unit
At most 1 flow unit
. leaves any vertex
Light Agent , coureewand items in S
Conservation of S
flow on items
Sends 1 flow

unit iff receives / £
M flow units S




P The Flow Network

Want to find integral
flow satisfying these

constraints...
o %

=M Terminal

1 flow unit 1 flow unit

Sends 1 flow
: unit iff receives Must receive
{ Private L

item

At most 1 flow unit

leaves any vertex

Light Agent , ouree wland itemsin S

Conservation of S

flow on items
Sends 1 flow

unit iff receives / £
M flow units S




Interpretation of Flow

Edge e carries 1
flow unit

Lies in the symmetric

(—) difference of OPT and

our assignment of

private items

No flow sent
through agent A

Flow from item i
to agent A

A is assigned its
—) . ivate item
ltem i is assighed
) 5
to A
i is not
L private for A




Interpretation of Flow

Lies in the symmetric

Edge e carries 1 ¢ ) difference of OPT and
flow unit our assignment of

private items

*|/f OPT=M then such flow always exists!




The Flow Network

Heavy agent w. private item

Terminal

Sends 1 flow
S unit iff receives Must receive
[ tem L 1 flow unit 1 flow unit
Light Agent Source s and itemsin S
a-relaxed
flow 5
Sends 1 flow

M/«

unit iff receives
flow units




Interpretation of Flow

Lies in the symmetric

Edge e carries 1 ¢ \ difference of OPT and
flow unit our assignment of

private items

*|/f OPT=M then such flow always exists!
*An a-relaxed flow gives an a-approximation!




What Does a Feasible Flow Look Like?

A collection of disjoint structures like this:




What Does a Feasible Flow Look Like?

A collection of disjoint structures like this:

S lgnore the source
vertexs ...




What Does a Feasible Flow Look Like?

A collection of disjoint trees like this:

AVAR

[V




What Does a Feasible Flow Look Like?

A collection of disjoint trees like this:

YR
[V )

In-degree M




What Does a Feasible Flow Look Like?

A collection of disjoint trees like this: ﬁvery tree edge is an\

elementary path:
*No light agents as

S intermediate vertices
*Endpoints: light
agents/terminals/
items in S
In-degree M []




Equivalent Problem Statement

Find a collection of such disjoint
trees!

*Solution cost = min degree of a

T light agent.

If we only want O (n¢) -

approximation, can assume

that h < 1/€ (by cutting the

optimal trees).

R

Ny




Rest of the Algorithm

 Write an LP and perform LP-rounding
— Our LP has Q(y/m) integrality gap, size nO/e)

— LP-rounding gives poly-log n-approximate “almost
feasible” solutions.

* Use LP-rounding as sub-routine to get final
solution.



Part 1: LP and its Rounding



Natural LP

e Can write standard LP relaxation of flow
constraints.

— Easy to see that such an LP is too weak.



Why Standard Flow LP won’t Work

<[~
<[~
Sl




Why Standard Flow LP won’t Work
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Why Standard Flow LP won’t Work

1 1
M 1 M
M

*Fractional solution is feasible

*In integral solution, one of the gadgets needs to
send 1 flow unit to the terminal ﬁ
*For this gadget need to build a tree with M leaves. *
*But can only build a tree with 1 leaf. k ! /




Easy Fix

Need to keep track where the flow is going.

For each light agent A, define flow type f,
— Only flow of type f, enters A.
— X,: amount of flow leaving A.

New congestion constraints:

— At most x, units of flow of type f, can go through
any vertex.

This will fix the problem in the example.
But: can build harder examples...



Why Standard Flow LP won’t Work

D% ¢
/@

<[~
<[~

<[~




Why Standard Flow LP won’t Work

A
/A/ Y-+ \\

1 1
M
T Yh N,
M M M
Light agent at the bottom 7
has M disjoint paths
entering it as required. ﬁ
® /




<[~

New Problem ...

<[~
<[~




New Problem ...

\

1 1
M I SV
M

*Each light agent in the middle has M
disjoint paths entering it as required.
*But: same M-tuple of items is used
for each one of the agents.




New Problem ...

*New congestion constraints hold for each light agent
*In integral solution one gadget has to send 1 flow
unit to the terminal.

*Will need to build a 2-layered tree, with M? leaves.
*But can only have M leaves.




A Fix

For each pair A,B of light agents define indicator
variable x, g: whether or not there is a flow path
containing A and B.

Also define flow type fA,B

Keep the old variables x,,x,, that need to be
coordinated with x, g

New congestion constraints:

— total amount of flow of types f, s (summed over all A)
going through any vertex is at most x,

This will fix the above example
But can make harder examples...



Our LP Relaxation

For each h’-tuple (A4,..., Ap ) of light
agents, for each b’ < h, define a variable
.I‘(Al, “ . ,Ah/)

— indicator variable for having a flow-path containing
these light agents

— need to coordinate the variables across the
different tuples

— new capacity constraints
Since h < O(1/e¢), the LP-size is n©(1/¢)
Integrality gap remains (v/m)

But we can get polylog-approximate almost
feasible solutions!



