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Abstract

In the decremental single-source shortest paths (SSSP) problem, the input is an undirected
graph G = (V,E) with n vertices and m edges undergoing edge deletions, together with a fixed
source vertex s ∈ V . The goal is to maintain a data structure that supports shortest-path queries:
given a vertex v ∈ V , quickly return an (approximate) shortest path from s to v. The decremental
all-pairs shortest paths (APSP) problem is defined similarly, but now the shortest-path queries are
allowed between any pair of vertices of V .

Both problems have been studied extensively since the 80’s, and algorithms with near-optimal
total update time and query time have been discovered for them. Unfortunately, all these algorithms
are randomized and, more importantly, they need to assume an oblivious adversary – a drawback
that prevents them from being used as subroutines in several known algorithms for classical static
problems. In this paper, we provide new deterministic algorithms for both problems, which, by
definition, can handle an adaptive adversary.

Our first result is a deterministic algorithm for the decremental SSSP problem on weighted
graphs with O(n2+o(1)) total update time, that supports (1 + ε)-approximate shortest-path queries,
with query time O(|P | ·no(1)), where P is the returned path. This is the first (1 + ε)-approximation
adaptive-update algorithm supporting shortest-path queries in time below O(n), that breaks the
O(mn) total update time bound of the classical algorithm of Even and Shiloah from 1981. Previ-
ously, Bernstein and Chechik [STOC’16, ICALP’17] provided a Õ(n2)-time deterministic algorithm
that supports approximate distance queries, but unfortunately the algorithm cannot return the
approximate shortest paths. Chuzhoy and Khanna [STOC’19] showed an O(n2+o(1))-time random-
ized algorithm for SSSP that supports approximate shortest-path queries in the adaptive adversary
regime, but their algorithm only works in the restricted setting where only vertex deletions, and
not edge deletions are allowed, and it requires Ω(n) time to respond to shortest-path queries.

Our second result is a deterministic algorithm for the decremental APSP problem on unweighted
graphs that achieves total update time O(n2.5+δ), for any constant δ > 0, supports approximate
distance queries in O(log log n) time, and supports approximate shortest-path queries in time
O(|E(P )| · no(1)), where P is the returned path; the algorithm achieves an O(1)-multiplicative
and no(1)-additive approximation on the path length. All previous algorithms for APSP either
assume an oblivious adversary or have an Ω(n3) total update time when m = Ω(n2), even if an
o(n)-multiplicative approximation is allowed.

To obtain both our results, we improve and generalize the layered core decomposition data
structure introduced by Chuzhoy and Khanna to be nearly optimal in terms of various parameters,
and introduce a new generic approach of rooting Even-Shiloach trees at expander sub-graphs of
the given graph. We believe both these technical tools to be interesting in their own right and
anticipate them to be useful for designing future dynamic algorithms that work against an adaptive
adversary.
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1 Introduction

In the decremental single-source shortest path (SSSP) problem, the input is an undirected graph
G = (V,E) with n vertices and m edges undergoing edge deletions, together with a fixed source vertex
s ∈ V . The goal is to maintain a data structure that supports shortest-path queries: given a vertex
v ∈ V , quickly return an (approximate) shortest path from s to v. We also consider distance queries:
given a vertex v ∈ V , return an approximate distance from s to v. The decremental all-pairs shortest
path (APSP) problem is defined similarly, but now the shortest-path and distance queries are allowed
between any pair u, v ∈ V of vertices. A trivial algorithm for both problems is to simply maintain
the current graph G, and, given a query between a pair u, v of vertices, run a BFS from one of these
vertices, to report the shortest path between v and u in time O(m). Our goal therefore is to design
an algorithm whose query time – the time required to respond to a query – is significantly lower than
this trivial O(m) bound, while keeping the total update time – the time needed for maintaining the
data structure over the entire sequence of updates, including the initialization — as small as possible.
Observe that the best query time for shortest-path queries one can hope for is O(|E(P )|), where P is
the returned path1.

Both SSSP and APSP are among the most well-studied dynamic graph problems. While almost optimal
algorithms are known for both of them, all such algorithms are randomized and, more importantly,
they assume an oblivious adversary. In other words, the sequence of edge deletions must be fixed in
advance and cannot depend on the algorithm’s responses to queries. Much of the recent work in the
area of dynamic graphs has focused on developing so-called adaptive-update algorithms, that do not
assume an oblivious adversary (see e.g. [NS17, WN17, NSW17, CGL+19] for dynamic connectivity,
[BHI15, BHN16, BK19, Waj20] for dynamic matching, and [BC16, BC17, FHN16, Ber17, CK19,
GWN20, BvdBG+20] for dynamic shortest paths); we also say that such algorithms work against an
adaptive adversary. One of the motivating reasons to consider adaptive-update algorithms is that
several algorithms for classical static problems need to use, as subroutines, dynamic graph algorithms
that can handle adaptive adversaries (see e.g. [ST83, Mad10, CK19, CQ17]). In this paper, we provide
new deterministic algorithms for both SSSP and APSP which, by definition, can handle adaptive
adversary.

Throughout this paper, we use the Õ notation to hide poly log n factors, and Ô notation to hide no(1)

factors, where n is the number of vertices in the input graph. We also assume that ε > 0 is a small
constant in the discussion below.

SSSP. The current understanding of decremental SSSP in the oblivious-adversary setting is almost
complete, even for weighted graphs. Forster, Henzinger, and Nanongkai [FHN14a], improving upon
the previous work of Bernstein and Roditty [BR11] and Forster et al. [FHN14b], provided a (1 + ε)-
approximation algorithm, with close to the best possible total update time of Ô(m logL), where L
is the ratio of largest to smallest edge length. The query time of the algorithm is also near optimal:
approximate distance queries can be processed in Õ(1) time, and approximate shortest-path queries
in Õ(|E(P )|) time, where P is the returned path. Due to known conditional lower bounds of Ω̂(mn)
on the total update time for the exact version of SSSP2 the guarantees provided by this algorithm are
close to the best possible. Unfortunately, all these algorithms are randomized and need to assume an

1Even though in extreme cases, where the graph is very sparse and the path P is very long, O(|E(P )|) query time
may be comparable to O(m), for brevity, we will say that O(|E(P )|) query time is below the O(m) barrier, as is typically
the case. For similar reasons, we will say that O(|E(P )|) query time is below O(n) query time.

2The bounds assume the Online Matrix-vector Multiplication (OMv) conjecture [FHNS15], and show that in order
to achieve O(n2−ε) query time, for any constant ε > 0, the total update time of Ω(n3−o(1)) is required in graphs with
m = Θ(n2).
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oblivious adversary.

For adaptive algorithms, the progress has been slower. It is well known that the classical algorithm
of Even and Shiloach [ES81], that we refer to as ES-Tree throughout this paper, combined with the
standard weight rounding technique (e.g. [Zwi98, Ber16]) gives a (1 + ε)-approximate deterministic
algorithm for SSSP with Õ(mn logL) total update time and near-optimal query time. This bound
was first improved by Bernstein [Ber17], generalizing a similar result of [BC16] for unweighted graphs,
to Õ(n2 logL) total update time. For the setting of sparse unweighted graphs, Bernstein and Chechik
[BC17] designed an algorithm with total update time Õ(n5/4√m) ≤ Õ(mn3/4), and Gutenberg and
Wulff-Nielsen [GWN20] showed an algorithm with Ô(m

√
n) total update time.

Unfortunately, all of the above mentioned algorithms only support distance queries, but they cannot
handle shortest-path queries. Recently, Chuzhoy and Khanna [CK19] attempted to fix this drawback,
and obtained a randomized (1 + ε)-approximation adaptive-update algorithm with total expected up-
date time Ô(n2 logL), that supports shortest-path queries. Unfortunately, this algorithm has several
other drawbacks. First, it is randomized. Second, the expected query time of Õ(n logL) may be
much higher than the desired time that is proportional to the number of edges on the returned path.
Lastly, and most importantly, the algorithm only works in the more restricted setting where only
vertex deletions are allowed, as opposed to the more standard and general model with edge deletions3.
Finally, a very recent work by Bernstein et al. [BvdBG+20], that is concurrent to this paper, shows
(1+ε)-approximate algorithms with Ô(m

√
n) total update time in unweighted graphs and Õ(n2 logL)

total update time in weighted graphs that can return an approximate shortest path P in Õ(n) time
(but not in time proportional to |E(P )|). The algorithm is randomized but works against an adaptive
adversary.

As mentioned already, algorithms for approximate decremental SSSP are often used as subroutines in
algorithms for static graph problems, including various flow and cut problems that we discuss below.
Typically, in these applications, the following properties are desired from the algorithm for decremental
SSSP:

• it should work against an adaptive adversary, and ideally it should be deterministic;

• it should be able to handle edge deletions (as opposed to only vertex deletions);

• it should support shortest-path queries, and not just distance queries; and

• it should have query time for shortest-path queries that is close to O(|E(P )|), where P is the
returned path.

In this paper we provide the first algorithm for decremental SSSP that satisfies all of the above
requirements and improves upon the classical Ω(mn) bound of Even and Shiloach [ES81]. The total
update time of the algorithm is Ô(n2 logL), which is almost optimal for dense graphs.

Theorem 1.1 (Weighted SSSP) There is a deterministic algorithm, that, given a simple undirected
edge-weighted n-vertex graph G undergoing edge deletions, a source vertex s, and a parameter ε ∈
(1/n, 1), maintains a data structure in total update time Ô(n2( logL

ε2
)), where L is the ratio of largest

to smallest edge weights, and supports the following queries:

3We emphasize that the vertex-decremental version is known to be strictly easier than the edge-decremental version
for some problems. For example, there is a vertex-decremental algorithm for maintaining the exact distance between a
fixed pair (s, t) of vertices in unweighted undirected graphs using O(n2.932) total update time [San05] (later improved

to O(n2.724) in [vdBNS19]), but the edge-decremental version requires Ω̂(n3) time when m = Ω(n2) assuming the OMv
conjecture [FHNS15]. A similar separation holds for decremental exact APSP.
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• dist-query(s, v) : in O(log log(nL)) time return an estimate d̃ist(u, v), with distG(s, v) ≤ d̃ist(s, v) ≤
(1 + ε)distG(s, v); and

• path-query(s, v) : either declare that s and v are not connected in G in O(1) time, or return a
s-v path P of length at most (1 + ε)distG(s, v), in time Ô(|E(P )| log logL).

Compared to the algorithm of [Ber17], our deterministic algorithm supports shortest-path, and not just
distance queries, while having the same total update time up to a subpolynomial factor. Compared
to the algorithm of [CK19], our algorithm handles the more general setting of edge deletions, is
deterministic, and has faster query time. Compared to the work of [BvdBG+20] that is concurrent
with this paper, our algorithm is deterministic and has a faster query time, though its total update
time is somewhat slower for sparse graphs.

These improvements over previous works allow us to obtain faster algorithms for a number of classical
static flow and cut problems; see Appendices C and D for more details. Most of the resulting algorithms
are deterministic. For example, we obtain a deterministic algorithm for (1 + ε)-approximate minimum
cost flow in unit edge-capacity graphs in Ô(n2) time. The previous algorithms by [LS14, AMV20] take
time Õ(min{m

√
n,m4/3}), that is slower in dense graphs.

APSP. Our understanding of decremental APSP is also almost complete in the oblivious-adversary
setting, even in weighted graphs. Bernstein [Ber16], improving upon the works of Baswana et al.
[BHS07] and Roditty and Zwick [RZ12], obtained a (1+ ε)-approximation algorithm with Õ(mn logL)
total update time, O(1) query time for distance queries, and Õ(|E(P )|) query time for shortest-path
queries.4 These bounds are conditionally optimal for small approximation factors5. Another line of
work [BR11, FHN16, ACT14, FHN14a], focusing on larger approximation factors, recently culminated
with a near-optimal result by Chechik [Che18]: for any integer k ≥ 1, the algorithm of [Che18]
provides a ((2 + ε)k − 1)-approximation, with Ô(mn1/k logL) total update time and O(log log(nL))
query time for distance queries and Õ(|E(P )|) query time for shortest-path queries. This result is
near-optimal because all parameters almost match the best static algorithm of Thorup and Zwick
[TZ01]. Unfortunately, both algorithms of Bernstein [Ber16] and of Chechik [Che18] need to assume
an oblivious adversary.

In contrast, our current understanding of adaptive-update algorithms is very poor even for unweighted
graphs. The classical ES-Tree algorithm of Even and Shiloach [ES81] implies a deterministic algorithm
for decremental exact APSP in unweighted graphs with O(mn2) total update time and optimal query
time of O(|E(P )|) where P is the returned path. This running time was first improved by Forster,
Henzinger, and Nanongkai [FHN16], who showed a deterministic (1 + ε)-approximation algorithm
with Õ(mn) total update time and O(log log n) query time for distance queries. Recently, Gutenberg
and Wulff-Nilsen [GWN20] significantly simplified this algorithm. Despite a long line of research,
the state-of-the-art in terms of total update time remains Õ(mn), which can be as large as Θ̃(n3) in
dense graphs, in any algorithm whose query time is below the O(n) bound. To highlight our lack
of understanding of the problem, no adaptive algorithms that attain an o(n3) total update time and
query time below O(n) for shortest-path queries are currently known for any density regime, even if
we allow huge approximation factors, such as, for example, any o(n)-approximation6.

In this work, we break this barrier by providing the first deterministic algorithm with sub-cubic

4Bernstein’s algorithm works even in directed graphs.
5Assuming the BMM conjecture [DHZ00, RZ11] or the OMv conjecture [FHNS15], 1.99-approximation algorithms for

decremental APSP require Ω̂(n3) total update time or Ω̂(n) query time in undirected unweighted graphs when m = Ω(n2).
6When we allow a factor-n approximation, one can use deterministic decremental connectivity algorithms

(e.g. [HdLT01]) with Õ(m) total update time and O(logn) query time for distance queries.
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total update time, that achieves a constant multiplicative and a subpolynomial additive approxi-
mation:

Theorem 1.2 (Unweighted APSP) There is a deterministic algorithm, that, given a simple un-
weighted undirected n-vertex graph G undergoing edge deletions and a parameter 1 ≤ k ≤ o(log1/8 n),
maintains a data structure using total update time of Ô(n2.5+2/k) and supports the following queries:

• dist-query(u, v) : in O(log n log logn) time return an estimate d̃ist(u, v), where distG(u, v) ≤
d̃ist(u, v) ≤ 3 · 2k · distG(u, v) + Ô(1); and

• path-query(u, v) : either declare that u and v are not connected in O(log n) time, or return a u-v
path P of length at most 3 · 2k · distG(u, v) + Ô(1), in Ô(|E(P )|) time.

The additive approximation term in dist-query and path-query is exp(O(k log3/4 n)) = Ô(1).

For example, by letting k be a large enough constant, we can obtain a total update time of Ô(n2.501),
constant multiplicative approximation, and exp(O(log3/4 n)) additive approximation.

We note that the concurrent work of [BvdBG+20] on dynamic spanners that was mentioned above
implies a randomized Õ(1)-multiplicative approximation adaptive-update algorithm for APSP with
Õ(m) total update time but it requires a large Õ(n) query time even for distance queries; in con-
trast, our algorithm is deterministic and has faster query times: Ô(|E(P )|) for shortest-path and
O(log n log logn) for distance queries.

Technical Highlights. Both our algorithms for SSSP and APSP are based on the Layered Core
Decomposition (LCD) data structure introduced by Chuzhoy and Khanna [CK19]. Informally, one
may think of the data structure as maintaining a “compressed” version of the graph. Specifically, it
maintains a decomposition of the current graph G into a relatively small number of expanders (called
cores), such that every vertex of G either lies in one of the cores, or has a short path connecting it to
one of the cores. The data structure supports approximate shortest-path queries within the cores, and
queries that return, for every vertex of G, a short path connecting it to one of the cores. Chuzhoy and
Khanna [CK19] presented a randomized algorithm for maintaining the LCD data structure, as the graph
G undergoes vertex deletions, with total update time Ô(n2). As our first main technical contribution,
we improve and generalize their algorithm in a number of ways: first, our algorithm is deterministic;
second, it can handle the more general setting of edge deletions and not just vertex deletions; we
improve the total update time to the near optimal bound of Ô(m); and we improve the query times
of this algorithm. We further motivate this data structure and discuss the technical barriers that we
needed to overcome in order to obtain these improvements in Section 3. We believe that the LCD data
structure is of independent interest and will be useful in future adaptive-update dynamic algorithms.
Indeed, a near-optimal short-path oracle on decremental expanders (from Section 3.2), which is one of
the technical ingredients of our LCD data structure, has already found further applications in other
algorithms for dynamic problems [BGS20].

Our second main contribution is a new generic method to exploit the Even-Shiloach tree (ES-Tree)
data structure7. Many previous algorithms for SSSP and APSP [BR11, FHN14a, FHN16, Che18] need
to maintain a collection T of several ES-Trees. One drawback of this approach, is that, whenever
the root of an ES-Tree is disconnected due to a sequence of edge deletions, we need to reinitialize a
new ES-Tree, leading to high total update time. To overcome this difficulty, most such algorithms
choose the locations of the roots of the trees at random, so that they are “hidden” from an oblivious

7Here, we generally include variants such as the monotone ES-Tree.
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adversary, and hence cannot be disconnected too often. Clearly, this approach fails completely against
an adaptive adversary, that can repeatedly delete edges incident to the roots of the trees.

In order to withstand an adaptive adversary, we introduce the idea of “rooting an ES-Tree at an
expander” instead. As an expander is known to be robust against edge deletions even from an adaptive
adversary [NS17, NSW17, SW19], the adversary cannot disconnect the “expander root” of the tree too
often, leading to smaller total update time. The LCD data structure naturally allows us to apply this
high level idea, as it maintains a relatively small number of expander subgraphs (cores). This leads to
our algorithm for APSP in the small distance regime. We also use this idea to implement the short-
path oracle on expanders. We believe that our general approach of “rooting a tree at an expander”
instead of “rooting a tree at a random location” will be a key technique for future adaptive-update
algorithms. This idea was already exploited in a different way in a recent subsequent work [BGS20].

Organization. We provide preliminaries in Section 2. Section 3 focuses on our main technical
contribution: the new LCD data structure. We exploit this data structure to obtain our algorithms for
SSSP and APSP in Section 4 and Section 5, respectively. The new cut/flow applications of our SSSP
algorithm (that exploit known reductions) appear in Appendices C and D.

2 Preliminaries

All graphs considered in this paper are undirected and simple, so they do not have parallel edges or
self loops. Given a graph G and a vertex v ∈ V (G), we denote by degG(v) the degree of v in G.
Given a length function ` : E(G) → R on the edges of G, for a pair u, v of vertices in G, we denote
by distG(u, v) the length of the shortest path connecting u to v in G, with respect to the edge lengths
`(e). As the graph G undergoes edge deletions, the notation degG(v) and distG(u, v) always refer to
the current graph G. For a path P in G, we denote |P | = |E(P )|.

Given a graph G and a subset S of its vertices, let G[S] be the subgraph of G induced by S. We
denote by δG(S) the total number of edges of G with exactly one endpoint in set S, and we let
EG(S) be the set of all edges of G with both endpoints in S. Given two subsets A,B of vertices
of G, we let EG(A,B) denote the set of all edges with one endpoint in A and another in B. The
volume of a vertex set S is volG(S) =

∑
v∈S degG(v). If S is a set of vertices with 1 ≤ |S| < |V (G)|,

then we may refer to S as a cut, and we denote S = V (G) \ S. We let the conductance of the

cut S be ΦG(S) = δG(S)

min{volG(S),volG(S)} . We may omit the subscript G when clear from context. We

denote vol(G) =
∑

v∈V (G) degG(v) = 2|E(G)|. Given a graph G, we let its conductance Φ(G) be the
minimum, over all cuts S, of ΦG(S). Notice that 0 ≤ Φ(G) ≤ 1 always holds. We say that graph G is
a ϕ-expander iff Φ(G) ≥ ϕ.

Suppose we are given a graph G and a sub-graph G′ ⊆ G. We say that G′ is a strong ϕ-expander with

respect to G iff for every partition (S, S) of V (G′) into non-empty subsets,
δG′ (S)

min{volG(S),volG(S)} ≥ ϕ

(note that in the denominator, the volumes of the sets S, S of vertices are taken in graph G, not in
G′ as in the definition of ϕ-expansion of G′). It is easy to verify that, if G′ is a strong ϕ-expander
with respect to G, then it is also a ϕ-expander. The following two simple observations follow from the
definition of a strong ϕ-expander.

Observation 2.1 Let G be a graph such that for all v ∈ V (G), degG(v) ≥ h for some h > 0, and let
G′ ⊆ G be a strong ϕ-expander with respect to G, for some 0 < ϕ < 1, such that |V (G′)| ≥ 2. Then,
for every vertex v ∈ V (G′), degG′(v) ≥ ϕh.
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Proof: Assume otherwise, and let v ∈ V (G′) be any vertex with degG′(v) < ϕh. Consider the
cut (S, S) of V (G′), where S = {v}, and S = V (G′) \ {v}. Then volG(S) ≥ h, volG(S) ≥ h, but
δ(S) = degG′(v) < ϕh, contradicting the fact that G′ is a strong ϕ-expander with respect to G.

Observation 2.2 Let G be a graph and let G′ be a sub-graph of G containing at least two vertices,
such that G′ is a strong ϕ-expander with respect to G, for some 0 < ϕ < 1. Then, for every vertex
v ∈ V (G′) with degG(v) ≤ volG(V (G′))/2, degG′(v) ≥ ϕdegG(v) must hold.

Proof: Consider the cut ({v}, V (G′) \ {v}) in G′. Then
degG′ (v)
degG(v) =

δG′ ({v})
min{volG({v}),volG(V (G′)\{v})} ≥ ϕ

must hold, as G′ is a strong ϕ-expander with respect to G. Therefore, degG′(v) ≥ ϕdegG(v).

Given a graph G, its k-orientation is an assignment of a direction to each undirected edge of G, so
that each vertex of G has out-degree at most k. For a given orientation of the edges, for each vertex
u ∈ V (G), we denote by in-degG(u) and out-degG(u) the in-degree and out-degree of u, respectively.
Note that, if G has a k-orientation, then for every subset S ⊆ V of its vertices, |EG(S)| ≤ k · |S| must
hold, and, in particular, |E(G)| ≤ k · |V (G)|. We say that a set F ⊆ E(G) of edges has a k-orientation
if the graph induced by F has a k-orientation.

Decremental Connectivity/Spanning Forest. We use the results of [HdLT01], who provide a
deterministic data structure, that we denote by CONN-SF(G), that, given an n-vertex unweighted
undirected graph G, that is subject to edge deletions, maintains a spanning forest of G, with total
update time O((m+ n) log2 n), where m is the number of edges in the initial graph G. Moreover, the
data structure supports connectivity queries conn(G, u, v): given a pair u, v of vertices of G, return
“yes” if u and v are connected in G, and “no” otherwise. The running time to respond to each such
query is O(log n/ log log n).

Even-Shiloach Trees. Suppose we are given a graph G = (V,E) with integral lengths `(e) ≥ 1 on
its edges e ∈ E, a source s, and a distance bound D ≥ 1. Even-Shiloach Tree (ES-Tree) algorithm
maintains a shortest-path tree from vertex s, that includes all vertices v with dist(s, v) ≤ D, and,
for every vertex v with dist(s, v) ≤ D, the distance dist(s, v). Typically, ES-Tree only supports edge
deletions (see, e.g. [ES81, Din06, HK95]). However, as shown in [BC16, Lemma 2.4], it is easy to
extend the data structure to also handle edge insertions in the following two cases: either (i) at least
one of the endpoints of the inserted edge is a singleton vertex, or (ii) the distances from the source s to
other vertices do not decrease due to the insertion. We denote the corresponding data structure from
[BC16] by ES-Tree(G, s,D). It was shown in [BC16] that the total update time of ES-Tree(G, s,D),
including the initialization and all edge deletions, is O(mD + U), where U is the total number of
updates (edge insertions or deletions), and m is the total number of edges that ever appear in G.

Greedy Degree Pruning. We consider a simple degree pruning procedure defined in [CK19]. Given
a graph H and a degree bound d, the procedure computes a vertex set A ⊆ V (H), as follows. Start
with A = V (H). While there is a vertex v ∈ A, such that fewer than d neighbors of v lie in A, remove
v from A. We denote this procedure by Proc-Degree-Pruning(H, d) and denote by A the output of the
procedure. The following observation was implicitly shown in [CK19]; for completeness, we provide
its proof in Appendix.

Observation 2.3 Let A be the outcome of procedure Proc-Degree-Pruning(H, d), for any graph H and
integer d. Then A is the unique maximal vertex set such that every vertex in H[A] has degree at least
d. That is, for any subset A′ of V (H) where H[A′] has minimum degree at least d, A′ ⊆ A must hold.
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Consider now a graph H that undergoes edge deletions, and let A denote the outcome of procedure
Proc-Degree-Pruning(H, d) when applied to the current graph. Notice that, from the above observation,
set A is a decremental vertex set, that is, vertices can only leave the set, as edges are deleted from H.
We use the following algorithm, that we call Alg-Maintain-Pruned-Set(H, d), that allows us to maintain
the set A as the graph H undergoes edge deletions; the algorithm is implicit in [CK19].

The algorithm Alg-Maintain-Pruned-Set(H, d) starts by running Proc-Degree-Pruning(H, d) on the orig-
inal graph H. Recall that the procedure initializes A = V (H), and then iteratively deletes from A
vertices v that have fewer than d neighbors in A. In the remainder of the algorithm, we simply main-
tain the degree of every vertex in H[A] as H undergoes edge deletions. Whenever, for any vertex v,
degH[A](v) falls below d, we remove v from A. Observe that vertex degrees in H[A] are monotonically
decreasing. Moreover, each degree decrement at a vertex v can be charged to an edge that is incident
to v and was deleted from H[A]. As each edge is charged at most twice, the total update time is
O(|E(H)|+ |V (H)|). Therefore, we obtain the following immediate observation.

Observation 2.4 The total update time of Alg-Maintain-Pruned-Set is O(m+ |V (H)|), where m is the
number of edges that belonged to graph H at the beginning. Moreover, whenever the algorithm removes
some vertex v from set A, vertex v has fewer than d neighbors in A in the current graph H.

3 Layered Core Decomposition

Our main technical contribution is a data structure called Layered Core Decomposition (LCD), that
improves and generalizes the data structure introduced in [CK19]. In order to define the data structure,
we need to introduce the notions of virtual vertex degrees, and a partition of vertices into layers, which
we do next.

Suppose we are given an n-vertex m-edge graph G = (V,E) and a parameter ∆ > 1. We emphasize
that throughout this section, the input graph G is unweighted, and the length of a path P in G is
the number of its edges. Let dmax be the largest vertex degree in G. Let r be the smallest integer,
such that ∆r−1 > dmax. Note that r ≤ O(log∆ n). Next, we define degree thresholds h1, h2, . . . , hr,
as follows: hj = ∆r−j . Therefore, h1 > dmax, hr = 1, and for all 1 < j ≤ r, hj = hj−1/∆. For
convenience, we also denote hr+1 = 0.

Definition. (Virtual Vertex Degrees and Layers) For all 1 ≤ j ≤ r, let Aj be the outcome of

Proc-Degree-Pruning(G, hj), when applied to the current graph G. The virtual degree d̃eg(v) of v in

G is the largest value hj such that v ∈ Aj. If no such value exists, then d̃eg(v) = hr+1 = 0. For all

1 ≤ j ≤ r+ 1, let Λj = {v | d̃eg(v) = hj} denote the set of vertices whose virtual degree is hj. We call
Λj the jth layer.

Note that for every vertex v ∈ V (G), d̃eg(v) ∈ {h1, . . . , hr+1}. Also, Λ1 = ∅ since all vertex degrees
are below h1, and Λr+1, the set of vertices with virtual degree 0, contains all isolated vertices. For all
1 ≤ j′ < j ≤ r+ 1, we say that layer Λj′ is above layer Λj . For convenience, we write Λ≤j =

⋃j
j′=1 Λj′

and Λ<j ,Λ≥j ,Λ>j are defined similarly. Notice that Λ≤j = Aj . For any vertex u, let deg≤j(u) =
|EG(u,Λ≤j)| denote the number of neighbors of u that lie in layer j or above.

Intuitively, the partition of V (G) into layers is useful because, in a sense, we can tightly control the
degrees of vertices in each layer. This is summarized more formally in the following three observations.
The first observation, that follows immediately from Observation 2.3, shows that every vertex in layer
Λj has many neighbors in layer j and above:

Observation 3.1 Throughout the algorithm, for each 1 ≤ j ≤ r + 1, for each vertex u ∈ Λj,
deg≤j(u) ≥ hj. Therefore, the minimum vertex degree in G[Λ≤j ] is always at least hj.
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As observed already, from Observation 2.3, over the course of the algorithm, vertices may only be
deleted from Λ≤j = Aj . This immediately implies the following observation:

Observation 3.2 As edges are deleted from G, for every vertex v, d̃eg(v) may only decrease.

Throughout, we denote by n≤j the number of vertices that belonged to Λ≤j at the beginning of
the algorithm, before any edges were deleted from the input graph. Observe that n≤jhj ≤ 2m by
Observation 3.1. The proof of the following observation appears in Appendix.

Observation 3.3 For all 1 ≤ j ≤ r, let E≥j be the set of all edges, such that at any point of time
at least one endpoint of e lied in Λ≥j. Then E≥j has a (∆hj)-orientation, and so |E≥j | ≤ ∆hjn.
Moreover, the total number of edges e, such that, at any point of the algorithm’s execution, both
endpoints of e lied in Λj, is bounded by n≤jhj∆.

From Observation 3.1, all vertex degrees in G[Λ≤j ] are at least hj , so, in a sense, graph G[Λ≤j ] is
a high-degree graph. One advantage of high-degree graphs is that every pair of vertices lying in the
same connected component of such a graph must have a short path connecting them; specifically, it
is not hard to show that, if u, v are two vertices lying in the same connected component C of graph
G[Λ≤j ], then there is a path connecting them in C, of length at most O(|V (C)|/hj). This property
of graphs G[Λ≤j ] is crucial to our algorithms for SSSP and APSP, and one of the goals of the LCD
data structure is to support short-path queries: given a pair of vertices u, v ∈ Λ≤j , either report that
they lie in different connected components of G[Λ≤j ], or return a path of length at most roughly
O(|V (C)|/hj) connecting them, where C is the connected component of G[Λ≤j] containing u and v.
Additionally, one can show that a high-degree graph must contain a core decomposition. Specifically,
suppose we are given a simple n-vertex graph H, with minimum vertex degree at least h. Intuitively,
a core of H is a vertex-induced sub-graph K ⊆ H, such that, for ϕ = Ω(1/ log n), graph K is a
ϕ-expander, and all vertex degrees in K are at least ϕh/3. One can show that, if K is a core, then
its diameter is O(log n/ϕ), and it is (ϕh/3)-edge-connected. A core decomposition of H is a collection
F = {K1, . . . ,Kt} of vertex-disjoint cores, such that, for each vertex u /∈

⋃
K∈F V (K), there are at

least 2h/3 edge-disjoint paths of length O(log n) from u to vertices in
⋃
K∈F V (K). The results of

[CK19] implicitly show the existence of a core decomposition in a high-degree graph, albeit with a much
more complicated definition of the cores and of the decomposition. For completeness, in Section B.2
of the Appendix, we formally state and prove a theorem about the existence of a core decomposition
in a high-degree graph. Though we do not need this theorem for the results of this paper, we feel
that it is an interesting graph theoretic statement in its own right, that in a way motivates the LCD
data structure, whose intuitive goal is to maintain a layered analogue of the core decomposition of the
input graph G, as it undergoes edge deletions.

Formally, the LCD data structure receives as input an (unweighted) graph G undergoing edge deletions,
and two parameters ∆ ≥ 2 and 1 ≤ q ≤ o(log1/4 n). It maintains the partition of V (G) into layers
Λ1, . . . ,Λr+1, as described above, and additionally, for each layer Λj , the data structure maintains
a collection Fj of vertex-disjoint subgraphs of the graph Hj = G[Λj ], called cores (while we do not
formally have any requirements from the cores, e.g. we do not formally require that a core is an
expander, our algorithm will in fact still ensure that this is the case, so the intuitive description of
the cores given above matches what our algorithm actually does). Throughout, we use an additional
parameter γ(n) = exp(O(log3/4 n)) = Ô(1). The data structure is required to support the following
three types of queries:

• Short-Path(j, u, v): Given any pair of vertices u and v from Λ≤j , either report that u and v lie
in different connected component of G[Λ≤j ], or return a simple path P connecting u to v in
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G[Λ≤j ] of length O(|V (C)|(γ(n))O(q)/hj) = Ô(|V (C)|/hj), where C is the connected component
of G[Λ≤j ] containing u and v.

• To-Core-Path(u): Given any vertex u, return a simple path P = (u = u1, . . . , uz = v) of length
O(log3 n) from u to a vertex v that lies in some core in

⋃
j Fj . Moreover, path P must visit the

layers in a non-decreasing order, that is, if ui ∈ Λj then ui+1 ∈ Λ≤j .

• Short-Core-Path(K,u, v): Given any pair of vertices u and v, both of which lie in some core
K ∈

⋃
j Fj , return a simple u-v path P in K of length at most (γ(n))O(q) = Ô(1).

We now formally state one of our main technical results - an algorithm for maintaining the LCD data
structure under edge deletions.

Theorem 3.4 (Layered Core Decomposition) There is a deterministic algorithm that, given a
simple unweighted n-vertex m-edge graph G = (V,E) undergoing edge deletions, and parameters ∆ ≥ 2
and 1 ≤ q ≤ o(log1/4 n), maintains a partition (Λ1, . . . ,Λr+1) of V into layers, where for all 1 ≤
j ≤ r + 1, each vertex in Λj has virtual degree hj. Additionally, for each layer Λj, the algorithm
maintains a collection Fj of vertex-disjoint subgraphs of the graph Hj = G[Λj ], called cores. The
algorithm supports queries Short-Path(j, u, v) in time O(log n) if u and v lie in different connected
components of G[Λ≤j ], and in time O(|P |(γ(n))O(q)) = Ô(|P |) otherwise, where P is the u-v path
returned. Additionally, it supports queries To-Core-Path(u) with query time O(|P |), where P is the
returned path, and Short-Core-Path(K,u, v) with query time (γ(n))O(q) = Ô(1). For all 1 ≤ j ≤ h+ 1,
once a core K is added to Fj for the first time, it only undergoes edge- and vertex-deletions, until K = ∅
holds. The total number of cores ever added to Fj throughout the algorithm is at most Ô(n∆/hj). The

total update time of the algorithm is Ô(m1+1/q∆2+1/q(γ(n))O(q)) = Ô(m1+1/q∆2+1/q).

For intuition, it is convenient to set the parameters ∆ = 2 and q = log1/8 n, which is also the setting
that we use in algorithms for SSSP and for APSP in the large-distance regime. For this setting,
(γ(n))O(q) = Ô(1), and the total update time of the algorithm is Ô(m).

Optimality. The guarantees of the LCD data structure from Theorem 3.4 are close to optimal in
several respects. First, the total update time of Ô(m) and the query time for Short-Core-Path and
To-Core-Path are clearly optimal to within a subpolynomial in n factor. The length of the path
returned by Short-Path queries is almost optimal in the sense that there can exist a path P in a
connected component C of G[Λ≤j ] whose length is Ω(|V (C)|/hj); the query time of Ô(|P |) is almost
optimal as well. The bound on the total number of cores ever created in Λj is also near optimal. This
is because, even in the static setting, there exist graphs with minimum degree hj that require Ω̃(n/hj)
cores in order to guarantee the desired properties of a core decomposition.

Comparison with the Algorithm of [CK19] and Summary of Main Challenges

The data structure from [CK19] supports the same set of queries, but has several significant drawbacks
compared to the results of Theorem 3.4. First, the algorithm of [CK19] is randomized. Moreover, it
can only handle vertex deletions, as opposed to the more general and classical setting of edge deletions
(which is also required in some applications to static flow and cut problems). Additionally, the total
update time of the algorithm of [CK19] is Ô(n2), as opposed to the almost linear running time of Ô(m)
of our algorithm. For every index j, the total number of cores ever created in Λj can be as large as

Ô(n2/h2
j ) in the algorithm of [CK19], as opposed to the bound of Ô(n/hj) that we obtain; this bound

directly affects the running of our algorithm for APSP. Lastly, the query time for Short-Path(j, u, v) is
only guaranteed to be bounded by Ô(|V (C)|) in [CK19], where C is a connected component of Λ≤j to
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which u and v belong, as opposed to our query time of Ô(|P |), where P is the u-v path returned. This
faster query time is essential in order to obtain the desired query time of Ô(|P |) in our algorithms for
SSSP and APSP. Next, we describe some of the challenges to achieving these improvements, and also
sketch some ideas that allowed us to overcome them.

Vertex deletions versus edge deletions. The algorithm of [CK19] maintains, for every index
1 ≤ j ≤ r, a variation of the core decomposition (that is based on vertex expansion) in graph
G[Λj ]. This decomposition can be computed in almost linear time Ô(|E(Λj)|) = Ô(nhj), which is

close to the best time one can hope for, creating an initial set Fj of at most Ô(n/hj) cores. Since
every core K ∈ Fj has vertex degrees at least hj/n

o(1), the decomposition can withstand up to
hj/(2n

o(1)) vertex deletions, while maintaining all its crucial properties. However, after hj/(2n
o(1))

vertex deletions, some cores may become disconnected, and the core decomposition structure may
no longer retain the desired properties. Therefore, after every batch of roughly hj/(2n

o(1)) vertex
deletions, the algorithm of [CK19] recomputes the core decomposition Fj from scratch. Since there
may be at most n vertex-deletion operations throughout the algorithm, the core decomposition Fj
only needs to be recomputed at most Ô(n/hj) times throughout the algorithm, leading to the total

update time of Ô(n/hj) · Ô(|E(Λj)|) = Ô(n2). The total number of cores that are ever added to Fj
over the course of the algorithm is then bounded by Ô(n/hj) · Ô(n/hj) = Ô(n2/h2

j ).

Consider now the edge-deletion setting. Even if we are willing to allow a total update time of Ô(n2),
we cannot hope to perform a single computation of the decomposition Fj in time faster than linear
in |E(Λj)|, that is, O(nhj). Therefore, we can only afford at most O(n/hj) such re-computations
over the course of the algorithm. Since the total number of edges in graph G[Λj ] may be as large as
Θ(nhj), our core decomposition must be able to withstand up to h2

j edge deletions. However, even
after just hj edge deletions, some vertices of Λj may become disconnected in graph G[Λ≤j ], and some
of the cores may become disconnected as well. In order to overcome his difficulty, we first observe
that it takes hj/n

o(1) edge deletions before a vertex in Λj becomes “useless”, which roughly means
that it is not well-connected to other vertices in Λj . Similarly to the algorithm of [CK19], we would
now like to recompute the core decomposition Fj only after hj/(2n

o(1)) vertices of Λj become useless,
which roughly corresponds to h2

j/n
o(1) edge deletions. Additionally, we employ the expander pruning

technique from [SW19] in order to maintain the cores so that they can withstand this significant
number of edge deletions. As in [CK19], this approach can lead to Ô(n2) total update time, ensuring
that the total number of cores that are ever added to set Fj is at most Ô(n2/h2

j ).

Obtaining faster total update time and fewer cores. Even with the modifications described
above, the resulting total update time is only Ô(n2), while our desired update time is near-linear in
m. It is not hard to see that recomputing the whole decomposition Fj from scratch every time is too

expensive, and with the Ô(m) total update time we may only afford to do so at most Ô(1) times. In
order to overcome this difficulty, we further partition each layer Λj into sublayers Λj,1,Λj,2, . . . ,Λj,Lj
whose size is geometrically decreasing (that is, |Λj,`| ≈ |Λj,`−1|/2 for all `). The core decompositions
Fj,` will be computed in each sub-layer separately, and the final core decomposition for layer j that
the algorithm maintains is Fj =

⋃
`Fj,`. In general, we guarantee that, for each `, |Λj,`| ≤ n≤j/2

`−1

always holds, and we recompute the core decomposition Fj,` for sublayer at Λj,` at most Ô(2`) times.
We use Observation 3.3 to show that |E(Λj,`)| ≤ hj∆ · n≤j/2`−1 = O(m/2`) must hold. Therefore,

the total time for computing core decompositions within each sublayer is Ô(m). As there are O(log n)
sublayers within a layer, the total time for computing the decompositions over all layers is Ô(m). This
general idea is quite challenging to carry out, since, in contrast to layers Λ1, . . . ,Λr+1, where vertices
may only move from higher to lower layers throughout the algorithm, the vertices of a single layer can
move between its sublayers in a non-monotone fashion. One of the main challenges in the design of
the algorithm is to design a mechanism for allowing the vertices to move between the sublayers, so
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that the number of such moves is relatively small.

Improving query times. The algorithm of [CK19] supports Short-Core-Path(K,u, v) queries, that
need to return a short path inside the coreK connecting the pair u, v of its vertices, in time Õ(|V (K)|)+
Ô(1), returning a path of length Ô(1); in contrast our algorithm takes time Ô(1). The query time of
Short-Core-Path(K,u, v) in turn directly influences the query time of Short-Path(u, v) queries, which
in turn is critical to the final query time that we obtain for SSSP and APSP problems. Another way
to view the problem of supporting Short-Core-Path(K,u, v) queries is the following: suppose we are
given an expander graph K that undergoes edge- and vertex-deletions (in batches). We are guaranteed
that after each batch of such updates, the remaining graph K is still an expander, and so every pair
of vertices in K has a path of length O(poly log n) connecting them. The goal is to support “short-
path” queries: given a pair u, v of vertices of K, return a path of length Ô(1) connecting them. The
problem seems interesting in its own right, and, for example, it plays an important role in the recent
fast deterministic approximation algorithm for the sparsest cut problem of [CGL+19]. The algorithm
of [CK19], in order to process Short-Core-Path(K,u, v) query, simply perform a breadth-first search
in the core K to find the required u-v path, leading to the high query time. Instead, we develop a
more efficient algorithm for supporting short-path queries in expander graphs, that is similar in spirit
and in techniques to the algorithm of [CGL+19]. This new data structure has already found further
applications to other problems [BGS20].