Almost Feasible Solutions

| 7 In-degree M } i

—> Flow directly to terminals
—> Flow to light agents




On Green and Blue Flow-Paths

* Behave very differently

* Green paths: a lot of flexibility

— Even if we remove half the flow-paths entering
every agent A, will still get a good solution.

* Can’t do the same with blue flow-paths. Need
to have 1 flow-path entering each terminal.



Almost Feasible Solutions

[a=po|y|og n }

M/«

| ﬁ p— |

—> Flow directly to terminals
—> Flow to light agents




Almost Feasible Solutions

]

[oz=po|y|og n }

M/« (" Soan item can be
assigned twice: via

Y In-degreeX} a blue and a green
y . = A

—> Flow directly to terminals | | An item/heavy agent may appear on one blue and
——> Flow to light agents one green path.




Our LP

e We don’t know which
agents will appear in which
layer

— Make h copies of the graph
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LP-rounding

* Blue paths:

— Can select via Randomized Rounding a set of
disjoint paths connecting every terminal to a light
agent

— Use a procedure of Bansal and Sviridenko.

* Green paths:

— Perform Randomized Rounding layer by layer.
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LP-rounding

Using the new capacity constraints, can show that
congestion is bounded by polylog n, even when

taking into account the h copies of every agent/
item.

So each item/heavy agent participates in at most
polylog n green paths and at most one blue path
w.h.p.

Last step: get rid of congestion among green
paths.

Use a flow scaling trick.



Flow scaling trick

| 7 In-degree M } |

Problem: Some agents
and items appear on
poly(log n) green paths.




Flow scaling trick

*Scale flow down by a=polylog n
factor.

| T In-degree M }

Problem: Some agents

and items appear on
poly(log n) green paths.




Flow scaling trick

M/

| T In-degreex}

Problem: Some agents
and items appear on
poly(log n) green paths.

*Scale flow down by a=polylog n
factor.

*We get a-approximate
fractional solution with no
congestion.




Flow scaling trick

M/

| 7 In-degreeX}

Problem: Some agents
and items appear on
poly(log n) green paths.

*Scale flow down by a=polylog n
factor.

*We get a-approximate
fractional solution with no
congestion.

*From integrality of flow can find
such integral solution.

(Need to set up a single source-
single sink flow network).




Why can’t we use the flow scaling trick
to get a feasible solution from an
almost-feasible one?



Flow Scaling for Almost-Feasible
Solutions

In-flow M/«
i In-flow 1 N

Problem: heavy agent/
item may appear on a
blue and a green path




Flow Scaling for Almost-Feasible

In-flow M/«

i In-flow 1

Solutions

*Scale the flow down by factor 2.
*We get “2-approximate”
fractional solution with no

congestion.
*From integrality of flow can find

such integral solution.

Problem: heavy agent/
item may appear on a
blue and a green path




Flow Scaling for Almost-Feasible
Solutions

i In-ﬂowx

*Scale the flow down by factor 2.
*We get “2-approximate”
fractional solution with no

congestion.
*From integrality of flow can find

such integral solution.

Problem: heavy agent/
item may appear on a
blue and a green path




Flow Scaling for Almost-Feasible
Solutions

*Scale the flow down by factor 2.

*We get “2-approximate”

fractional solution with no

congestion.

' alit nd
egral solution.

Problem: heavy agent/
item may appear on a
blue and a green path




Flow Scaling for Almost-Feasible
Solutions

i In-ﬂowx

*Scale the flow down by factor 2.

*We get “2-approximate”

fractional solution with no

congestion.

' alit nd
egral solution.

Problem: heavy agent/
item may appear on a
blue and a green path

The LP’s integrality gap is /m




Summary of LP-Rounding

We get almost-feasible
solution:

*An item/heavy agent may
appear on one blue and one
green path.

M /o | *Approximation factor:

7 n-degre EX} o = polylogn
0

—> Flow directly to terminals
—> Flow to light agents




Part 2: Getting around the Integrality
Gap



Getting around the Integrality Gap

Integrality gap of the LP is 2(y/m)
= For some inputs to LP the gap is large

Assignment of
instance I I private items

We'll try to find better assignments of private items, so
integrality gap goes down.
*LP-rounding is used to find the new assignment!




Assighment of
instance I I private items

Almost Feasible
Solution
New assignment
of private items

*Repeat 1 /€ times.
*Number of terminals
goes down with each
iteration

*Once we have few
terminals, LP-
rounding gives good
solution.




Assighment of
instance I I private items

Almost Feasible
Solon

|

Remains to
show...

\ New assignment
of private items

*Repeat 1 /€ times.
*Number of terminals
goes down with each
iteration

*Once we have few
terminals, LP-
rounding gives good
solution.




Back to Almost Feasible Solutions

Blue and green paths
In-degree M/« :
- i share vertices.