For Short-Path(u, v) queries, the guarantees of [CK19] are similar to our guarantees in terms of the
length of the path returned, but their query processing time is too high, and may be as large as Ω̃(n)
in the worst case. We improve the query time to Ô(|P |), where P is the returned path, which is
close to the best possible bound. This improvement is necessary in order to obtain faster algorithms
for several applications to cut and flow problems that we discuss. The improvement is achieved by
exploiting the improved data structure that supports Short-Core-Path queries within the cores, and by
employing a minimum spanning tree data structure on top of the core decomposition, instead of using
dynamic connectivity as in the algorithm of [CK19].

Randomized versus Deterministic Algorithm. While the algorithm of [CK19] works against
an adaptive adversary, it is a randomized algorithm. The two main randomized components of the
algorithm are: (i) an algorithm to compute a core decomposition; and (ii) data structure that supports
Short-Core-Path(K,u, v) queries within each core. For the first component, we exploit the recent fast
deterministic algorithm for the Balanced Cut problem of [CGL+19]. For the second component, as
discussed above, we design a new deterministic algorithm that support Short-Core-Path(K,u, v) queries
within the cores. These changes lead to a deterministic algorithm for the LCD data structure.

Using the LCD Data Structure for SSSP and APSP

With our improved implementation of the LCD data structure, using the same approach as that of
[CK19], we immediately obtain the desired algorithm for SSSP, proving Theorem 1.1.

Our algorithm for APSP in the large-distances regime exploits the LCD data structure in a similar
way as in the algorithm for SSSP: We use the LCD data structure in order to “compress” the dense
parts of the graph. In the sparse part, instead of maintaining a single ES-Tree, as in the algorithm
for SSSP, we maintain the deterministic tree cover of [GWN20] (which simplifies the moving ES-Tree
data structure of [FHN16]).

Our algorithm for APSP in the small-distances regime uses a tree cover approach, similar to previous
work [BR11, FHN14a, FHN16, Che18]. The key difference is that we root each ES-Tree at one of the
cores maintained by the LCD data structure (recall that each core is a high-degree expander), instead
of rooting it at a random vertex.
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The remainder of this section is dedicated to the proof of Theorem 3.4. However, the statement of this
theorem is sufficient in order to obtain our results for SSSP and APSP, that are discussed in Section 4
and Section 5, respectively.

Implementation of Layered Core Decomposition

In the remainder of this section, we provide the proof of Theorem 3.4 by showing an implementation
of the LCD data structure, which is the central technical tool of this paper. We start by observing
that all layers Λ1, . . . ,Λr can be maintained in near linear time:

Observation 3.5 There is a deterministic algorithm, that, given an n-vertex m-edge graph G under-
going edge deletions and parameter ∆ ≥ 2, maintains the partition (Λ1, . . . ,Λr) of V (G) into layers.
Additionally, for every vertex v ∈ V and index 1 ≤ j ≤ r + 1, the algorithm maintains a list of all
neighbors of v that belong to Λj. The total update time of the algorithm is Õ(m+ n).

Proof: We maintain the partition (Λ1, . . . ,Λr+1) of V (G) into layers, as graph G undergoes edge
deletions, as follows. We run Alg-Maintain-Pruned-Set(G, hj) for maintaining the vertex set Aj , for all
1 ≤ j ≤ r in parallel. Whenever a vertex v ∈ Λj is deleted from Aj by this algorithm, we update its
layer accordingly. It is easy to verify that the total update time for maintaining the partition of V (G)
into layers is O((|E(G)|+ |V (G)|) · r) = Õ(m+ n).

Additionally, for every vertex v ∈ V (G) and index 1 ≤ j ≤ r + 1, we maintain a list of all neighbors
of v that lie in Λj . In order to maintain this list, whenever a vertex u ∈ Λi is removed from set
Ai−1, we inspect the lists of all neighbors of u, and for each such neighbor v, we move u to the list of
neighbors of v corresponding to the new layer of u. Therefore, whenever a virtual degree of a vertex
u decreases, we spend O(degG(u)) time to update the lists of its neighbors. As virtual degrees can
decrease at most r times for every vertex, the total update time for initializing and maintaining these
lists is O(|E(G)|+ |V (G)|) · r = Õ(m+ n).

The remainder of the section is organized as follows. First, we list some known tools related to
expanders in Section 3.1 and then, in Section 3.2, provide a new tool, called a short-path oracle on
decremental expanders that will be useful for Short-Core-Path queries. One of our key ideas is to further
partition each layer Λj into sublayers Λj,1, . . . ,Λj,Lj . We describe the structure of the sublayers and
the invariants that we maintain for each sublayer in Section 3.3. For every sublayer Λj,`, the execution
of the algorithm is partitioned into phases with respect to that sublayer, that we refer to as (j, `)-
phases. At the beginning of each (j, `)-phase, we compute a core decomposition of graph G[Λj,`] and
obtain a collection Fj,` of cores for the sublayer Λj,`. Section 3.4 describes the algorithm for computing
the core decompositions. The description of an algorithm that we use to maintain each core and to
support Short-Core-Path queries on each core is shown in Section 3.5. During each (j, `)-phase, vertices
can move between the sublayers of layer j in a non-monotone manner (in contract to the fact that
every vertex can only move from higher to lower layers). We describe how vertices are moved between
sublayers in Section 3.6 and state the key technical lemma that bounds the total number of times
vertices may move between sublayers. We then bound the total number of cores ever created by the
algorithm in Section 3.7; this bound is crucial for our LCD data structure. In Section 3.9, we show an
algorithm for processing To-Core-Path queries. We provide additional technical details for maintaining
all necessary data structures in Section 3.10 and Section 3.11. Finally, we describe the algorithm for
responding to Short-Path queries in Section 3.12.
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3.1 Known Expander-Related Tools

In this subsection we describe several expander-related tools, that mostly follow from previous work,
that our algorithm uses.

Expander Decomposition. The following theorem can be obtained immediately from the recent
deterministic algorithm of [CGL+19] for computing a (standard) expander decomposition in almost-
linear time; the proof is deferred to Appendix B.3. As before, we denote γ(n) = exp(O(log3/4 n)) =
no(1).

Theorem 3.6 There is a deterministic algorithm, that, given a connected graph G = (V,E) with n
vertices and m edges, and a parameter 0 ≤ ϕ ≤ 1, computes a partition of V into disjoint subsets
V1, . . . , Vk, such that

∑k
i=1 δ(Vi) ≤ γ(m) · ϕm, and, for all 1 ≤ i ≤ k, G[Vi] is a strong ϕ-expander

with respect to G. The running time of the algorithm is Ô(m).

Expander Pruning. In the following theorem, we consider the setting where we are given as input
a graph G = (V,E), with |E| = m. Intuitively, we hope that G is a ϕ-expander for some 0 ≤ ϕ ≤ 1,
though it may not be the case. We assume that G is represented by its adjacency list. We also assume
that we are given an input sequence σ = (e1, e2, . . . , ek) of online edge deletions, and we denote by Gi
the graph G at time i, that is, G0 is the original graph G, and for all 1 ≤ i ≤ k, Gi = G \ {e1, . . . , ei}.
Our goal is to maintain a set S ⊆ V of vertices, such that, intuitively, if we denote by Si the set S at
time i (that is, after the deletion of the first i edges from G), then G[V \Si] is large enough compared
to G. Moreover, if G was a ϕ-expander, then for all i, G[V \ Si] remains a strong enough expander.
We also require that the set S is incremental, that is, Si−1 ⊆ Si for all i. The following theorem,
proved in [SW19] allows us to do so.

Theorem 3.7 (Restatement of Theorem 1.3 in [SW19]) There is a deterministic algorithm, that,
given an access to the adjacency list of a graph G = (V,E) with |E| = m, a parameter 0 < ϕ ≤ 1, and
a sequence σ = (e1, e2, . . . , ek) of k ≤ ϕm/10 online edge deletions, maintains a vertex set S ⊆ V with
the following properties. Let Gi be the graph G after the edges e1, . . . , ei have been deleted from it; let
S0 = ∅ be the set S at the beginning of the algorithm, and for all 0 < i ≤ k, let Si be the set S after
the deletion of e1, . . . , ei. Then, for all 1 ≤ i ≤ k:

• Si−1 ⊆ Si;

• volG(Si) ≤ 8i/ϕ;

• |E(Si, V \ Si)| ≤ 4i; and

• if G is a ϕ-expander, then Gi[V \ Si] is a strong ϕ/6-expander with respect to G.

The total running time of the algorithm is O(k logm/ϕ2).

Embeddings. Let G,W be two graphs with V (W ) ⊆ V (G). A set P of paths in G is called an
embedding of W into G if, for every edge e = (u, v) ∈ E(W ), there is a path path(u, v) ∈ P, such
that path(u, v) is a u-v path in G. We say that the length of the embedding P is l if the length of
every path in P is at most l, and we say that the congestion of the embedding is η iff every edge
of G participates in at most η paths in P. If embedding P has length l and congestion η, then we
sometimes call it an (l, η)-embedding, and we say that W (l, η)-embeds into G.
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The following algorithm allows us to quickly embed a smaller expander into a given expander; the
proof appears in Appendix B.4. Recall that we denoted γ(n) = exp(O(log3/4 n)).

Theorem 3.8 There is a deterministic algorithm that, given an n-vertex m-edge graph G which is
a ϕ-expander, and a terminal set T ⊆ V (G), computes a graph W with V (W ) = T and maximum
vertex degree O(log |T |) such that W is a (1/γ(|T |))-expander. The algorithm also computes a (l, η)-
embedding P of W into G with l = O(ϕ−1 logm) and η = O(ϕ−2 log2m). The running time of the
algorithm is Õ(m · γ(|T |)/ϕ3).

3.2 A New Tool: Short-Path Oracle for Decremental Expanders

Based on known expander-related tools from the previous section, we provide a new tool, that we call
a short-path oracle on decremental expanders. This will be a key tool for Short-Core-Path queries. We
believe that the techniques used in this section are of independent interest as they are quite generic.
In fact, they have already been subsequently generalized to directed graphs in [BGS20]. We fix the
following parameters that will be used throughout this section. We set the parameters as follows:

γ = γ(m) = exp(O(log3/4m)) = no(1); (1)

and

ϕ = 1/(c · γ), (2)

where c is a large enough constant.

Below, we say that a vertex set S is incremental if vertices in S can never leave S as time progresses.

Theorem 3.9 There is a deterministic algorithm that, given an m-edge n-vertex ϕ-expander G under-
going a sequence at most ϕ|E(G)|/10 edge deletions, and a parameter q > 1, maintains an incremental
vertex set S ⊆ V (G), such that, if we denote by G(0) the graph G before any edge deletions, then,
for every t > 0, after t edges are deleted from G, volG(0)(S) ≤ O(t/ϕ) holds and G \ S is a strong
ϕ/6-expander with respect to G(0). The algorithm also supports the following query: given a pair of
vertices u, v ∈ V (G) \S, return a simple u-v path P in G \S of length at most (γ(m))O(q), with query
time (γ(m))O(q). The total update time of the algorithm is O(m1+1/q(γ(n))O(q)).

The remainder of this section is dedicated to proving Theorem 3.9.

Throughout the algorithm, m denotes the number of edges in the original ϕ-expander graph G, and the
parameter ϕ = 1/(cγ(m)) remains unchanged. As our main tools, we employ the Expander Pruning
Algorithm from Theorem 3.7, and the algorithm from Theorem 3.8 that allows us to embed a smaller
expander into a given expander. We use parameters l = O(logm/ϕ) and η = O(log2m/ϕ2). The idea
of the algorithm is to maintain a hierarchy of expander graphs G1, . . . , Gq, where for all 1 ≤ i < q,
graph Gi contains

⌈
mi/q

⌉
vertices, and it is a ϕ/6-expander; we set Gq = G. We will also maintain

an (l, η)-embedding Pi of each such graph Gi into graph Gi+1. Initially, for all 1 ≤ i < q, both the
graph Gi and its embedding into Gi+1 are computed using Theorem 3.8. Additionally, we maintain
an ES-Tree in graph Gi+1, rooted at the vertex set V (Gi), with distance threshold O(log n/ϕ). For
every edge e ∈ E(Gi), we will maintain a list Ji(e) of all edges e′ ∈ E(Gi−1), such that the embedding
of e′ in Pi−1 contains the edge e; recall that |J(e)| ≤ η must hold. Whenever edge e is deleted from
graph Gi, this will trigger the deletion of all edges in its list Ji(e) from graph Gi−1. Lastly, we use the
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Algorithm 1 InitializeExpander(i)

Assertion: Gi is a ϕ/6-expander.

1. If i = 1, then initialize an ES-Tree T1 in G1, rooted at an arbitrary vertex, with distance threshold
O(ϕ−1 log n); return.

2. If i = q, then let Xq be an arbitrary subset of the set {xe | e ∈ E(G)} of vertices of G′q of

cardinality
⌈
m(q−1)/q

⌉
; otherwise, set G′i = Gi, and let Xi be any subset of V (G′i) of cardinality⌈

m(i−1)/q
⌉
.

3. Using the algorithm from Theorem 3.8, compute an expander Gi−1 over vertex set Xi, and its
(l, η)-embedding Pi−1 into G′i.

4. For every edge e ∈ E(Gi), initialize a list Ji(e) of all edges of Gi−1 whose embedding path in
Pi−1 contains e.

5. Initialize the expander pruning algorithm from Theorem 3.7 on Gi−1, that will maintain a pruned
vertex set Si−1 ⊆ V (Gi−1).

6. Initialize an ES-tree Ti in G′i rooted at Xi, with distance threshold O(ϕ−1 log n).

7. Call InitializeExpander(i− 1).

algorithm from Theorem 3.7 in order to maintain, for every expander Gi, the set Si of “pruned-out”
vertices. When set Si becomes too large, we re-initialize the graphs Gi, Gi−1, . . . , G1.

The outcome of the algorithm is vertex set S = Sq, the pruned-out set that we maintain for the
expander Gq = G. Recall that G(0) denotes the graph G before any edge deletions. Theorem 3.7
directly guarantees that G \ S is a strong ϕ/6-expander with respect to G(0) and volG(0)(S) ≤ O(t/ϕ)
after t edge deletions as desired.

We note that, since Gq may be a high-degree graph, it is convenient to define a new graph G′q,
that is obtained from Gq by sub-dividing every edge e of Gq = G with a new vertex ve. We let
X = {ve | e ∈ E(G)}. It is easy to verify that G′q remains a ϕ/2-expander.

In Algorithm 1 we describe the implementation of the algorithm InitializeExpander(i); the algo-
rithm initializes the data structures for expander Gi−1, assuming that expander Gi is already defined.
The algorithm then recursively calls to InitializeExpander(i−1). At the beginning of the algorithm,
we initialize the whole data structure by calling InitializeExpander(q). If, over the course of the
algorithm, for some 1 ≤ i < q, the number of edges deleted from Gi exceeds ϕ|E(Gi)|/10, we will call
InitializeExpander(i− 1).

We denote by G
(0)
i−1 the expander graph created by Procedure InitializeExpander(i). For all d > 0,

we denote by G
(d)
i−1 the graph that is obtained from G

(0)
i−1 after d edge deletions from G. As d increases,

our algorithm maintains the graph Gi−1 = G
(d)
i−1 \ Si−1. By Theorem 3.7, as long as d ≤ ϕ|E(Gi)|/10,

graph Gi−1 remains a (ϕ/6)-expander.

When some edge e is deleted from graph G, we call Algorithm Delete(q, e). The algorithm may
recursively call to procedure Delete(i, e′) for other expander graphs Gi and edges e′. The algorithm
Delete(i, e′) is shown in Algorithm 2.

We bound the total update time of the algorithm in the following lemma.
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Algorithm 2 Delete(i, e) where e ∈ E(Gi)

1. If i = 1, delete e from graph G1. Recompute an ES-Tree T1 in graph G1, up to depth O(log n/ϕ),
rooted at any vertex; return.

2. Delete e from Gi. Update the pruned-out vertex set Si using Theorem 3.7.

3. Let Dnew
i denote the set of edges that were just removed from Gi. That is, Dnew

i contains e and
all edges incident to vertices that were newly added into Si.

4. For each e ∈ Dnew
i , for every edge e′ ∈ Ji(e), call Delete(i− 1, e′);

5. If the total number of edge deletions from G
(0)
i exceeds ϕ|E(G

(0)
i )|/10, call

InitializeExpander(i+ 1).

Lemma 3.10 The total update time of the algorithm is O(m1+1/q(γ(n))O(q)).

Proof: Fix an index 1 ≤ i ≤ q. We partition the execution of the algorithm into level-i stages, where
each level-i stage starts when InitializeExpander(i + 1) is called, and terminates just before the
subsequent call to InitializeExpander(i+ 1). Recall that, over the course of a level-i stage, at most

ϕ|E(G
(0)
i )|/10 edges are deleted from the graph G

(0)
i . We now bound the running time that is needed

in order to initialize and maintain the level-i data structure over the course of a single level-i stage.
This includes the following:

• Computing expander Gi and its (l, η)-embedding Pi−1 into G′i+1 using the algorithm from The-

orem 3.8; the running time is Õ(|E(Gi+1)| · γ(m)/ϕ3) = O
(
m(i+1)/q · (γ(n))O(1)

)
.

• Initializing the lists Ji+1(e) for edges e ∈ Gi+1: the time to initialize all such lists is bounded by
the time needed to compute the embedding Pi, which is in turn bounded byO

(
m(i+1)/q · (γ(n))O(1)

)
.

• Initializing and maintaining the ES-Tree Ti+1: the running time is O(|E(Gi+1)| · log n/ϕ) ≤
O
(
m(i+1)/q · (γ(n))O(1)

)
.

• Running the algorithm for expander pruning on the expander Gi; from Theorem 3.7, the running

time is Õ(|E(G
(0)
i )/ϕ) ≤ O

(
mi/q · (γ(n))O(1)

)
, since the number of edge deletions is bounded by

ϕ|E(G
(0)
i )|/10.

• The remaining work, executed by Delete(i, e), for every edge e that is deleted from graph Gi
(including edges incident to the vertices of the pruned out set Si), requires O(η) time per edge,

with total time O(|E(G
(0)
i )| · η) ≤ O

(
mi/q · (γ(n))O(1)

)
.

Therefore, the total time that is needed in order to initialize and maintain the level-i data structure
over the course of a single level-i stage is O

(
m(i+1)/q · (γ(n))O(1)

)
Note that we did not include in

this running time the time required for maintaining level-(i − 1) data structures, that is, calls to
InitializeExpander(i) and Delete(i− 1, e).

Next, we bound the total number of level-i stages. Consider some index 1 < i′ ≤ q, and consider

a single level-i′ stage. Recall that, over the course of this stage, at most di′ = ϕ|E(G
(0)
i′ )|/10 edge

deletions from graph G
(0)
i′ may happen. From Theorem 3.7, over the course of the level-i′ stage, the

total volume of edges that are incident to the pruned-out vertices in Si is bounded O(di/ϕ). As
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Algorithm 3 Query(i, u, v) where u, v ∈ V (Gi)

1. If i = 1, return the unique u-v path in T1.

2. Compute, in Ti, a unique path Quu′ connecting u to some vertex u′ ∈ Xi, and a unique path
Qv′v connecting v to some vertex v′ ∈ Xi to v.

3. If v′ = u′, set Ru′v′ = ∅; otherwise set Ru′v′ = Query(i− 1, u′, v′).

4. Let Qu′v′ be a path in Gi obtained by concatenating, for all edges e′ ∈ Ru′v′ , the corresponding
path P (e′) ∈ Pi from the embedding of Gi−1 into G′i.

5. Return Quv = Quu′ ◦ Qu′v′ ◦ Qv′v. (Note that for i = q, Qu,v is a path in graph G′q, that was
obtained from Gq by subdividing its edges; it is immediate to turn it into a corresponding path
in Gq.)

the embedding Pi′ of Gi′−1 into G′i has congestion at most η, this can cause at most O(ηdi/ϕ) edge

deletions from graph G
(0)
i′−1. As a single level-(i′−1) stage requires ϕ|E(G

(0)
i′−1)|/10 edge deletions from

G
(0)
i′−1, the number of level-(i′ − 1) stages that are contained in a single level-i′ stage is bounded by:

O(di′ · η/ϕ)

ϕ|E(G
(0)
i′−1)|/10

≤
O(|E(G

(0)
i′ )| · log3m)

ϕ3 · |E(G
(0)
i′−1)|

≤ O(m1/q · (γ(n))O(1)).

Since we only need to support at most ϕ|E(G)|/10 edge deletions from the original graph G, there is
only a single level-q stage. Therefore, for every 1 ≤ i < q, the total number of level-i stages is bounded
by: O(m(q−i)/q · (γ(n))O(q−i)). We conclude that the total amount of time required for maintaining
level-i data structure is bounded by:

O
(
m(i+1)/q · (γ(n))O(1)

)
·O
(
m(q−i)/q · (γ(n))O(q−i)

)
≤ O

(
m1+1/q · (γ(n))O(q−i)

)
.

Summing this up over all 1 ≤ i ≤ q, we get that the total update time of the algorithm isO
(
m1+1/q · (γ(n))O(q)

)
,

as required.

Next, we provide an algorithm for responding to the short-path query between a pair u, v of ver-
tices. The algorithm calls Query(q, u, v), that is described in Algorithm 3, which recursively calls
Query(i, u′, v′) for i < q. The idea of the algorithm is simple: we use the ES-Tree Tq in graph Gq in
order to compute two paths: one path connecting u to some vertex u′ ∈ Xq, and one path connecting
v to some vertex v′ ∈ Xq, and then recursively call the short-path query for the pair u′, v′ of vertices
in the expander Gq−1; we then use the embedding Pq of Gq−1 into Gq to convert the resulting path
into a u′-v′ path in Gq. The final path connecting u to v is obtained by concatenating the resulting
three paths.

The following lemma summarizes the guarantees of the algorithm for processing short-path queries.

Lemma 3.11 Given any pair of vertices u, v ∈ V (G) \ S, algorithm Query(q, u, v) returns a (possibly
non-simple) u-v path Q in G \ S, of length (γ(n))O(q), in time O(|Q|).

Proof: Let Len(i) be the maximum length of the path in Gi returned by Query(i, u, v). As Gi is always
a ϕ/6-expander by Theorem 3.7, it is immediate to verify that the diameter of Gi is O(ϕ−1 log n), and
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so the ES-Tree tree Ti spans graph Gi. Consider Algorithm 3. Let Quu′ and Qv′v be the path in G′i
from u to u′ ∈ Xi−1 and the path in G′i from v′ ∈ Xi−1 to v. As Ti spans G′i, Quu′ and Qv′v do exist.
Let Ru′v′ = Query(i − 1, u′, v′) where |Ru′v′ | ≤ Len(i − 1). Let Qu′v′ be obtained by concatenating
path(e′) for each e′ ∈ Ru′v′ where path(e′) ∈ Pi is the corresponding embedding path of e′. We have
|Qu′v′ | ≤ ` · |Ru′v′ |. It is clear that the concatenation Quu′ ◦Qu′v′ ◦Qv′v is indeed a u-v path in G′i and
hence in Gi. The length of this path is at most

Len(i) = O(ϕ−1 log n) +O(ϕ−1 log n) · Len(i− 1).

Solving the recursion gives us Len(i) = (γ(n))O(i). So Query(q, u, v) returns a u-v path of length
(γ(n))O(q). Observe that the query time is proportional to the number of edges on the returned path.

Lastly, observe that a path Q connecting the given pair u, v of vertices, that is returned by algorithm
Query(q, u, v) may not be simple. It is easy to turn Q into a simple path Q′, in time O(|Q|), by
removing all cycles from Q. The final path Q′ is guaranteed to be simple, of length (γ(n))O(q), and
the query time is bounded by (γ(n))O(q), as required.

3.3 Sublayers and Phases

In this subsection we focus on a single layer Λj , for some 1 < j ≤ r. Recall that we have denoted by
n≤j the number of vertices that belonged to set Λ≤j at the beginning of the algorithm, before any edges
were deleted from the input graph. We let Lj be the smallest integer `, such that n≤j/2

`−1 ≤ hj/2;
observe that Lj ≤ log n. We further partition vertex set Λj into subsets Λj,1,Λj,2, . . . ,Λj,Lj . We refer
to each resulting vertex set Λj,` as sublayer (j, `). For indices 1 ≤ ` ≤ `′ ≤ Lj , we say that sublayer
Λj,` is above sublayer Λj,`′ . The last sublayer Λj,Lj , that we also denote for convenience by Λ−j , is

called the buffer sublayer. For convenience, we also use the shorthand Λj,≤` =
⋃`
`′=1 Λj,`′ , and we

define Λj,<`,Λj,≥`,Λj,>` similarly.

We will ensure that throughout the algorithm, the following invariant always holds:

I1. for all 1 ≤ ` ≤ Lj , |Λj,≥`| ≤ n≤j/2`−1.

At the beginning of the algorithm, we set Λj,1 = Λj and Λj,`′ = ∅ for all 1 < `′ ≤ Lj . Consider
now some sublayer Λj,`, for ` < Lj . We partition the execution of our algorithm into phases with
respect to this sublayer, that we refer to as level-(j, `) phases, or (j, `)-phases. Whenever Invariant I1
for the next sublayer Λj,`+1 is violated (that is, |Λj,≥`+1| exceeds n≤j/2

`), we terminate the current
(j, `)-phase and start a new phase.

Consider now some time t during the execution of the algorithm, when, for some 1 ≤ ` < Lj , a
(j, `)-phase is terminated. Let `′ be the smallest index for which the (j, `′)-phase is terminated at time
t. We then set Λj,`′ = Λj,≥`′ , and for all `′ < `′′ ≤ Lj , we set Λj,`′′ = ∅.

Throughout the algorithm, for every vertex u, we denote by deg≤(j,`)(u) = |E(u,Λ<j ∪ Λj,≤`)| the
number of neighbors of u that lie in sublayer-(j, `) or above (including in layers that are above layer
j). By the definition, deg≤(j,`)(u) ≤ deg≤j(u). However, since, at the beginning of each (j, `)-phase,
we set Λj,`′ ← ∅ for all `′ > `, we obtain the following immediate observation:

Observation 3.12 For all 1 ≤ ` < Lj, for every vertex u, at the beginning of each (j, `)-phase,
deg≤(j,`)(u) = deg≤j(u).
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Let Hj,` = G[Λj,`] be the subgraph of G induced by the vertices of the sublayer Λj,`. We refer to Hj,`

as the level-(j, `) graph. We will also ensure that throughout the algorithm the following invariant
holds:

I2. For all 1 ≤ ` < Lj , for each level-(j, `) phase, graph Hj,` only undergoes deletions of edges and
vertices over the course of the phase.

Therefore, we say that graph Hj,` is decremental within each (j, `)-phase. Note that the graph Hj,Lj

that corresponds to the buffer sublayer Λ−j may undergo both insertions and deletions of edges and

vertices. As time progresses, some vertices v whose virtual degree d̃eg(v) was greater than hj may
have their virtual degree decrease to hj . In order to preserve the above invariant, we always insert
such vertices v into the buffer sublayer Λ−j = Λj,Lj ; additional vertices may also be moved from higher
sub-layers Λj,` to the buffer sub-layer over the course of a (j, `)-phase.

3.4 Initialization of a Sublayer: Core Decomposition

Consider now some non-buffer sub-layer Λj,`, with ` < Lj . At the beginning of every (j, `)-phase,
if Λj,` 6= ∅, we compute a core decomposition of the graph Hj,`. This is one of the key subroutines
in our LCD data structure. The following theorem provides the algorithm for computing the core
decomposition of a sub-layer.

Theorem 3.13 (Core Decomposition of Sublayer) There is a deterministic algorithm, that, given
a level-(j, `) graph Hj,` = G[Λj,`], computes a collection Fj,` of vertex-disjoint subgraphs of Hj,`, called
cores, such that each core K ∈ Fj,` is a ϕ-expander, and for every vertex u ∈ V (K), degK(u) ≥
ϕ · deg≤(j,`)(u)/12. Moreover, if we denote by Uj,` = Λj,` \

(⋃
K∈Fj,` V (K)

)
the set of all vertices of

Λj,` that do not belong to any core, then there is an orientation of the edges of the graph G[Uj,`], such
that the resulting directed graph Dj,` is a directed acyclic graph (DAG), and, for every vertex u ∈ Uj,`,
in-degDj,`(u) ≤ deg≤(j,`)(u)/12. The running time of the algorithm is Ô(|E(Hj,`)|).

Proof: We use the following lemma, whose proof follows easily from Theorem 3.6.

Lemma 3.14 There is a deterministic algorithm, that given a subgraph H ′j,` ⊆ Hj,`, such that every

vertex u ∈ V (H ′j,`) has degree at least deg≤(j,`)(u)/12 in H ′j,`, in time Ô(|E(Hj,`)|) computes a collec-
tion F of vertex-disjoint subgraphs of H ′j,` called cores, such that each core K ∈ F a ϕ-expander and,
for every vertex u ∈ V (K), degK(u) ≥ ϕdeg≤(j,`)(u)/12. Moreover,

∑
K∈F |E(K)| ≥ 3|E(H ′j,`)|/4.

Proof: We apply Theorem 3.6 to every connected component of graph H ′j,`, with parameter ϕ.
Let (V1, . . . , Vk) be the resulting partition of V (H ′j,`). For each 1 ≤ i ≤ k, we the define a core

Ki = H ′j,`[Vi]. Observe first that
∑k

i=1 δ(Vi) ≤ γ · ϕ|E(H ′j,`)| ≤ |E(H ′j,`)|/4 by our choice of ϕ.

Therefore,
∑k

i=1 |E(Ki)| ≥ 3|E(H ′j,`)|/4. We are also guaranteed that for all 1 ≤ i ≤ k, graph Ki

is a strong ϕ-expander with respect to H ′j,`. Lastly, if Ki contains more than one vertex, then, from
Observation 2.1, every vertex u of Ki has degree at least ϕdegH′j,`

(u) ≥ ϕdeg≤(j,`)(u)/12 in Ki. We

return a set F containing all graphs Ki with |V (Ki)| > 1. The running time of the algorithm is
Ô(|E(H ′j,`)|) by Theorem 3.6.

We are now ready to complete the proof of Theorem 3.13. Our algorithm is iterative. We start with
Fj,` ← ∅ and H ′j,` ← Hj,`. Consider the following trimming process similar to the one in [KT19]:
while there is a vertex u ∈ V (H ′j,`) with degH′j,`

(u) < deg≤(j,`)(u)/12, delete u from H ′j,`. We say that
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graph H ′j,` is trimmed if, for all u ∈ V (H ′j,`) degH′j,`
(u) ≥ deg≤(j,`)(u)/12. While H ′j,` 6= ∅, we perform

iterations, each of which consists of the following steps:

1. Trim the current graph H ′j,`;

2. Apply the algorithm from Lemma 3.14 to graph H ′j,`, to obtain a collection F of cores;

3. For all K ∈ F , delete all vertices of K from H ′j,`;

4. Set Fj,` ← Fj,` ∪ F .

Note that, throughout the algorithm, the graph H ′j,` that serves as input to Lemma 3.14 has vertex
degrees at least deg≤(j,`)(u)/12 due to the trimming operation, so it is a valid input to the lemma. It
is also immediate to see that the number of iterations is bounded by O(log n). Indeed, let H be the
graph H ′j,` at the beginning of some iteration, and let H ′ be the graph H ′j,` at the beginning of the
next iteration. Note that H ′ is a subgraph of H \ (

⋃
K∈F E(K)). As |

⋃
K∈F E(K)| ≥ 3|E(H)|/4, we

conclude that |E(H ′)| ≤ |E(H)|/4. Therefore, after O(log n) iterations, H ′j,` becomes empty and the
algorithm terminates. It is easy to see that the trimming step takes time O(|E(H ′j,`)|). Therefore, the

total running time of the algorithm is Ô(|E(Hj,`)|).

Consider now the final set Fj,` of cores computed by the algorithm. We now show that it has all
required properties. From Lemma 3.14, we are guaranteed that each core K ∈ Fj,` is a ϕ-expander,
and that for every vertex u ∈ V (K), degK(u) ≥ ϕ · deg≤(j,`)(u)/12. Observe that every vertex in set
Uj,` = V (Hj,` \

⋃
K∈Fj,` K) was deleted from graph H ′j,` by the trimming procedure at some time t in

the algorithm’s execution. Therefore, at time t, degH′j,`
(u) < deg≤(j,`)(u)/12 held. We orient all edges

that belonged to graph H ′j,` at time t and are incident to u towards u. This provides an orientation
of all edges in graph G[Uj,`], which in turn defines a directed graph Dj,`. From the above discussion,
for every vertex of Dj,`, in-degDj,`(u) < deg≤(j,`)(u)/12 holds. Moreover, it is easy to see that graph

Dj,` is a DAG, because the order in which the vertices of Uj,` were deleted from H ′j,` by the trimming
procedure defines a valid topological ordering of the vertices of Dj,`.

3.5 Maintaining Cores and Supporting Short-Core-Path Queries

In this subsection, we describe an algorithm for maintaining the cores, and for supporting queries
Short-Core-Path(K,u, v): given any pair of vertices u and v, both of which lie in some core K ∈

⋃
j Fj ,

return a simple u-v path P in K of length at most (γ(n))O(q) = Ô(1), in time (γ(n))O(q) = Ô(1).

When we invoke the algorithm from Theorem 3.13 for computing a core decomposition of sublayer Λj,`
at the beginning of a (j, `)-phase, we say that the core decomposition creates the cores in the set Fj,`
that it computes. Our algorithm only creates new cores through the algorithm from Theorem 3.13,
which may only be invoked at the beginning of a (j, `)-phase.

Throughout the algorithm, we denote Fj = Fj,1 ∪ · · · ∪ Fj,Lj−1, and we refer to graphs in Fj as cores
for layer Λj , or cores for graph Hj (recall that we have defined Hj = G[Λj ]). For convenience, we also
use shorthand notation Fj,≤` = Fj,1 ∪ · · · ∪ Fj,` and F≤j = F1 ∪ · · · ∪ Fj . We define F≥j and Fj,≥`
analogously. Let K̂j =

⋃
K∈Fj K, and denote K̂≤j =

⋃
K∈F≤j K. We define notation K̂≥j , K̂j,≤` and

K̂j,≥` analogously.

In order to maintain the cores and to support the Short-Core-Path(K,u, v) queries for each such core
K, we do the following. Consider a pair 1 ≤ j ≤ r, 1 ≤ ` < Lj of indices, and some core K ∈ Fj,`, that
was created when the core decomposition algorithm from Theorem 3.13 was invoked for layer Λj,`, at
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the beginning of some (j, `)-phase. Let K(0) denote the core K right after it is created, before any
edges are deleted from K; recall that K(0) is a ϕ-expander. We use the algorithm from Theorem 3.9 on
graph K(0), as it undergoes edge deletions, with the parameter q that serves as input to Theorem 3.4,
to maintain the vertex set SK ⊆ V (K(0)). Whenever, over the course of the current (j, `)-phase, an
edge is deleted from graph G that belongs to K(0), we add this edge to the sequence of edge deletions
from graph K(0), and update the set SK of vertices using the algorithm from Theorem 3.9 accordingly.
At any point in the current (j, `)-phase, if AK ⊆ E(K(0)) is the set of edges of K(0) that were deleted
from G so far, and SK is the current vertex set maintained by the algorithm from Theorem 3.9, then
we set the current core corresponding to K(0) to be the graph obtained from K0 by deleting the edges
of AK and the vertices of SK from it; in other words, K = (K(0) \AK) \Sk. We refer to the resulting
graph K as a core throughout the phase. Whenever the number of deleted edges in AK exceeds
ϕ|E(K(0))|/10, we set SK = V (K(0)), which effectively set K = ∅; at this point we say that core K is
destroyed. Each destroyed core is removed from Fj,`.

From this definition of the core K, from the time it is created and until it is destroyed, it may only
undergo deletions of edges and vertices. In addition to the deletion of edges of K due to the edge
deletions from the input graph G, we also delete vertices of SK from K. Whenever a vertex v ∈ V (K)
is deleted from K (that is, v is added to SK), we say that v is pruned out of K. When there are more
than ϕ|E(K(0))|/10 edge deletions in AK , all vertices of K are pruned out and so K is destroyed.

Therefore, we can now use Theorem 3.9 in order to support queries Short-Core-Path(K,u, v) for each
core K: given a pair u, v ∈ V (K) of vertices of K, return a simple u-v path P in K of length at most
(γ(m))O(q) in time (γ(m))O(q). We now provide a simple observation about the maintained cores.

Proposition 3.15 For every core K, from the time K is created and until it is destroyed, |V (K)| ≥
Ω(ϕ2hj) holds.

Proof: By Theorem 3.9, K is a strong ϕ/6-expander w.r.t. K(0). Let u ∈ V (K) be a vertex minimizing
degK(0)(u). In particular, degK(0)(u) ≤ volK(0)(V (K))/2 must hold. By Observation 2.2, degK(u) ≥
(ϕ/6) · degK(0)(u). Since, at the beginning of the (j, `)-phase

degK(0)(u) ≥ ϕdeg≤(j,`)(u)/12 by Theorem 3.13

= ϕdeg≤j(u)/12 by Observation 3.12

≥ ϕhj/12 by Observation 3.1,

held we conclude that |V (K)| ≥ degK(u) = Ω(ϕ2hj) (using the fact that the graph is simple).

We use the following observation in order to bound the number of cores at any point during the
algorithm’s execution. Later in Section 3.7, we will give another bound for the total number of cores
ever created by the algorithm.

Observation 3.16 For all 1 ≤ j ≤ r and 1 ≤ ` < Lj, at any time over the course of the algorithm,
|Fj,`| ≤ O(|Λj,`|/(ϕ2hj)), and |F≤j | ≤ O(n≤j/(ϕ

2hj)) must hold. Moreover, if C is a connected
component of G[Λ≤j ], and FC≤j = {K ∈ F≤j | K ⊆ C} is the collection of cores in F≤j that are

contained in C, then |FC≤j | ≤ O(|V (C)|/(ϕ2hj)).

Proof: Consider a set Fj,` of remaining cores in sublayer Λj,` which is not destroyed yet. Note
again that new cores in Fj,` may only be created when the algorithm from Theorem 3.13 is employed
on sublayer Λj,`. In the beginning of a (j, `)-phase, all cores are vertex disjoint by Theorem 3.13.
Moreover, each core undergoes deletions only so it remains disjoint and it contains Ω(ϕ2hj) vertices
at any point of time before it is destroyed by Proposition 3.15. So we the number of cores is at most
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|Fj,`| = O(|Λj,`|/(ϕ2hj)) at any point of time. By summing up the above bound over all sublayers
in layers 1, . . . , j, and noting that h1, h2, . . . , hj form a geometrically decreasing sequence, and that
|Λ≤j | ≤ n≤j holds at all times, we get that |F≤j | ≤ O(n≤j/(ϕ

2hj)).

Lastly, consider some connected component C of G[Λ≤j ], and let FC≤j = {K ∈ F≤j | K ⊆ C}.
For an index 1 ≤ ` < Lj , let FCj,` = {K ∈ Fj,` | K ⊆ C}. Using the same argument, |FCj,`| ≤
O(|Λj,` ∩ V (C)|/(ϕ2hj)). By summing up over all sub-layers of layers 1, . . . , j, we conclude that
|FC≤j | ≤ O(|V (C)|/(ϕ2hj)).

3.6 Maintaining the Structure of the Sublayers

In this subsection we provide additional details regarding the sub-layers of each layer Λj , and in
particular we describe how vertices move between the sublayers. Throughout this subsection, we fix
an index 1 ≤ j ≤ r.

Consider an index 1 ≤ ` < Lj . Throughout the algorithm, we maintain a partition of the vertices of
the (non-buffer) sub-layer Λj,` into two subsets: set K̂j,` that contains all vertices currently lying in the

cores of Fj,`, so K̂j,` =
⋃
K∈Fj,` V (K), and set Uj,` containing all remaining vertices of Λj,`. (We note

that previously, we defined K̂j,` to denote the graph
⋃
K∈Fj,` K; we slightly abuse the notation here

by letting K̂j,` denote the set of vertices of this graph). For every vertex u ∈ Λj,`, let deg
(0)
≤(j,`)(u) and

deg
(0)
≤j (u) denote deg≤(j,`)(u) and deg≤j(u) at the beginning of the current (j, `)-phase, respectively.

Recall that, from Observation 3.12, deg
(0)
≤(j,`)(u) = deg

(0)
≤j (u). We maintain the following invariant:

I3. For every vertex u ∈ Uj,`, deg≤(j,`)(u) ≥ deg
(0)
≤(j,`)(u)/4 holds throughout the execution of a

(j, `)-phase.

We now consider the buffer sublayer Λ−j . The vertices of the buffer sublayer are partitioned into three

disjoint subsets: K̂−j , U−j , and D−j , that are defined as follows. First, for all 1 ≤ ` < Lj , whenever
any vertex u is pruned out of any core K ∈ Fj,` by the core pruning algorithm from Theorem 3.7 over
the course of the current (j, `)-phase, vertex u is deleted from sublayer Λj,` and is added to the buffer

sublayer Λ−j , where it joins the set K̂−j (recall that, once the current (j, `)-phase terminates, we set

Λ−j = ∅). Additionally, whenever Invariant I3 is violated for any vertex u ∈ Uj,`, we delete u from

Λj,`, and add it to Λ−j , where it joins the set U−j . Lastly, for all j′ < j, whenever a vertex u ∈ Λj′ has

its virtual degree decrease from hj′ to hj , vertex u is added to layer Λj , into the buffer sublayer Λ−j ,

where it joins the set D−j . Similarly, whenever a vertex u ∈ Λj has its virtual degree decrease below
hj , we delete it from Λj and move it to the appropriate layer, where it joints the corresponding buffer
sub-layer.

Whenever a vertex is added to the buffer sublayer Λ−j , we say that a move into Λ−j occurs. The
following lemma, that is key to the analysis of the algorithm, bounds the number of such moves.
Recall that we used n≤j to denote the number of vertices in Λ≤j at the beginning of the algorithm,
before any edges are deleted from G.

Lemma 3.17 For all 1 ≤ j ≤ r, the total number of moves into Λ−j over the course of the entire

algorithm is at most O(n≤j∆/ϕ
3) = Ô(n≤j∆).