—> Flow directly to terminals
—> Flow to light agents




Intuition

*There are much fewer blue
paths than green paths.

*But still there could be many
intersections between them.

ﬁ In-degree M/oz}
m

—> Flow directly to terminals
—> Flow to light agents
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Example
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T
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Intuition

*There are much fewer blue
paths than green paths.

*But still there could be many
intersections between them.
*Step 1: Re-route blue paths so
they intersect few green path.

flow. Each terminal needs
to get a blue flow-path

originating at some light
agent, doesn’t matter

\ which. /

jln-degree M/oz} /N_o?ce: it’s a single-source\

—> Flow directly to terminals
—> Flow to light agents
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Int

7 In-degree M/oz}
m

—> Flow directly to terminals
—> Flow to light agents

Jition

*There are much fewer blue
paths than green paths.
*But still there could be many
intersections between them.
*Step 1: Re-route blue paths so
they intersect few green path.
*Step 2: Remove all green
pathsin G,.

—Few paths are deleted.

—If each light agent has less than

half its paths deleted then we
are done.




Intuition

 Alight agentis bad if more

than half its incoming paths
were deleted.

* lteratively remove all bad
light agents with their sub-
trees and adjacent paths.




Intuition

 Alight agentis bad if more

than half its incoming paths
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* lteratively remove all bad
light agents with their sub-
trees and adjacent paths.




Intuition

 Alight agentis bad if more

than half its incoming paths
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* lteratively remove all bad
light agents with their sub-
trees and adjacent paths.




Intuition

 Alight agentis bad if more
® o than half its incoming paths
were deleted.

I * |teratively remove all bad
light agents with their sub-
trees and adjacent paths.




Intuition

 Alight agentis bad if more

than half its incoming paths
were deleted.

* lteratively remove all bad
light agents with their sub-
trees and adjacent paths.




Intuition

 Alight agentis bad if more

than half its incoming paths
were deleted.

* lteratively remove all bad
light agents with their sub-
trees and adjacent paths.




Intuition

 Alight agentis bad if more

than half its incoming paths
were deleted.

* lteratively remove all bad
light agents with their sub-
trees and adjacent paths.




Intuition

 Alight agentis bad if more
® o than half its incoming paths
were deleted.

I * |teratively remove all bad
light agents with their sub-
trees and adjacent paths.




Intuition

 Alight agentis bad if more
than half its incoming paths
were deleted.

* lteratively remove all bad
light agents with their sub-
trees and adjacent paths.

e A tree survives iff the blue
path entering its terminal is
not deleted.

* Only a small fraction of trees
N do not survive.




Trees that Survive

*There is a flow satisfying A by
light items.

Commit to satisfying A by
light items.

Remove A from the graph.
*Add A to set L,

*Re-assign private items along
the blue path.

mt




Trees that Survive

*There is a flow satisfying A by
light items.

Commit to satisfying A by
light items.

Remove A from the graph.
*Add A to set L,

*Re-assign private items along
the blue path.

mt




.| t now has a private

Trees that Survive

*There is a flow satisfying A by
light items.

Commit to satisfying A by
light items.

Remove A from the graph.
*Add A to set L,

“)-assign private items along

-

itemandisnota | Rlue path.

terminal anymore! A\
-




Trees that don’t Survive

*t remains a terminal for the
next iteration.

*Only small fraction of trees
don’t survive

*So number of terminals is
much smaller now.

mt



Ilteration 2

* Obtain almost-feasible polylog-approximate
solution for remaining instance.



Ilteration 2

from
_ . iteration 2
mmost Feasible Solution
v
Green paths: G’

\Blue paths: B /

A vertex may appear on one path in each of G’ and B.




Ilteration 2

from }
iteration 1

mmost Feasible Soluﬁh ﬂlow for Light Agents im
v
Green paths: G’ Green paths: G”

\ilue paths: B / \ /

A vertex may appear on one path in each of G, G’ and B.




Ilteration 2

Obtain almost-feasible solution for remaining
Instance.

Combine G’ and G” using the scaling trick to get a
set G of green paths.

Re-route paths in B so they intersect a small
number of paths in G.

Remove from G all paths intersecting paths in B.
Take care of bad agents.
Produce input for next iteration as before.



Ilteration 2

Obtain almost-feasible solution for remaining
Instance.

Combine G’ and G” using the scaling trick to get a
set G of green paths.

Re-route paths in B so they intersect a small

1 I
number of pathsin *Number of terminals goes down by
Remove from G all | almost n° factor in each iteration.

After O(1/¢)iterations we will be
Take care of bad ag( done.

Produce input for next iteration as before.



Summary

 We have shown O (n¢) -approximation for Max
Min Allocation, in n©(/¢) running time
— poly-logarithmic approximation in quasi-
polynomial time
e Best current hardness of approximation is 2.

e Santa Claus problem: best current
approximation is O(log log m/log log log m),

same hardness of approximation | ...« you!