We defer the proof of the lemma to Section 3.8, after we show, in Section 3.7, several immediate useful
consequences of the lemma.
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3.7 Bounding the Number of Phases and the Number of Cores

In this subsection we use Lemma 3.17 to bound the number of phases and the number of cores for
each sublayer Λj,`. Recall that in Section 3.5 we have described an algorithm for maintaining each
core K ∈ Fj,` over the course of a (j, `)-phase. The set Fj,` of cores is initialized using the Core
Decomposition algorithm from Theorem 3.13, at the beginning of a (j, `)-phase. After that, every core
K ∈ Fj,` only undergoes edge and vertex deletions, over the course of the (j, `)-phase. Once K = ∅
holds, or a new (j, `)-phase starts, we say that the core is destroyed. Recall that Fj = Fj,1∪· · ·∪Fj,Lj−1

denotes the set of all cores in Λj (we do not perform core decomposition in the buffer sublayer Λj,Lj ).
In this section, using Lemma 3.17, we bound the total number of cores in Λj that are ever created
over the course of the algorithm, and also the number of (j, `)-phases, for all 1 ≤ ` < Lj , in the next
two lemmas.

Lemma 3.18 For all 1 ≤ j ≤ r and 1 ≤ ` < Lj, the total number of (j, `)-phases over the course of

the algorithm is at most Ô(2`∆).

Proof: Fix a pair of indices 1 ≤ j ≤ r, 1 ≤ ` < Lj . Recall that we start a new (j, `)-phase only when
Invariant I1 is violated for sublayer (j, `+ 1), that is, |Λj,≥`+1| > n≤j/2

` holds. At the beginning of a
(j, `)-phase, we set Λj,`′ = ∅ for all `′ > `, and so in particular, Λj,≥`+1 = ∅. The only way that new
vertices are added to set Λj,≥`+1 is when new vertices join the buffer layer Λ−j , that is, via a move into

the buffer sublayer. Therefore, at least n≤j/2
` moves into the buffer sublayer Λ−j are required before

the current (j, `)-phase terminates. Since, from Lemma 3.17, the total number of moves into Λ−j is

bounded by Ô(n≤j∆), the total number of (j, `)-phases is bounded by Ô(2`∆).

Lastly, we bound the total number of cores in Fj that are ever created over the course of the algorithm
in the following lemma.

Lemma 3.19 The total number of cores created in layer Λj over the course of the entire algorithm is

at most Ô(n≤j ·∆/hj).

Proof: Consider an index 1 ≤ ` < L. By Observation 3.16, at the beginning of every (j, `)-
phase, |Fj,`| ≤ O(|Λj,`|/(ϕ2hj)) = Ô(n≤j/(2

`hj)) holds (we have used Invariant I1 to bound |Λj,`|
by n≤j/2

`−1). Since the total number of (j, `)-phases over the course of the algorithm is bounded by

Ô(2`∆), the total number of cores that are ever created in sublayer Λj,` is bounded by Ô(n≤j∆/hj).
The claim follows by summing over all Lj − 1 = O(log n) sublayers.

3.8 Bounding the Number of Moves into the Buffer Sublayers: Proof of Lemma 3.17

The goal of this subsection is to prove Lemma 3.17. Throughout this subsection, we fix an index
1 ≤ j ≤ r. Our goal is to prove that the total number of moves into the buffer sublayer Λ−j over the

course of the entire algorithm is bounded by Ô(n≤j∆). We partition all moves into the buffer sublayer
Λ−j into three types. A move of a vertex u into sublayer Λ−j is of type-D, if u is added to set D−j ; it

is of type-K, if u is added to K−j ; and it is of type-U if u is added to set U−j . We now bound the
number of moves of each type separately.

Type-D Moves. Recall that a vertex u is added to D−j only if its virtual degree decreases from
some value h′j for j′ < j to hj . Since virtual degrees of all vertices only decrease, such a vertex must

lie in Λ≤j at the beginning of the algorithm, and each such vertex u may only be added to set D−j once
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over the course of the algorithm. Therefore, the total number of type-D moves into Λ−j is bounded by
n≤j .

Type-K Moves. To bound the number of type-K moves, it is convenient to assign types to edge
deletions. Consider an index 1 ≤ ` < Lj and the corresponding graph Hj,` = G[Λj,`]. Let e be an edge
deleted from Hj,`. We assign to the edge e one of the following four deletion types.

• If e is deleted by the adversary (that is, e is deleted as part of the deletion sequence of the input
graph G), then this deletion is of type-A;

• If e is deleted from Hj,` because the virtual degree of one of its endpoints falls below hj (and so
that endpoint is deleted from Λj), then this deletion is of type-D;

• If an endpoint of e belonged to some core K ∈ Fj,`, and is then pruned out of that core (and so
that endpoint is removed from Λj,` and added to K−j ), then the deletion of edge e is of type-K;

• Lastly, if an endpoint u of e lies in u ∈ Uj,`, and Invariant I3 stops holding for u, that is,

deg≤(j,`)(u) < deg
(0)
≤(j,`)(u)/4 holds (and so u is removed from Λj,` and added to U−j ), then the

deletion of e is of type-U .

Observe that every edge deletion from a graph Hj,` executed over the course of a (j, `)-phase must
fall under one of these four categories. As the algorithm progresses, the same vertex may be added
to and deleted from sublayer Λj,` multiple times. Therefore, an edge that is deleted from Hj,` may
be re-added to the new graph Hj,` at the beginning of one of the subsequent (j, `) phases. Next, we
bound the total number of edge deletions from all graphs Hj,` over the course of the entire algorithm,
for the first three types. Notice that these edge deletions ignore the deletions of edges whose endpoints
belong to different sublayers.

The following simple observation bounds the number of type-A and type-D deletions.

Observation 3.20 The total number of type-A and type-D deletions from all graphs Hj,` for all
1 ≤ ` < Lj, over all (j, `)-phases is bounded by n≤jhj∆.

Proof: Observe that each type-A deletion corresponds to a deletion of an edge whose both endpoints
are contained in Λj from the input graph G; each such edge may only be deleted once over the course
of the algorithm. From Observation 3.3, the total number of such edges is bounded by n≤jhj∆.

If an edge e is deleted in a type-D deletion from some graph Hj,`, then both its endpoints lie in Λj , and,
after the deletion, one of the endpoints of e is removed from layer Λj forever. Therefore, every edge
may be deleted at most once in a type-D deletion, and the number of all such deletions is bounded by
the total number of edges whose both endpoints are contained in Λj over the course of the algorithm,
which is again bounded by n≤jhj∆ from Observation 3.3.

We now proceed to bound the total number of type-K edge deletions.

Lemma 3.21 The total numbers of type-K edge deletions from all graphs Hj,` for all 1 ≤ ` < Lj,
over all (j, `)-phases is bounded by O(n≤jhj∆/ϕ

2).

Proof: Consider an index 1 ≤ ` < Lj , and some (j, `)-phase. Let H
(0)
j,` denote the graph Hj,` at the

beginning of the (j, `)-phase, and let K(0) denote an arbitrary core K ∈ Fj,` at the beginning of that
phase. Let SK be the set of vertices that are pruned out of K(0) by Theorem 3.9. By the definition
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of type-K deletion, it is enough to bound vol
H

(0)
j,`

(SK), summing over cores K created in Hj,` over the

course of the algorithm.

In order to bound vol
H

(0)
j,`

(SK) for a single core K ∈ Fj,`, recall that, from Theorem 3.13, for every

vertex u ∈ V (K(0)) degK(0)(u) ≥ ϕdeg
H

(0)
j,`

(u)/12 holds. Therefore, vol
H

(0)
j,`

(SK) ≤ 12 · volK(0)(SK)/ϕ.

Moreover, by Theorem 3.9, after t edge deletions from K(0) (that include type-A and type-D dele-
tions, but exclude type-U deletions, as edges deleted this way must lie outside of the core), we have
volK(0)(SK) ≤ O(t/ϕ). From Observation 3.20, the total number of type-A and type-D edge deletions,
in all graphs Hj,`, for all 1 ≤ ` < Lj and all (j, `)-phases, is at most n≤jhj∆. We conclude that the
sum of all volumes vol

H
(0)
j,`

(SK), over all 1 ≤ ` < Lj , and over all cores ever created in Fj,`, is bounded

by: 12
ϕ ·O(n≤jhj∆/ϕ) = O(n≤jhj∆/ϕ

2).

Corollary 3.22 The total number of type-K moves into Λ−j over the course of the algorithm is bounded

by O(n≤j∆/ϕ
3).

Proof: Consider some sublayer Λ`,j , and the graph H
(0)
j,` at the beginning of some (j, `)-phase. Let

K(0) ∈ Fj,` be some core that was created at the beginning of that phase, and let u ∈ V (K(0)) be

any vertex of the core. Recall that, from Theorem 3.13, degK(0)(u) ≥ ϕdeg
(0)
≤(j,`)(u)/12, and from

Observation 3.12, deg
(0)
≤(j,`)(u) = deg

(0)
≤j (u) ≥ hj . Therefore, degK(0)(u) ≥ ϕhj/12. If vertex u is moved

to Λ−j via a type-K move, then each of the Ω(ϕhj) edges of K(0) incident to u must have been deleted
as part of A, D, or K-type deletion from Hj,`. Since the total number of all deletions of types A,
D and K, from all graphs Hj,` for 1 ≤ ` < Lj , over the course of the whole algorithm, is bounded
by O(n≤jhj∆/ϕ

2), we get that the total number of K-type moves into the buffer layer Λ−j over the

course of the entire algorithm is bounded by O(n≤j∆/ϕ
3).

Type-U Moves. We further partition type-U moves into two subtypes. Consider a time in the
algorithm’s execution, when some vertex u is added to set U−j , so it is added to Λ−j via a U -move, and
assume that u was moved from sublayer Λj,`. We say that this move is of type-U1 if |EG(u,Λj,>`)| <
2 deg≤(j,`)(u) held right before u is moved, and we say that it is of type-U2 otherwise. We bound the
number of moves of both subtypes separately.

We first bound the number of type-U1 moves. Recall that, whenever u is type-U1 moved:

deg≤j(u) = deg≤(j,`)(u) + |EG(u,Λj,>`)|
< 3 deg≤(j,`)(u)

< 3 deg
(0)
≤(j,`)(u)/4

= 3 deg
(0)
≤j (u)/4

(we have used the fact that Invariant I3 is violated when u is moved to Λ−j , and Observation 3.12 for
the last equality.) Therefore, the number of neighbors of u in Λ≤j has reduced by a constant factor
compared to the beginning of the current (j, `)-phase. Note that deg≤j(u) may never increase, as

virtual degrees of vertices may only decrease. Therefore, a vertex may be moved to Λ−j via a type-U1

move at most O(log n) times. The total number of type-U1 moves into Λ−j over the course of the entire
algorithm is then bounded by O(n≤j log n).

It remains to bound the the total number of type-U2 moves into Λ−j . We will show that the total
number of such moves is bounded by O(n≤j∆/ϕ) over the course of the algorithm. For all 1 ≤ ` < Lj ,
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we define an edge set Πj,`, that contains all edges e = (u, v) with u ∈ Λj,` and v ∈ Λj,>`. Intuitively,
set Πj,` contains all “downward edges” from vertices in Λj,` that lie within the layer j. Note that
Πj,Lj = ∅. We first bound the total number of edges that ever belonged to each such set Πj,` over the
course of the algorithm. (Note that an edge may be added several times to Πj,` over the course of the
algorithm; we count them as separate edges). We will then use this bound in order to bound the total
number of the U2-moves.

Note that a new edge e = (u, v) may only be added to set Πj,` in the following cases:

• (Type-D addition): when some vertex v ∈ Λ<j is type-D moved to D−j ⊆ Λ−j . We denote the

set of all edges added to Πj,` in a type-D addition by ΠD
j,`.

• (Type-K addition): when some vertex v ∈ Λj,≤` is type-K moved to K−j ⊆ Λ−j . We denote

the set of all edges added to Πj,` in a type-K addition by ΠK
j,`.

• (Type-U1 addition): when some vertex v ∈ Λj,≤` is type-U1 moved to U−j ⊆ Λ−j . We denote

the set of all edges added to Πj,` in a type-U1 addition by ΠU1
j,` .

• (Type-U2 addition): when some vertex v ∈ Λj,≤` is type-U2 moved to U−j ⊆ Λ−j . We denote

the set of all edges added to Πj,` in a type-U2 addition by ΠU2
j,` .

Observe that the core decomposition algorithm from Theorem 3.13 that is performed at the beginning
of a (j, `)-phase does not add any new edges to any set Πj,`′ , since, for `′ > `, we set Λj,`′ = ∅, and for
`′ ≤ `, vertex set Λj,≥`′ remains unchanged.

Let incj,` denote the total number of edges ever added to Πj,`, and for every addition type X ∈
{D,K,U1, U2}, we denote by incXj,` the total number of edges ever added to ΠX

j,`. Clearly, incj,` =∑
X∈{D,K,U1,U2} inc

X
j,`. For convenience, for all X ∈ {D,K,U1, U2}, we denote by ΠX

j =
⋃

1≤`<Lj ΠX
j,`.

Let incj denote the total number of edges ever added to any of the sets in {Πj,` | 1 ≤ ` < Lj}. Similarly,
for all X ∈ {D,K,U1, U2}, we denote by incXj the total number of edges ever added to any of the

sets in
{

ΠX
j,` | 1 ≤ ` < Lj

}
. Observe that incj =

∑
X∈{D,K,U1,U2} inc

X
j . We start by bounding incDj ,

incU1
j , and incKj :

Lemma 3.23 incDj ≤ O(n≤jhj∆), incU1
j ≤ O(n≤jhj log n) and incKj ≤ O(n≤jhj∆/ϕ

2).

Proof: When a vertex u is moved to Λ−j , its contribution to incj is at most |E(u,Λj)|. By Observa-
tion 3.3, the total number of edges e, such that, at any point during the algorithm’s execution, both
endpoints of e were contained Λj , is at most n≤jhj∆. As each vertex u can moved to Λj− in a type-D
move only once, incDj ≤ O(n≤jhj∆) must hold. Similarly, as each vertex u can be moved to Λ−j in a

type-U1 move at most O(log n) times, incU1
j ≤ O(n≤jhj∆ log n) must hold.

Next, observe that incKj,` is precisely the total number of type-K edge deletions from graphsHj,1, . . . ,Hj,`

over the course of the algorithm. By Lemma 3.21, we can bound incKj ≤ O(n≤jhj∆/ϕ
2).

We use the next lemma to bound incU2
j,` .

Lemma 3.24 For all 1 ≤ ` < Lj, inc
U2
j,` ≤ incDj,` + incKj,` + incU1

j,` .

Proof: Fix an index 1 ≤ ` < Lj . We denote by Π̂j,` the set of all edges that were ever present in set

Πj,` over the course of the algorithm, and by Π̂U2
j,` the set of all edges that were ever present in set ΠU2

j,`

over the course of the entire algorithm; recall that Π̂U2
j,` ⊆ Π̂j,`. We next show that |Π̂U2

j,` | ≤ |Π̂j,`|/2.
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In order to do so, we assign, to every edge e ∈ Π̂U2
j,` , two edges e1, e2 ∈ Π̂j,` that are responsible for e.

We will ensure that every edge in Π̂j,` is responsible for at most one edge in Π̂U2
j,` . This will immediately

imply that |Π̂U2
j,` | ≤ |Π̂j,`|/2.

Consider now some (j, `)-phase, and some vertex u ∈ Λj,`, that is moved to Λ−j via a U2-move some
time during the (j, `)-phase. At the beginning of the (j, `)-phase, Λj,`′ = ∅ held for all `′ > `. At the
time when u is moved to Λ−j , from the definition of a U2-move, |EG(u,Λj,>`)| ≥ 2 deg≤(j,`)(u) held.

The edges that are added to Π̂U2
j,` due to the move of u to Λ−j are the edges of EG(u,Λj,`). On the

other hand, each edge (u, v) ∈ EG(u,Λj,>`) belonged to set Πj,` before the move of u, and is removed
from that set afterwards. Moreover, vertex v must have been moved to Λ−j at some time during the
course of the current (j, `)-phase. Since |EG(u,Λj,>`)| ≥ 2 deg≤(j,`)(u) ≥ 2 deg(j,`)(u), we can select,

for every edge e ∈ EG(u,Λj,`) arbitrary two edges e1, e2 ∈ EG(u,Λj,>`) that become responsible for
e, such that every edge of EG(u,Λj,>`) is responsible for at most one edge of EG(u,Λj,`). It is clear

from this process that every edge in Π̂j,` is responsible for at most one edge in Π̂U2
j,` . We conclude that

|Π̂U2
j,` | ≤ |Π̂j,`|/2 holds, and so incU2

j,` ≤ incj,`/2. Since incj,` =
∑

X∈{D,K,U1,U2} inc
X
j,`, we get that

incU2
j,` ≤ incDj,` + incKj,` + incU1

j,` .

Combining Lemma 3.23 and Lemma 3.24, we obtain the following corollary.

Corollary 3.25 incj ≤ O(n≤jhj∆/ϕ
3).

Lastly, the following corollary allows us to bound the total number of U2-moves.

Corollary 3.26 The total number of U2-moves into the buffer layer Λ−j , over the course of the entire

algorithm, is bounded by O(n≤j∆/ϕ
3).

Proof: Consider some index 1 ≤ ` < Lj , some (j, `)-phase, and some vertex u ∈ Λj,`, that is moved to
Λ−j via a U2-move some time during that (j, `)-phase. From the definition of a U2-move, when u was

moved to Λ−j , |EG(u,Λj,>`)| ≥ 2 deg≤(j,`)(u) held. Moreover, each edge (u, v) ∈ EG(u,Λj,>`) belonged
to set Πj,` before the move of u, and is removed from that set afterwards. Since |EG(u,Λj,>`)| ≥
2 deg≤(j,`)(u) and |EG(u,Λj,>`)| + deg≤(j,`)(u) = deg≤j(u), we get that |EG(u,Λj,>`)| ≥ deg≤j(u)/3.
From the definition of virtual degrees, deg≤j(u) ≥ hj must hold, and so |EG(u,Λj,>`)| ≥ hj/3. There-

fore, for every vertex that is added to Λ−j via a U2-move, we delete at least hj/3 edges from set Πj,`.
Since, as shown above, the total number of edges that are ever added to sets Πj,`, for all 1 ≤ ` < Lj
is bounded by O(n≤jhj∆/ϕ

3), the total number of U2-moves into Λj over the entire course of the
algorithm is bounded by O(n≤j∆/ϕ

3).

To summarize, we have partitioned all moves into the buffer sublayer Λ−j into four types: D,A,K
and U , and we showed that the total number of moves of each type, over the course of the algorithm,
is bounded by O(n≤j∆/ϕ

3). Therefore, the total number of moves into Λ−j over the course of the

algorithm is at most O(n≤j∆/ϕ
3) ≤ Ô(n≤j∆).

3.9 Existence of Short Paths to the Cores

The main result of this subsection is summarized in the following lemma, which shows that, throughout
the algorithm, for every vertex v ∈ V (G), there is a path of length O(log3 n), connecting v to some
vertex that lies in one of the cores of

⋃
j Fj . This fact will be used to process To-Core-Path queries.

Lemma 3.27 Throughout the algorithm, for each vertex u ∈ V (G), there is a path Pu of length at
most O(log3 n), connecting u to a vertex v lying in set K̂ =

⋃
j,` K̂j,`. Moreover, the path Pu =
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{u = u1, u2, . . . , uk} is non-decreasing with respect to the sublayers, that is, if ui ∈ Λj,`, then ui+1 ∈
Λ<j ∪ Λj,≤`.

Proof: We use the following two claims.

Claim 3.28 Throughout the algorithm, for all 1 ≤ j ≤ r, every vertex u in the buffer sublayer Λj,Lj
has a neighbor in Λ<j ∪ Λj,<Lj .

Proof: Recall that Invariant I1 guarantees that |Λj,Lj | ≤ n≤j/2
Lj−1, and, from the choice of Lj ,

n≤j/2
Lj−1 ≤ hj/2. From the definition of virtual degrees of vertices, for every vertex u ∈ Λ−j ,

|EG(u,Λ≤j) ≥ hj must hold. Therefore, u must have a neighbor in Λ<j ∪ Λj,<Lj .

Claim 3.29 Throughout the algorithm, for all 1 ≤ ` < Lj, every vertex u ∈ Uj,` has a path Pu of

length at most O(log n) connecting it to a vertex in Λ<j ∪Λj,<` ∪ K̂j,`, such that every inner vertex on
the path belongs to Uj,`.

Proof: Fix an index 1 ≤ ` < Lj , and consider the sublayer Λj,` over the course of some (j, `)-phase.
Below, we add a superscript (0) to an object to denote that object at the beginning of the phase.
Recall that the algorithm for computing a core decomposition from Theorem 3.13 ensured then there
is an orientation of the edges of the graph G[Uj,`], such that the resulting directed graph Dj,` is a

DAG, and, for every vertex u ∈ Uj,`, in-degDj,`(u) ≤ deg
(0)
≤(j,`)(u)/12. We denote by D(0)

j,` the graph
Dj,` at the beginning of the phase.

Let D(0)
j,` be the directed graph obtained from D(0)

j,` , by adding the set Λ
(0)
<j ∪ Λ

(0)
j,<` ∪ K̂

(0)
j,` of vertices

to it, and all edges present in graph G at the beginning of the current (j, `)-phase, connecting the

vertices of U
(0)
j,` to the vertices of Λ

(0)
<j ∪ Λ

(0)
j,<` ∪ K̂

(0)
j,` . We orient these edges away from the vertices of

Uj,`. Therefore, for every vertex u ∈ Uj,`, in-deg
D(0)
j,`

(u) = in-degD(0)
j,`

(u) holds.

Let Dj,` denote the graph D(0)
j,` at some time during the execution of the (j, `)-phase. Whenever an

edge incident to a vertex of Λj,` is deleted by the algorithm, we delete this edge from graph Dj,` as
well. Whenever a vertex of Λj,` is removed from this set, we delete such a vertex and all its incident
edges from Dj,`. From the definition of Dj,`, for every vertex u ∈ Uj,`, in-degDj,`(u) + out-degDj,`(u) =

deg≤(j,`)(u) holds at all times.

Observe that, for every u ∈ Uj,`:

in-degDj,`(u) ≤ in-deg
D(0)
j,`

(u) as Dj,` ⊆ D
(0)
j,`

≤ deg
(0)
≤(j,`)(u)/12 by the property of D(0)

j,`

≤ deg≤(j,`)(u)/3 by Invariant I3,

and so
out-degDj,`(u) = deg≤(j,`)(u)− in-degDj,`(u) ≥ 2 · in-degDj,`(u). (3)

For any vertex set S ⊆ V (Dj,`), let in-volDj,`(S) =
∑

u∈S in-degDj,`(u), out-volDj,`(S) =
∑

u∈S out-degDj,`(u),

and volDj,`(S) = in-volDj,`(S) + out-volDj,`(S). For a vertex set S ⊆ V (Dj,`), we denote by S′ the set

of vertices containing all vertices of S, and all vertices v ∈ V (Dj,`), such that edge (u, v) with u ∈ S
belongs to the graph Dj,`. In other words, S′ is an “out-ball” around S of radius 1.

Next, we show that, for any vertex set S ⊆ Uj,`, volDj,`(S
′) ≥ 4

3volDj,`(S). Indeed:
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volDj,`(S
′) = volDj,`(S) + volDj,`(S

′ \ S)

≥ volDj,`(S) + |EDj,`(S, S
′ \ S)|

= volDj,`(S) + |EDj,`(S, S
′)| − |EDj,`(S, S)|

≥ volDj,`(S) + out-volDj,`(S)− in-volDj,`(S),

where the last inequality follows from the fact that |EDj,`(S, S
′)| = out-volDj,`(S) and |EDj,`(S, S)| ≤

in-volDj,`(S). From Equation (3), out-volDj,`(S) ≥ 2in-volDj,`(S). Therefore, out-volDj,`(S)−in-volDj,`(S) ≥
volDj,`(S)/3. We conclude that:

volDj,`(S
′) ≥ volDj,`(S) + volDj,`(S)/3 =

4

3
volDj,`(S).

It is now easy to see that, for any vertex u ∈ Uj,`, the distance from u to Λ<j ∪ Λj,<` ∪ K̂j,` in Dj,` is
bounded by O(log n). Otherwise, we can grow a ball from u, of volume (4/3)Ω(logn) ≥ poly(n), leading
to a contradiction.

We are now ready to complete the proof of Lemma 3.27. Suppose we are given a vertex u ∈ V (G), and
assume that it lies in some sublayer Λj,`, for 1 ≤ j ≤ r and 1 ≤ ` ≤ Lj . We start with v1 = u, and then
repeatedly apply Claim 3.28 and Claim 3.29 to the current vertex vi, until we reach a vertex that lies
in some core K̂. For each application of the lemmas, starting from some vertex vi, we obtain a path
connecting vi to either a vertex that lies in some core, or a vertex that belongs to some sublayer lying
above the sublayer of vi. In either case, the inner vertices of the path are contained in the sublayer of
vi. The final path Pu is obtained by concatenating all resulting paths. As there are O(log2 n) sublayers
and each path that we compute has length at most O(log n), the length of Pu is bounded by O(log3 n).
Moreover, it is easy to verify that the path visits the sublayers in a non-decreasing order.

3.10 The Incident-Edge Data Structures

In order to efficiently construct and maintain the graphs Hj,` = G[Λj,`], we maintain the following sets
of edges:

• for every vertex u ∈ V and index 1 ≤ j ≤ r, edge set Edgesj(u) = EG(u,Λj).

• for every pair of indices 1 ≤ j ≤ r, 1 ≤ ` ≤ Lj , for every vertex u ∈ Λj,`, edge set Edgesj,>`(u) =
EG(u,Λj,>`), and, for each 1 ≤ `′ ≤ `, edge set Edgesj,`′(u) = EG(u,Λj,`′).

Intuitively, the data structures are defined in this way because we cannot afford to maintain the edge
set EG(u,Λj,`′) for every vertex u ∈ Λj,`, for all 1 ≤ ` < `′, explicitly. This is because the vertices of
Λj,>` may move between the sublayers that lie below Λj,` too frequently.

Throughout, the notation Edges(·) is used for the sets of edges that are explicitly maintained by the
data structure, which we distinguish from subsets of edges of G, for which notation EG(·) is used.

Consider some vertex u ∈ V (G), and let Λj,` be the sublayer containing u. We refer to the edge sets

{Edgesj′(u)}1≤j′≤r, {Edgesj,`′(u)}`′≤`, Edgesj,>`(u)
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as the incident-edge data structure of vertex u. Below, we show that the incident-edge data structures
for all vertices of G can be maintained in total update time Õ(m∆2) over the course of the algorithm’s
execution.

Recall that, from Observation 3.5, the layers Λ1, . . . ,Λr, and the edge sets Edgesj(u) for all vertices

u ∈ V (G) and layers 1 ≤ j ≤ r can be maintained over the course of the algorithm, in time Õ(m+n).

Next, we fix an index 1 ≤ j ≤ r, and show how to maintain the edge sets {Edgesj,`′(u)}`′≤`, Edgesj,>`(u)
for all 1 ≤ ` ≤ Lj and u ∈ Λj,`.

At the beginning of the algorithm, all vertices of Λj lie in the sublayer Λj,1. For every vertex u ∈ Λj,1,
set Edgesj,>1(u) = ∅, and edge set Edgesj,1(u) contains all edges in E(Hj,1) that are incident to u.
All these edge sets can be initialized in time O(|E(Hj,1)|)

There are two cases when we need to update these sets: (1) when a vertex is moved to Λ−j and (2)
when we set Λj,` ← Λj,≥` and initialize the sublayer Λj,` for some `.

For the first event, consider some sublayer Λj,`, and a vertex u ∈ Λj,` that is moved to the buffer
sublayer Λ−j . We need to partition the edges from the original edge set Edgesj,>`(u) = EG(u,Λj,>`)
into edge sets Edgesj,`+1(u), . . . , Edgesj,Lj (u), where Edgesj,`′(u)← EG(u,Λj,`′) for each `′ > `. Also,
for each vertex v ∈ {w | (u,w) ∈ EG(u,Λj,>`)}, we need to move the edge (u, v) from Edgesj,`(v) to
Edgesj,>`′(v), where `′ is the index of the sublayer Λj,`′ containing v; if v ∈ Λj,Lj , then we instead
move (u, v) from Edgesj,`(v) to Edgesj,Lj (v). All these operations can be done in time |EG(u,Λj,>`)|.

Recall that every time we move u from some sublayer Λj,` to the buffer sublayer Λ−j , we remove
|EG(u,Λj,>`)| edges from the edge set Πj,` that we defined in Section 3.7. Therefore, we can charge the
total time needed to update the incident-edge data structures due to moves of vertices into Λ−j to the set⋃Lj
j=1 Π̂j,` of edges. From Corollary 3.25, the total number of edges in this set is incj ≤ O(n≤jhj∆/ϕ

3).
Therefore, the total time spent on updating the incident-edge data structures due to moves of vertices
into to Λ−j is at most O(n≤jhj∆/ϕ

3). It is also possible that a vertex u ∈ Λ<j is moved to Λ−j .
However, this only happen once per vertex, so the total update time due to such moves is O(m).

For the second event, fix some index 1 ≤ ` < Lj , and consider the time when a new (j, `)-phase
starts. Recall that we set Λj,` ← Λj,≥`. For every vertex u that originally lied in Λj,≥`, we need to
set Edgesj,`(u) ← Edgesj,`(u) ∪ Edgesj,>`(u). This can be done, for all such vertices u, in total time

O(|EG(Λj,≥`)|). Recall that, from Invariant I1, |Λj,≥`| ≤ O(n≤j/2
`), and that, from Observation 3.3,

edge set EG(Λj) has an (hj∆)-orientation. It is then easy to see that edge set EG(Λj,≥`) has an
(hj ·∆)-orientation as well, and so |EG(Λj,≥`)| ≤ O(n≤jhj∆/2

`). By Lemma 3.18, there are at most

Ô(2`∆) (j, `)-phases over the course of the entire algorithm, and so the total time that we need to
spend on updating the incident-edge data structure due to the initialization of the sublayer Λj,` is

bounded by Ô(n≤jhj∆
2). Summing over all sublayers of layer Λj , the total time that the algorithm

spends on maintaining the edge-incident data structures for vertices lying in layer Λj is bounded by
O(n≤jhj∆

2 log(n)/ϕ3 +m).

Lastly, observe that for all 1 ≤ j ≤ r, n≤jhj ≤ O(m). Therefore, the total time that is needed to
maintain the incident-edge data structure for all vertices og G is at most:

∑
j

(
O(n≤jhj∆/ϕ) + Ô(n≤jhj∆

2 +m)
)

= Ô(m∆2).
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3.11 Total Update Time, and Data Structures to Support Short-Core-Path and
To-Core-Path Queries

In this subsection, we provide some additional data structures that are needed to support Short-Core-Path
and To-Core-Path Queries, and analyze the total update time of the main algorithm for Theorem 3.4.
We start by analyzing the total update time required for maintaining all data structures that we
have described so far. Then, we describe additional data structures that we maintain for supporting
Short-Core-Path, To-Core-Path, and Short-Path queries, and analyze their update time.

Maintaining the Sublayers. Recall that, from Observation 3.5, the total update time that is
needed to maintain the partition of V (G) into Λ1, . . . ,Λr is Õ(m). As shown in Section 3.10,the
edge-incident data structures for all vertices require total update time Ô(m∆2).

Consider now some index 1 ≤ j ≤ r. For the buffer sublayer Λ−j , we do not need to maintain any
additional data structures. Consider now some non-buffer sublayer Λj,`, for ` < Lj . At the beginning
of a (j, `)-phase, we construct the graph Hj,` by setting E(Hj,`) ←

⋃
u∈Λj,`

Edgesj,`(u), using the

incident-edge data structure. This takes O(|E(Hj,`)|) time. Note that, without the incident-edge data
structure, it is not immediately clear how to construct the graph Hj,` in this time. The resulting
graph Hj,` is precisely G[Λj,`], as desired. Next, we perform the core decomposition in graph Hj,`

using the algorithm from Theorem 3.13. The running time of the algorithm is Ô(|E(Hj,`)|). Recall
that, from Observation 3.3, the edge set EG(Λj) has an (hj∆)-orientation. Moreover, from Invariant
I1, |Λj,`| ≤

n≤j
2`−1 . Therefore, |E(Hj,`)| ≤ |Λj,`| · hj∆ ≤

n≤j
2`−1 · hj∆. By Lemma 3.18, the total number

of (j, `)-phases over the course of the algorithm is bounded by Ô(2`∆). Therefore, the total time that
is needed to construct the graphs Hj,` and to compute core decompositions of such graphs over the

course of the entire algorithm is bounded by Ô(n≤`hj∆/2
`) · Ô(2`∆) = Ô(n≤jhj∆

2) ≤ Ô(m∆2).

Note that it is straightforward to check that invariants I1 and I3 hold over the course of the algorithm:
For each 1 ≤ j ≤ r and 1 ≤ ` ≤ Lj we need to ensure that |Λj,`| ≤ n≤j/2

`−1 always holds. This
can be checked in constant time by keeping track of |Λj,`|. For each vertex u ∈ Uj,`, we need to

ensure the invariant that deg≤(j,`)(u) ≥ deg
(0)
≤(j,`)(u)/4 always holds. This can be checked in O(log n)

by maintaining prefix sums of |Edgesj′(u)| and |Edgesj,`′(u)| for all j′ < j and `′ ≤ `. As there are

Ô(log2 n) sublayers, the total cost for maintaining all sublayers Λj,` and their corresponding graphs

Hj,` = G[Λj,`], together with computing the initial core decompositions Fj,` is at most Ô(m∆2).

Oracles for Short-Core-Path queries. Whenever a core K is created, we maintain the data structure
from Theorem 3.9 that allows us to maintain the core K under the deletion of edges from G, and to
support Short-Core-Path(K,u, v) queries within the core K. Consider some index 1 ≤ j ≤ r and a non-
buffer sublayer Λj,` of Λj . At the beginning of each (j, `)-phase, let Fj,` denote the collection of cores
constructed by the algorithm from Theorem 3.13. The total update time needed to maintain the data
structure for all cores K ∈ Fj,` throughout a single (j, `)-phase is

∑
K∈Fj,` O(|E(K)|1+1/q(γ(n))O(q)) ≤

O(|E(Hj,`)|1+1/q(γ(n))O(q)). As observed already, |E(Hj,`)| ≤ |Λj,`|·hj∆ ≤ n≤jhj∆/2`−1 ≤ O(m∆/2`)
Since, from Lemma 3.18, the total number of (j, `)-phases over the course of the algorithm is bounded
by Ô(2`∆), the total time needed to maintain all cores within the layer (j, `) over the course of the
algorithm is bounded by O(m1+1/q∆2+1/q(γ(n))O(q)). Summing this up over all O(log n) non-buffer
sublayers Λj,`, we get that the total time that is needed to maintain all cores that are ever present in
Fj is bounded by O(m1+1/q∆2+1/q(γ(n))O(q)).

Note that the algorithm from Theorem 3.9 directly supports the Short-Core-Path(K,u, v) queries: given
any pair of vertices u and v that lie in the same core K, it return a simple u-v path P in K connecting
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u to v, of length at most (γ(n))O(q), in time (γ(n))O(q).

ES-trees for To-Core-Path queries. At the beginning of a (j, `)-phase of a non-buffer sublayer Λj,`,
we construct an auxiliary graph Cj,` for maintaining short paths from vertices of Uj,` to vertices of

Λ<j ∪ Λj,<` ∪ K̂j,`, whose existence is guaranteed by Claim 3.29. The vertex set of the graph Cj,` is
V (Cj,`) = Λj,` ∪ {sj,`}. The edge set of Cj,` contains the edges of E(Hj,`). Additionally, for every

vertex u ∈ K̂j,`, we add the edge (sj,`, u) into Cj,`. For every vertex u ∈ Uj,`, if EG(u,Λ<j ∪Λj,<`) 6= ∅,
then we add the edge (sj,`, u) to Cj,` and we associate the edge (sj,`, u) with an edge (w, u) where
w is some neighbor of u in Λ<j ∪ Λj,<`. Note that we can maintain this association by using the
incident-edge data structure. It is easy to see that the time needed to construct the graph Cj,` is
subsumed by the time needed to construct the graph Hj,`.

Observe that, throughout each (j, `)-phase, graph Cj,` only undergoes edge- and vertex-deletions, just
like graph Hj,`. Therefore, we can maintain an ES-tree Tj,` rooted at sj,`, in the graph Cj,`, up
to distance O(log n). The total update time for Tj,` is O(|E(Cj,`)| log n) for each (j, `)-phase. As

|E(Cj,`)| ≤ |E(Hj,`)| + |Uj,`| = O(n≤jhj∆/2
`) and there are at most Ô(2`∆) (j, `)-phases, the total

time needed to maintain the ES-trees Tj,` in graphs Cj,` over the course of the algorithm is at most

Ô(n≤jhj∆
2) = Ô(m∆2). The total cost of maintaining such trees for all non-buffer sublayers of all

layers Λj is at most Ô(m∆2).

Supporting To-Core-Path queries. For convenience, we will slightly abuse notation. For each
non-buffer sublayer Λj,`, the ES-tree Tj,` is formally a subgraph of Cj,`, but we will treat Tj,` as a
subgraph of G[Λ≤j ] as follows. Each edge (sj,`, u) ∈Tj,` where u ∈ Uj,` corresponds to some edge

(u,w) ∈ E(Uj,`,Λ<j ∪ Λj,<`) ⊆ E(G[Λ≤j ]). Edges of the form (sj,`, u) ∈ Tj,`, where u ∈ K̂j,` do not
correspond to edges of G[Λ≤j ]. The remaining edges of Tj,` that are not incident to sj,` are edges
of G[Λ≤j ] by definition. For each buffer sublayer Λ−j = Λj,Lj , we will also define a subgraph Tj,`
as follows. For each u ∈ Λj,Lj′ , Tj,` contains the edge (u, v) where v is the (lexicographically) first
neighbor of u in Λ<j ∪ Λj,<Lj (v must exist by Claim 3.28). Note that Tj,` is a subgraph of G[Λ≤j ].

Now, in order to respond to To-Core-Path(u) query, where u ∈ Λj,`, we follow the simple path of length

O(log n) in Tj,` starting from u to a vertex of K̂j,`, or a vertex of Λ<j ∪ Λj,<`. If we reach a vertex

of K̂j,`, then we are done. Otherwise, we reach a vertex in some sublayer that lies above Λj,`, and
we continue the same process in that sublayer. The total number of such iterations is then bounded
by the total number of sublayers in the entire graph – at most O(log2 n). Observe that the paths
computed at different iterations may only intersect at their endpoints, because every vertex on such
a path, except for possibly the last vertex, lies in a single sublayer. Therefore, the concatenation of
these paths is a simple path. To conclude, given a query To-Core-Path(u), we can return a simple
path P of length O(log3 n) connecting u to a vertex in some core, in time O(|P |), such that P is
non-increasing with respect to the sublayers. In other words, if Pu = {u = u1, u2, . . . , uk}, then, for
each i, if ui ∈ Λj,`, then ui+1 ∈ Λ<j ∪ Λj,≤`.

Minimum Spanning Forest for Short-Path queries. For an index 1 ≤ j ≤ r, we denote T≤j =⋃
j′≤j,`≥1 Tj′,`. Recall that F≤j is the collection of all cores for layers Λ1, . . . ,Λj . Let K̂≤j =

⋃
K∈F≤j K

denote the union of all the cores in F≤j . Note that K̂≤j and T≤j subgraphs of G[Λ≤j ], and they do
not share any edges.

We maintain a fully dynamic minimum spanning forest Mj for the graph G[Λ≤j ], with the following
edge lengths. We assign weight 0 to all edges in K̂≤j , weight 1 to all edges of T≤j , and weight 2
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to all remaining edges of G[Λ≤j ]. The spanning forest Mj can be maintained using the algorithm of
[HdLT01], that has O(log4 n) amortized update time.

Additionally, we use the top tree data structure due to [AHdLT05], whose properties are summarized
in the following lemma.

Lemma 3.30 (Top Tree Data Structure from [AHdLT05]) The top tree data structure T is
given as input a forest F with weights on edges, that undergoes edge insertions and edge deletions
(but we are guaranteed that F remains a forest throughout the algorithm), and supports the following
queries, in O(log n) time per query:

• connect(x, y): given two vertices x and y, determine whether x and y are in the same connected
component of F (see Section 2.4 of [AHdLT05]);

• minedge(x, y): given two vertices x and y lying in the same connected component of F , return
a minimum-weight edge on the unique path connecting x to y in F (a variation of Theorem 4 of
[AHdLT05]);

• weight(x, y): given two vertices x and y lying in the same connected component of F , return the
total weight of all edges lying on the unique path connecting x to y in F (Lemma 5 of [AHdLT05]).

• jump(x, y, d): given two vertices x and y lying in the same connected component of F , return
the dth vertex on the unique path connecting x to y in F ; if the path connecting x to y contains
fewr than d vertices, return ∅ (Theorem 15 of [AHdLT05]).

The data structure has O(log n) worst-case update time.

For all 1 ≤ j ≤ r, we maintain the top tree data structure TMj for the forest Mj .

It is easy to see that the total time that is required for maintaining the minimum spanning forests
{Mj}rj=1 and their corresponding top tree data structures TMj is subsumed by other components of
the algorithm.

To conclude, the total update time of the LCD data structure for Theorem 3.4 is Ô(m1+1/q∆2+1/q(γ(n))O(q)).

3.12 Supporting Short-Path Queries

In this section, we fix an index 1 ≤ j ≤ r, and describe an algorithm for processing Short-Path(j, ·, ·)
queries. Recall that we have denoted K̂≤j =

⋃
K∈F≤j K and T≤j =

⋃
j′≤j,`≥1 Tj′,`. We start by

analyzing the structure of the spanning forest Mj .

Recall that T≤j is a forest, and every tree in this forest is rooted in a vertex of K̂≤j . Moreover, if a
vertex of T≤j does not serve as a tree root, then it does not lie in K̂≤j , and every vertex in Λ≤j \ K̂≤j
must lie in some tree in T≤j . Recall also that, from Lemma 3.27, the depth of every tree in T≤j is
bounded by O(log3 n).

Consider now some connected component C of graph G[Λ≤j ]. Let FC denote the collection of all
cores K ∈ F≤j with K ⊆ C, and let kC = |FC |. Recall that, from Observation 3.16, kC ≤
O(|V (C)|/(ϕ2hj)) = O(|V (C)|(γ(n))2/hj).

The following two observations easily follow from the properties of a minimum spanning tree.

Observation 3.31 Let C be a connected component of G[Λ≤j ], and let K ∈ FC be a core that
currently lies in F≤j and is contained in C. Then there is some connected sub-tree T ∗ of the forest
Mj that contains every vertex of K.
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Proof: Assume otherwise. Consider the sub-graph of Mj induced by the edges of E(K). Then this
graph is not connected, and moreover, there must be two connected components X and Y of this
graph, such that core K contains some edge e connecting a vertex of X to a vertex of Y . Adding
the edge e to Mj must create some cycle R. We claim that at least one edge on this cycle must have
weight greater than 0. Indeed, otherwise, every edge on cycle R lies in the core K, and so X and
Y cannot be two connected components of the subgraph of Mj induced by E(K). Since edge e has
weight 0, we have reached a contradiction to the minimality of the forest Mj .

Observation 3.32 Every edge of the forest T≤j belongs to Mj.

Proof: Assume for contradiction that this is not the case, and let T ′ be a tree of T≤j with E(T ′) 6⊆
E(Mj) As before, consider the sub-graph of Mj induced by the edges of E(T ′). This graph is not
connected, and, so there must be two connected components X and Y of this graph, such that tree T ′

contains some edge e connecting a vertex of X to a vertex of Y . Adding the edge e to Mj must create
some cycle R. We claim that at least one edge on this cycle must have weight 2. Indeed, otherwise,
every edge on cycle R has weight 0 or 1. This is impossible because tree T ′ contains exactly one vertex
that lies in a core of F≤j , and the only edges whose weight is 0 are edges that are contained in the
cores. Therefore, there must be some edge e′ on the cycle R that is incident to some vertex of T ′, is
not contained in T ′, and is not contained in any core of F≤j . The weight of such an edge then must
be 2. But, since the weight of the edge e is 1, this contradicts the minimality of Mj .

Consider again some connected component C of the graph G[Λ≤j ], and recall that Mj is a minimum
spanning forest of G[Λ≤j ]. Let MC

j ⊆ Mj be the unique tree in the forest Mj that is spanning C.

From the above two observations it is easy to see that, if we delete all weight-2 edges from MC
j , then

we will obtain kC connected components. Therefore, we obtain the following immediate corollary.

Corollary 3.33 For every connected component C of G[Λ≤j ], tree MC
j contains at most kC −1 edges

of weight 2.

Consider now any path P in the forest Mj . Recall that all edges of P have weights in {0, 1, 2}. For
x ∈ {0, 1, 2}, an x-block of the path P is a maximal subpath of P such that every edge on the subpath
has weight exactly x. We need the following observation on the structure of such paths.

Observation 3.34 Let P be any path in the spanning forest Mj, and let C be the connected component
of G[Λ≤j ] containing P . Then:

1. there are at most kC − 1 edges of weight 2 in P ;

2. the number of 0-blocks in P is at most kC ; and

3. the number of 1-blocks in P is at most 2kC , with each 1-block having length at most O(log3 n).

Proof: The first assertion follows immediately from Corollary 3.33, and the second assertion follows
immediately from Observation 3.31 and the fact that at most kC cores of F≤j are contained in C.

In order to prove the third assertion, let Σ be a collection of paths that is obtained by removing all
weight-2 edges from P . Then, from Corollary 3.33, |Σ| ≤ kC − 1. Moreover, since every tree in T≤j
contains exactly one vertex of K̂≤j , for each such path σ ∈ Σ, there is at most one core K ∈ F≤j ,
such that the edges of K lie on σ, and if such a core exists, then, from Observation 3.31, the edges
of K appear contiguously on σ. Therefore, every path σ contains at most two 1-blocks, and the total
number of 1-blocks on P is at most 2kC . Since every tree in T≤j has depth at most O(log3 n), the
length of each such 1-block is at most O(log3 n).
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The following corollary follows immediately from Observation 3.34 and the fact that for every con-
nected component C of Λ≤j , kC = O(|V (C)|(γ(n))2/hj).

Corollary 3.35 Let P be any path contained in the graph Mj, and let C be the connected component
of Λ≤j containing P . Then the total number of edges of P that have non-zero weight is at most
Õ(kC) ≤ Õ(|V (C)|(γ(n))2/hj).

We are now ready to describe an algorithm for processing a query Short-Path(j, u, v). Our first step
is to check whether u and v are connected in Mj . This can be done in time O(log n), using the
connect(u, v) query in the top tree TMj data structure. If u and v are not connected in Mj , then we
terminate the algorithm and report that u and v are not connected in G[Λ≤j ]. We assume from now
on that u and v are connected in Mj .

We denote by P the unique path connecting u and v in Mj . Note that our algorithm does not compute
the path P explicitly, as it may be too long. We think of the path P as being oriented from u to v. Let
B1, . . . , Bz be the sequence of all maximal 0-blocks on path P ; we assume that the blocks are indexed
in the order of their appearance on P . For 1 ≤ i ≤ z, we denote by bi and by b′i the first and the last
endpoint of Bi, respectively. For 1 ≤ i < z, let Ai be the sub-path of P connecting b′i to bi+1; let A0

be the sub-path of P connecting u to b1, and let Az be the sub-path of P connecting b′z to v. The
next step in our algorithm is to identify all endpoints of the 0-blocks on path P , that is, the algorithm
will find the parameter z (the number of the maximal 0-blocks on P ), and, for all 1 ≤ i ≤ z, it will
compute the endpoints bi, b

′
i of block B. We do so using queries minegdge, weight, and jump to the

top tree TMj data structure.

Specifically, we start by running query minedge(u, v) on the top tree TMj . Let e = (x, y) be the
returned edge. If the weight of the edge is greater than 0, then there are no 0-weight edges on path
P , and so we can skip the current step. Assume therefore that the weight of the edge e is 0. Let Bi
be the 0-block containing e (note that we do not know the index i). In order to find the first endpoint
bi of the 0-block Bi, we perform a binary search using queries jump(x, u, d) for various values of d. If
ad is the vertex returned in response to query jump(x, u, d), then we use query weight(x, ad) to find
the total weight of all edges on the sub-path of P connecting x to ad. If the returned weight is 0, then
we know that ad ∈ Bi, and we increase the value of d; otherwise, we know that the sub-path of P
between bi and x contains fewer than d edges, and we decrease d accordingly. Therefore, using binary
search, in O(log n) iterations, we can compute the endpoint bi of the block Bi, and we can compute
the other endpoint b′i of the block similarly. The total time needed to compute both endpoints is
therefore O(log2 n). Once we compute the endpoints bi, b

′
i, we recursively apply the same algorithm

to the sub-path of P connecting u to bi, and the sub-path of P connecting b′i to v. We conclude that
we can compute the number z of the maximal 0-blocks on path P , and the endpoints of these blocks,
in time O(z log2 n).

Once the endpoints of all 0-blocks are computed, we compute the paths A1, . . . , Az, using queries
jump(a, a′, 1). Lastly, for all 1 ≤ i ≤ z, we run query Short-Core-Path(Ki, bi, b

′
i), where Ki is the

core of F≤j containing bi and b′i, to compute a path B′i in core Ki that connects bi to b′i and has
length at most (γ(n))O(q). We then return a u-v path that is obtained by concatenating the paths
A1, B

′
1, A2, . . . , B

′
z, Az.

We use the following lemma to bound the length of the resulting path.

Lemma 3.36 Given query Short-Path(j, u, v), the above algorithm either correctly reports that u and
v are not connected in G[Λ≤j ] in time O(log n), or it returns a simple u-v path P ′ of length at most
O(|V (C)|(γ(n))O(q)/hj), in time O(|P ′| ·

(
γ(n))O(q)

)
, where C is the connected component of G[Λ≤j ]

containing u and v.
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Proof: It is immediate to see that, if u and v are not connected in G[Λ≤j ], then the algorithm
reports this correctly in time O(log n). Therefore, we assume from now on that some connected
component C of G[Λ≤j ] contains u and v. As before, we denote by P the unique u-v path in the
graph Mj . Note that, from Corollary 3.35, the total number of edges on P with non-zero weight is
at most Õ(|V (C)|(γ(n))2/hj). In particular, the number of maximal 0-blocks on P must be bounded
by z ≤ Õ(|V (C)|(γ(n))2/hj). Since we are guaranteed that, for all 1 ≤ i ≤ z, the length of the
path B′i is bounded by (γ(n))O(q), we conclude that the length of the returned path P ′ is at most
O(|V (C)|(γ(n))O(q)/hj).

In order to bound the running time, recall that detecting the endpoints of the 0-blocks takes time
O(z · log2 n). Computing all vertices on paths A1, . . . , Az takes time O(log n) per vertex. Lastly,
computing the paths B′1, . . . , B

′
z takes total time at most z · (γ(n))O(q). Altogether, the running time

is bounded by O(|P ′| ·
(
γ(n))O(q)

)
.

4 SSSP

This section is dedicated to the proof of Theorem 1.1. The main idea is identical to that of [CK19],
who use the framework of [Ber17], combined with a weaker version of the LCD data structure. The
improvements in the guarantees that we obtain follow immediately by plugging the new LCD data
structure from Section 3 into their algorithm. We still include a proof for completeness, since our
LCD data structure is defined somewhat differently. As is the standard practice in such algorithms,
we treat each distance scale separately. We prove the following theorem that allows us to handle a
single distance scale.

Theorem 4.1 There is a deterministic algorithm, that, given a simple undirected n-vertex graph G
with weights on edges that undergoes edge deletions, together with a source vertex s ∈ V (G) and
parameters ε ∈ (1/n, 1) and D > 0, supports the following queries:

• dist-queryD(s, v): in time O(1), either correctly report that distG(s, v) > 2D, or return an

estimate d̃ist(s, v). Moreover, if D ≤ distG(s, v) ≤ 2D, then distG(s, v) ≤ d̃ist(s, v) ≤ (1 +
ε)distG(s, v) must hold.

• path-queryD(s, v): either correctly report that distG(s, v) > 2D in time O(1), or return a s-v path
P in time Ô(|P |). Moreover, if D ≤ distG(s, v) ≤ 2D, then the length of P must be bounded by
(1 + ε)distG(s, v). Path P may not be simple, but an edge may appear at most once on P .

The total update time of the algorithm is Ô(n2/ε2).

We provide a proof of Theorem 4.1 below, after we complete the proof of Theorem 1.1 using it, via
standard arguments.

We will sometimes refer to edge weights as edge lengths, and we denote the length of an edge e ∈ E(G)
by `(e). We assume that the minimum edge weight is 1 by scaling, so the maximum edge weight is L.
For all 0 ≤ i ≤ dlog(Ln)e, we maintain a data structure from Theorem 4.1 with the distance parameter
Di = 2i. Therefore, the total update time of our algorithm is bounded by Ô(n2( logL

ε2
)), as required.

In order to respond to a query dist-query(s, v), we perform a binary search on the values Di, and run
queries dist-queryDi(s, v) in the corresponding data structure. Clearly, we only need to perform at
most O(log log(Ln)) such queries, in order to respond to query dist-query(s, v).
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In order to respond to path-query(s, v), we first run the algorithm for dist-query(s, v) in order to identify
a distance scale Di, for which Di ≤ distG(s, v) ≤ 2Di holds. We then run query path-queryDi(s, v) in
the corresponding data structure.

In order to complete the proof of Theorem 1.1, it now remains to prove Theorem 4.1, which we do in
the remainder of this section.

Recall that we have denoted by `(e) the length/weight of the edge e of G. We use standard edge-weight
rounding to show that we can assume that D = d4n/εe and that all edge lengths are integers between
1 and 4D. In order to achieve this, we discard all edges whose length is greater than 2D, and we set
the length of each remaining edge e to be `′(e) = d4n`(e)/(εD)e. For every pair u, v of vertices, let
dist′(u, v) denote the distance between u and v with respect to the new edge length values. Notice that
for all u, v, 4n

εDdist(u, v) ≤ dist′(u, v) ≤ 4n
εDdist(u, v) + n, since the shortest s-v path contains at most n

edges. Moreover, if dist(u, v) ≥ D, then n ≤ dist(u, v) · nD , so dist′(u, v) ≤ 4n
εDdist(u, v) + n

Ddist(u, v) ≤
4n
εDdist(u, v)(1 + ε/4). Notice also that, if D ≤ dist(u, v) ≤ 2D, then

⌈
4n
ε

⌉
≤ dist′(u, v) ≤ 4

⌈
4n
ε

⌉
.

Therefore, from now on we can assume that D = d4n/εe, and for simplicity, we will denote the new
edge lengths by `(e) and the corresponding distances between vertices by dist(u, v). From the above
discussion, all edge lengths are integers between 1 and 4D. It is now enough to prove Theorem 4.1 for
this setting, provided that we ensure that, whenever D ≤ dist(s, v) < 4D holds, we return a path of
length at most (1 + ε/2)dist(s, v) in response to query path-query(v).

The Algorithm. Let m denote the initial number of edges in the input graph G. We partition all
edges of G into λ = blog(4D)c classes, where for 0 ≤ i ≤ λ, edge e belongs to class i iff 2i ≤ `(e) < 2i+1.
We denote the set of all edges of G that belong to class i by Ei. Fix an index 1 ≤ i ≤ λ, and let Gi
be the sub-graph of G induced by the edges in Ei. We view Gi as an unweighted graph and maintain
the LCD data structure from Theorem 3.4 on Gi with parameter ∆ = 2 and q = log1/8 n using total
update time Ô(m1+1/q∆2+1/q) = Ô(m). Recall that γ(n) = exp(O(log3/4 n)).

We let α = (γ(n))O(q) = Ô(1) be chosen such that, in response to query Short-Path(j, u, v), the LCD
data structure must return a path of length at most |V (C)| · α/hj , where C denotes the connected
component of graph G[Λ≤j ] containing u and v. We use the parameter τi = 8nλα

εD ·2
i that is associated

with graph Gi. This parameter is used to partition the vertices of G into a set of vertices that are
heavy with respect to class i, and vertices that are light with respect of class i. Specifically, we

let Ui =
{
v ∈ V (Gi) | d̃egGi(v) ≥ τi

}
be the set of vertices that are heavy for class i, and we let

U i = V (Gi) \ Ui be the set of vertices that are light for class i.

Next, we define the heavy and the light graph for class i. The heavy graph for class i, that is denoted
by GHi , is defined as Gi[Ui]. In other words, its vertex set is the set of all vertices that are heavy for
class i, and its edge set is the set of all class-i vertices whose both endpoints are heavy for class i. The
light graph for class i, denoted by GLi , is defined as follows. Its vertex set is V (Gi), and its edge set
contains all edges e ∈ Ei, such that at least one endpoint of e lies in U i. Notice that we can exploit
the LCD data structure to compute the initial graphs GHi and GLi , and to maintain them, as edges are
deleted from G.

Our algorithm exploits the LCD data structure in two ways. First, observe that, from Observation 3.3,
for all 1 ≤ i ≤ λ, the total number of edges that ever belong to the light graph GLi over the course
of the algorithm is bounded by O(nτi). Additionally, we will exploit the Short-Path queries that the
LCD data structure supports.

Let ji be the largest integer, such that hji ≥ τi (recall that hj is the virtual degree of vertices in layer
Λj). Given a query Short-Path(ji, u, v) to the LCD data structure on Gi, where u and v lie in the same
connected component C of GHi , the data structure must return a simple u-v path in C, containing at
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most |V (C)|α
τi

edges. Abusing the notation, we denote this query by Short-Path(C, u, v) instead.

Let GL =
⋃λ
i=1G

L
i be the light graph for the graph G. Next, we define an extended light graph ĜL,

as follows. We start with ĜL = GL; the vertices of GL are called regular vertices. Next, for every
1 ≤ i ≤ λ, for every connected component C of GHi , we add a vertex vC to ĜL, that we call a special
vertex, or a supernode, and connect it to every regular vertex u ∈ V (C) with an edge of length 1/4.

For all 1 ≤ i ≤ λ, we use the CONN-SF data structure on graph GHi , in order to maintain its
connected components. The total update time of these connectivity data structures is bounded by
O(mλ) ≤ O(m logD).8 The following observation follows immediately from the assumption that all
edge lengths in G are at least 1.

Observation 4.2 Throughout the algorithm, for every vertex v ∈ V (G), distĜL(s, v) ≤ distG(s, v).

The following theorem was proved in [CK19]; the proof follows the arguments from [Ber17] almost
exactly.

Theorem 4.3 (Theorem 4.4 in [CK19]) There is a deterministic algorithm, that maintains an
approximate single-source shortest-path tree T of graph ĜL from the source s, up to distance 8D.
Tree T is a sub-graph of ĜL, and for every vertex v ∈ V (ĜL), with distĜL(s, v) ≤ 8D, the dis-
tance from s to v in T is at most (1 + ε/4)distĜL(s, v). The total update time of the algorithm is

Õ
(
nD
ε + |E(G)|+

∑
e∈E

D
ε`(e)

)
, where E(G) is the set of edges that belong to G at the beginning of the

algorithm, and E is the set of all edges that are ever present in the graph ĜL.

Recall that D = Θ(n/ε). Since, for all 1 ≤ i ≤ λ, the total number of edges of Ei ever present in ĜL is
bounded by O(nτi) = O

(
n · 8nλα

εD · 2i
)

= Ô(n · 2i) from Observation 3.3, and since the total number of

edges incident to the special vertices that are ever present in ĜL is bounded by O(nλ log n) = Õ(n),
we get that the running time of the algorithm from Theorem 4.3 is bounded by:

Õ

(
n2

ε2
+

λ∑
i=1

|Ei|D
ε · 2i

)
= Ô

(
n2

ε2

)
.

As other components take Ô(m) time, the total update time of the algorithm for Theorem 4.1 is
Ô(n2/ε2), as required. It remains to show how the algorithm responds to queries path-queryD(s, v)
and dist-queryD(s, v).

Responding to path-queryD(s, v). Given a query path-queryD(s, v), we start by computing the
unique simple s-v path P in the tree T given by Theorem 4.3. If vertex v is not in T , then clearly
distG(s, v) > 2D and so we report distG(s, v) > 2D. From now, we assume v ∈ T . Next, we transform
the path P in ĜL into an s-v path P ∗ in the original graph G as follows.

Let vC1 , . . . , vCz be all special vertices that appear on the path P . For 1 ≤ k ≤ z, let uk be the regular
vertex preceding vCk on P , and let u′k be the regular vertex following vCk on P . If Ck is a connected
component of a heavy graph GHi of class i, we use the query Short-Path(Ck, uk, u

′
k) in the LCD data

structure for graph Gi in order to to obtain a simple uk-u
′
k path Qk contained in Ck, that contains at

8We note that our setting is slightly different from that of [Ber17], who used actual vertex degrees and not their
virtual degrees in the definitions of the light and the heavy graphs. Our definition is identical to that of [CK19], though
they did not define the virtual degrees explicitly. However, they used Procedure Proc-Degree-Pruning in order to define
the heavy and the light graphs, and so their definition of both graphs is identical to ours, except for the specific choice
of the thresholds τi).
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most |V (Ck)|α
τi

(unweighted) edges. Then, we replace the vertex vCk with the path Qk on path P . As
we can find the path P in time O(|P |), by following the tree T , and since the query time to compute
each path Qk is bounded by |Qk| · (γ(n))O(q) = Ô(|Qk|), the total time to compute path P ∗ is bounded
by Ô(|E(P ∗)|).

We now bound the length of the path P ∗. Recall that, by Observation 4.2, path P has length
(1 + ε/4)distĜL(s, v) ≤ (1 + ε/4)distG(s, v). For each 1 ≤ i ≤ λ, let Ci = {Ck | vCj ∈ P and Ck is a
connected component of GHi }. Let Qi be the set of all corresponding paths Qk of Ck ∈ Ci. We can
bound the total length of all path in Qi as follows:∑

Q∈Qi

`(Q) ≤
∑
Ck∈Ci

|Qk| · 2i+1 ≤
∑
Ck∈Ci

|V (Ck)|α
τi

· 2i+1 ≤
∑
Ck∈Ci

|V (Ck)| ·
εD

4nλ
≤ εD

4λ

(we have used the fact that τi = 8nλα
εD ·2

i, and that all components in Ci are vertex-disjoint). Summing
up over all λ classes, the total length of all paths Qk corresponding to the super-nodes on path
P is at most εD/4. We conclude that `(P ∗) ≤ `(P ) + εD/4. If distG(s, v) ≥ D, we have that
`(P ∗) ≤ (1 + ε/4)distG(s, v) + εdistG(s, v)/4 = (1 + ε/2)distG(s, v). Notice that path P ∗ may not be
simple, since a vertex may belong to several heavy graphs GHi . However, for every edge e ∈ E(G),
there is a unique index i such that e ∈ Gi, and the sets of edges of the heavy graph GHi and the light
graph GLi are disjoint from each other. In particular, if e ∈ E(GHi ), then e 6∈ ĜL. Since path P is
simple, all graphs C1, . . . , Cz are edge-disjoint from each other, and their edges are also disjoint from
E(ĜL). We conclude that an edge may appear at most once on P ∗.

Responding to dist-queryD(s, v). Given a query dist-queryD(s, v), we simply return dist′(s, v) =
distT (s, v)+ εD/4 in time O(1). Recall that dist′(s, v) = distT (s, v)+ εD/4 ≥ `(P ∗) ≥ distG(s, v) (here,
P ∗ is the path that we would have returned in response to query path-queryD(s, v), though we only
use this path for the analysis and do not compute it expliclty). As before if distG(s, v) ≥ D, then,
from Observation 4.2, dist′(s, v) ≤ (1 + ε/2)distG(s, v).

5 APSP

In this section, we prove Theorem 1.2 by combining two algorithms. We use the function γ(n) =
exp(O(log3/4 n)) from Theorem 3.4.

The first algorithm, summarized in the next theorem, is faster in the large-distance regime:

Theorem 5.1 (APSP for large distances) There is a deterministic algorithm, that, given param-
eters 0 < ε < 1/2 and D > 0, and a simple unweighted undirected n-vertex graph G that undergoes
edge deletions, maintains a data structure using total update time of Ô

(
n3/(ε3D)

)
and supports the

following queries:

• dist-queryD(u, v): either correctly declare that distG(u, v) > 2D in O(log n) time, or return an
estimate dist′(u, v) in O(log n) time. If D ≤ distG(u, v) ≤ 2D, then distG(u, v) ≤ dist′(u, v) ≤
(1 + ε)distG(u, v) must hold.

• path-queryD(u, v): either correctly declare that distG(u, v) > 2D in O(log n) time, or return a u-v
path P of length at most 9D in Ô(|P |) time. If D ≤ distG(u, v) ≤ 2D, then |P | ≤ (1+ε)distG(u, v)
must hold.

The second algorithm is faster for the short-distance regime.
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Theorem 5.2 (APSP for small distances) There is a deterministic algorithm, that, given param-
eters 1 ≤ k < o(log1/8 n) and D > 0, and a simple unweighted undirected n-vertex graph G that
undergoes edge deletions, maintains a data structure using total update time Ô(n2+3/kD) and supports
the following queries:

• dist-queryD(u, v): in time O(1), either correctly establish that distG(u, v) > 2D, or correctly
establish that dist(u, v) ≤ 2k · 3D + (γ(n))O(k).

• path-queryD(u, v): either correctly establish that distG(u, v) > 2D in O(1) time, or return a u-v
path P of length at most 2k · 3D + (γ(n))O(k), in time O(|P |) + (γ(n))O(k).

We prove Theorems 5.1 and 5.2 below, after we complete the proof of Theorem 1.2 using them. Let
ε = 1/4, and D∗ = n0.5−1/k. For 1 ≤ i ≤

⌈
log1+ε n

⌉
, let Di = (1 + ε)i. For all 1 ≤ i ≤

⌈
log1+ε n

⌉
, if

Di ≤ D∗, then we maintain the data structure from Theorem 5.2 with the value D = Di, and the input
parameter k, and otherwise we maintain the data structure from Theorem 5.1 with the bound D = Di

and the parameter ε. Since, from the statement of Theorem 1.2, k ≤ o(log1/8 n) holds, it is easy to
verify that the total update time for maintaining these data structures is bounded by Ô(n2.5+2/k).

Given a query dist-query(u, v), we perform a binary search on indices i, in order to find an index for
which distG(u, v) > 2Di and distG(u, v) < 2k ·3Di+1 +(γ(n))O(k) hold, by querying the data structures

form Theorems 5.2 and 5.1. We then return d̃ist(u, v) = 2k · 3 ·Di+1 + (γ(n))O(k) as a response to the

query. Notice that we are guaranteed that d̃ist(u, v) ≤ 2k · 3 · distG(u, v) + Ô(1), as required. As there
are O(log n) possible values of Di, the query time is O(log n log log n).

Given a query path-query(u, v), we start by checking whether u and v are connected, for example by
running dist-queryD(u, v) query with D = (1 + ε)n on the data structure from Theorem 5.1. If u
and v are not connected, then we can report this in time O(log n). Otherwise, we perform a binary
search on indices i exactly as before, to find an index for which distG(u, v) > 2Di and distG(u, v) <
2k ·3Di+1+(γ(n))O(k) hold. Then, we use query in the appropriate data structure, path-queryDi+1

(u, v)

and obtain a u-v path P of length at most 2k · 3Di+1 + (γ(n))O(k) ≤ 2k · 3 · distG(u, v) + Ô(1), in time
Ô(|P |).

5.1 The Large-Distance Regime

The goal of this section is to prove Theorem 5.1. The algorithm easily follows by combining our
algorithm for SSSP with the algorithm of [GWN20] for APSP (that simplifies the algorithm of [FHN16]
for the same problem).

Data Structures and Update Time

Our starting point is an observation of [GWN20], that we can assume w.l.o.g. that throughout the edge
deletion sequence, the graph G remains connected. Specifically, we will maintain a graph G∗, starting
with G∗ = G. Whenever an edge e is deleted from G, as part of the input update sequence, if the
removal of e does not disconnect the graph G, then we delete e from G∗ as well. Otherwise, we ignore
this edge deletion operation, and edge e remains in G∗. It is easy to see that in the latter case, edge e
is a bridge in G∗, and will remain so until the end of the algorithm. It is also immediate to verify that,
if u, v are two vertices that lie in the same connected component of G, then distG(u, v) = distG∗(u, v).
Moreover, if P is any (not necessarily simple) path connecting u to v in graph G∗, such that an edge
may appear at most once on P , then P is also a u-v path in graph G.
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Throughout the algorithm, we use two parameters: Rc = εD/8 and Rd = 4D. We maintain the
following data structures.

• Data structure CONN-SF(G) for dynamic connectivity. Recall that the data structure has total
update time Õ(m), and it supports connectivity queries conn(G, u, v): given a pair u, v of vertices
ofG, return “yes” if u and v are connected inG, and “no” otherwise. The running time to respond
to each such query is O(log n/ log logn).

• A collection S ⊆ V (G) of source vertices, with |S| ≤ O(n/Rc) ≤ O(n/(εD));

• For every source vertex s ∈ S, the data structure from Theorem 4.1, in graph G∗, with source
vertex s, distance bound Rd, and accuracy parameter ε = 1/4.

Recall that the data structure from Theorem 4.1 has total update time Ô(n2/ε2). Since we will
maintain O(n/(εD)) such data structures, the total update time for maintaining them is Ô(n3/(ε3D)).

Consider now some source vertex s ∈ S, and the data structure from Theorem 4.1 that we maintain
for it. Since graph G is unweighted, all edges of G belong to a single class, and so the algorithm will
only maintain a single heavy graph (instead of maintaining a separate heavy graph for every edge
class), and a single light graph. In particular, this ensures that at any time during the algorithm’s
execution, all cores in

⋃
j Fj are vertex-disjoint. In order to simplify the notation, we denote the

extended light graph that is associated with graph G∗ by ĜL; recall that this graph does not depend
on the choice of the vertex s. Recall that, from Observation 4.2, throughout the algorithm, for every
vertex v ∈ V (G∗), distĜL(s, v) ≤ distG∗(s, v) holds. Additionally, the data structure maintains an

ES-Tree, that we denote by τ(s), in graph ĜL, that is rooted at the vertex s, and has depth Rd. We
say that the source s covers a vertex v ∈ V (G) iff the distance from v to s in the tree τ(s) is at most
Rc.

Our algorithm will maintain, together with each vertex v ∈ V (G), a list of all source vertices s ∈ S
that cover v, together with a pointer to the location of v in the tree τ(s). We also maintain a list of
all source vertices s′ ∈ S with v ∈ τ(s′), together with a pointer to the location of v in τ(s′). These
data structures can be easily maintained along with the trees τ(s) for s ∈ S. The total update time
for maintaining the ES-Trees subsumes the additional required update time.

We now describe an algorithm for maintaining the set S of source vertices. We start with S = ∅.
Throughout the algorithm, vertices may only be added to S, but they may never be deleted from
S. At the beginning, before any edge is deleted from G, we initialize the data structure as follows.
As long as some vertex v ∈ V (G) is not covered by any source, we select any such vertex v, add
it to the set S of source vertices, and initialize the data structure τ(v) for the new source vertex v.
This initialization algorithm terminates once every vertex of G is covered by some source vertex in S.
As edges are deleted from G and distances between vertices increase, it is possible that some vertex
v ∈ V (G) stops being covered by vertices of S. Whenever this happens, we add such a vertex v to the
set S of source vertices, and initialize the corresponding data structure τ(v). We need the following
claim.

Claim 5.3 Throughout the algorithm, |S| ≤ O(n/Rc) holds.

Proof: For a source vertex s ∈ S, let C(s) be the set of all vertices at distance at most Rc/2 from
vertex s in graph ĜL. From the algorithm’s description, and since the distances between regular
vertices in the graph ĜL may only grow over the course of the algorithm, for every pair s, s′ ∈ S of
source vertices, distĜL(s, s′) ≥ Rc holds throughout the algorithm, and so C(s) ∩ C(s′) = ∅. Since
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graph G∗ is a connected graph throughout the algorithm, so is graph ĜL. It is then easy to verify that,
if |S| ≥ 2, then for every source vertex s ∈ S, |C(s)| ≥ Ω(|Rc|) (we have used the fact that graph G is
unweighted, and so, in graph ĜL, all edges have lengths in {1/4, 1}). It follows that |S| ≤ O(n/Rc).

Responding to path-queryD(x, y) queries. Suppose we are given a query path-queryD(x, y), where
x, y are two vertices of G. Recall that our goal is to either correctly establishes that distG(x, y) > 2D,
or to return an x-y path P in G, of length at most 9D. We also need to ensure that, if D ≤ distG(x, y) ≤
2D, then |P | ≤ (1 + ε)distG(x, y).

Our first step is to use query conn(G, x, y) in data structure CONN-SF(G) in order to check whether
x and y lie in the same connected component of G. If this is not the case then we report that x and y
are not connected in G. Therefore, we assume from now on that x and y are connected in G. Recall
that the running time for query conn(G, x, y) is O(log n/ log log n).

Recall that our algorithm ensures that there is some source vertex s ∈ S that covers x. Therefore,
distĜL(s, x) ≤ Rc. It is also easy to verify that distĜL(x, y) ≤ distG∗(x, y) must hold. Therefore, if
distG(x, y) ≤ 2D, y ∈ τ(s) must hold. We can find the source vertex s that covers x and check whether
y ∈ τ(s) in time O(1) using the data structures that we maintain. If y 6∈ τ(s), then we are guaranteed
that distG(x, y) > 2D. We terminate the algorithm and report this fact.

Therefore, we assume from now on that y ∈ τ(s). We compute the unique simple x-y path P in the
tree τ(s), by retracing the tree from x and y until we find their lowest common ancestor; this can be
done in time O(|P |). The remainder of the algorithm is similar to that for responding to queries for
the SSSP data structure. We denote by vC1 , . . . , vCz the sequence of all special vertices that appear on
the path P . For 1 ≤ k ≤ z, let uk be the regular vertex preceding vCk on P , and let u′k be the regular
vertex following vCk on P . We then use queries Short-Path(Ck, uk, u

′
k) to the LCD data structure in

order to obtain a simple uk-u
′
k path Qk contained in Ck. Then, we replace the vertex vCk with the

path Qk on path P . As in the analysis of the algorithm for SSSP, the running time of this algorithm
is bounded by Ô(|E(P ∗)|), and the length of the path P ∗ is bounded by |P |+ εRd ≤ distG(x, y)+4εD.
Since |P | ≤ 2Rd ≤ 8D, this is bounded by 9D. Moreover, if D ≤ distG(x, y) ≤ 2D, then we are
guaranteed that the length of P ∗ is at most (1 + 4ε)distG(x, y). The running time of the algorithm is
O(log n) if it declares that distG(x, y) > 2D, and it is bounded by Ô(|P ∗|) if a path P ∗ is returned.
We note that every edge may appear at most once on path P ∗. Indeed, an edge of G∗ may belong
to the heavy graph, or to the extended light graph ĜL, but not both of them. Therefore, an edge of
P may not lie on any of the paths in {Q1, . . . , Qz}. Moreover, since path P is simple, the connected
components C1, . . . , Ck of the heavy graph are all disjoint, and so the paths Q1, . . . , Qz must he disjoint
from each other. Therefore, every edge may appear at most once on path P ∗. As observed before,
this means that P ∗ is contained in the graph G.

Responding to dist-queryD(x, y). The algorithm is similar to that for path-queryD(x, y). As before,
our first step is to use query conn(G, x, y) in data structure CONN-SF(G) in order to check whether x
and y lie in the same connected component of G. If this is not the case then we report that x and y
are not connected in G. Therefore, we assume from now on that x and y are connected in G. Recall
that the running time for query conn(G, x, y) is O(log n/ log log n).

As before, we find a source s that covers vertex x, and check whether y ∈ τ(s), in time O(1). If this is
not the case, then we correctly report that distG(x, y) > 2D, and terminate the algorithm. Otherwise,
we return an estimate dist′(x, y) = distĜL(x, s)+distĜL(y, s)+4εD. This can be done in time O(1), by
reading the distance labels of x and y in tree T (s). From the above arguments, we are guaranteed that
there is an x-y path P ∗ in G, whose length is at most dist′(x, y), so distG(x, y) ≤ dist′(x, y) must hold.
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Notice that distĜL(y, s) ≤ distĜL(x, s) + distĜL(x, y) ≤ Rc + distG(x, y). Therefore, dist′(x, y) ≤ 2Rc +
4εD+distG(x, y) ≤ 8εD+distG(x, y). Therefore, if distG(x, y) ≥ D, then dist′(x, y) ≤ (1+8ε)distG(x, y)
must hold.

In order to obtain the guarantees required in Theorem 5.1, we use the parameter ε′ = ε/8, and run the
algorithm described above while using ε′ instead of ε. It is easy to verify that the resulting algorithm
provides the desired guarantees.

5.2 The Small-Distance Regime

In this section, we prove Theorem 5.2. Recall that we are given a simple unweighted graph G under-
going edge deletions, a parameter k ≥ 1 and a distance scale D. We set ∆ = n1/k and q = 10k.

Our data structure is based on the LCD data structure from Theorem 3.4. We invoke the algorithm
from Theorem 3.4 on the input graph G, with parameters ∆ and q. Recall that the algorithm maintains
a partition of the vertices of G into layers Λ1, . . . ,Λr+1, and notice that r ≤ k+ 1. Let α = (γ(n))O(q)

be chosen such that, in response to the Short-Core-Path and To-Core-Path queries, the length of the
path returned by the LCD data structure is guaranteed to be at most α. For every index 1 < j ≤ r,
we define two distance parameters: Rdj called a distance radius and Rcj called a covering radius as
follows:

Rdj = 2r−j(3D + 2αk) and Rcj = Rdj − 2D.

Note that Rdj ≤ 2k−1 · 3D + 2kαk = O(D · (γ(n))O(k)) for all j > 1. (As Λ1 = ∅, we only give the
bound for all j > 1). Recall that the LCD data structure maintains a collection Fj of cores for each
level j > 1. We need the following key concept:

Definition. A vertex v ∈ Λj is a far vertex iff distG(v,Λ<j) > Rdj . A core K ∈ Fj is a far core iff

all vertices in K are far vertices, that is, distG(V (K),Λ<j) > Rdj .

Observe that once a core K becomes a far core, it remains a far core, until it is destroyed. This is
because distances in G are non-decreasing, and both Λ<j and V (K) are decremental vertex sets by
Theorem 3.4. At a high level, our algorithm can be described in one sentence:

Maintain a collection of ES-Trees of depth Rdj rooted at every far core in
⋃
j Fj .

Below, we describe the data structure in more detail and analyze its correctness.

5.2.1 Maintaining Far Vertices and Far Cores

In this subsection, we show an algorithm that maintains, for every vertex of G, whether it is a far
vertex. It also maintains, for every core of

⋃
j Fj , whether it is a far core. Fix a layer 1 < j ≤ r.

Let Zj be a graph, whose vertex set is V (G), and edge set contains all edges that have at least one
endpoint in set Λ≥j . Equivalently, E(Zj) contains all edges incident to vertices with virtual degree at
most hj . We construct another graph Z ′j by adding a source vertex sj to Zj , and adding, for every

vertex v ∈ Λ<j , an edge (s, v) to this graph. We maintain an ES-Tree T̂j in graph Z ′j , with root sj ,

and distance bound (Rdj + 1). Observe that v ∈ Λj is a far vertex iff v /∈ V (T̂j).

Notice that graph Z ′j , in addition to undergoing edge deletions, may also undergo edge insertions.
Specifically, when a vertex x is moved from from Λ<j to Λ≥j (that is, its virtual degree decreases from
above hj to at most hj), then we may need to insert all edges that are incident to x into Z ′j . Note that
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edges connecting x to vertices in Λ≥j already belong to Z ′j , so we only need to insert edges connecting
x to vertices of Λ<j . We insert all such edges Z ′j first, and only then delete the edge (sj , x) from Z ′j .
Observe that, for each such edge e = (x, y) ∈ E(x,Λ<j), inserting e into Z ′j may not decrease the
distance from sj to x, or the distance from sj to y, as both these distances are currently 1 and cannot
be further decreased. It then follows that the insertion of the edge e does not decrease the distance of
any vertex from sj . Therefore, the edge insertions satisfy the conditions of the ES-Tree data structure.

As the total number of edges that ever appear in Z ′j is O(nhj∆) by Observation 3.3, the total update

time for maintaining the data structure T̂j is bounded by O(nhj∆R
d
j ) = O(n2+1/kD(γ(n))O(k)) ≤

Ô(n2+1/kD) (we have used the fact that hj = ∆r−j , ∆ = n1/k, and r ≤ k + 1).

The above data structure allows us to maintain, for every vertex of G, whether it is a far vertex. For
every core K ∈

⋃
j Fj , we simply maintain the number of vertices of K that are far vertices. This

allows us to maintain, for every core K ∈
⋃
j Fj , whether it is a far core. The time that is required

for tracking this information is clearly subsumed by the time for maintaining T̂j . Therefore, the total
time that is needed to maintain the information about far vertices and far cores, over all layers j, is
bounded by Ô(n2+1/kD).

5.2.2 Maintaining ES-Trees Rooted at Far Cores

In this section, we define additional data structures that maintain ES-Trees that are rooted at the far
cores, and analyze their total update time. Fix a layer 1 < j ≤ r. Let K ∈ Fj be a core in layer j,
that is a far core. Let ZKj be the graph obtained from Zj by adding a source vertex sK , and adding,
for every vertex v ∈ V (K), an edge (sK , v). Whenever a core K is created in layer j, we check if K
is a far core. If this is the case, then we initialize an ES-Tree TK in graph ZKj , with source sK , and

distance bound (Rdj + 1). We maintain this data structure until core K is destroyed. Additionally,
whenever an existing core K becomes a far core for the first time, we initialize the data structure TK ,
and maintain it until K is destroyed.

Observe that graph ZKj may undergo both edge insertions and deletions. As before, an edge may be

inserted into ZKj only when some vertex x is moved from Λ<j to Λ≥j (recall that vertices may only
be removed from a core K after it is created). When vertex x moves from Λ<j to Λ≥j , we insert all
edges connecting x to vertices of Λ<j into the graph ZKj . We claim that the insertion of such edges
may not decrease the distance from sK to any vertex v ∈ V (TK). In order to see this, observe that,
since vertex x initially belonged to Λ<j , and core K was a far core, distG(V (K), x) > Rdj . As edges
are deleted from G and K, distG(V (K), x) may only grow. Therefore, when vertex x is moved to Λ≥j ,
its distance from the vertices of K remains greater than Rdj , and so distZKj

(sK , x) > Rdj + 1. As the

depth of TK is Rdj + 1, inserting the edges of E(x,Λ<j) does not affect the distances of the vertices
that belong to the tree TK from its root sK .

Since, from by Observation 3.3, the total number of edges that may ever appear in ZKj is O(nhj∆), the

total time required for maintaining the ES-Tree TK is O(nhj∆) · (Rdj + 1). By Theorem 3.4, the total
number of cores that are ever created in set Fj over the course of the entire algorithm the algorithm

is at most Ô(n∆/hj). Therefore, the total update time that is needed in order to maintain trees TK
for cores K ∈ Fj is bounded by:

O(nhj∆R
d
j ) · Ô(n∆/hj) = Ô(n2+2/kD(γ(n))O(k)) = Ô(n2+2/kD).

Summing this bound over all layers increases it by only factor O(log n).
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5.2.3 Total update time

We now bound the total update time of the algorithm. Recall that the total update tiem of the LCD
data structure is bounded by Ô(m1+1/q∆2+1/q ≤ Ô(mn3/k), as q = 10k and ∆ = n1/k. Each of the
remaining data structures takes total update time at most Ô(n2+2/kD). Therefore, the total update
time of the algorithm is bounded by Ô(n2+3/kD).

5.2.4 Responding to Queries

For any vertex v ∈ Λ≥j , we say that v is covered by an ES-Tree TK iff distZj (V (K), v) ≤ Rcj
(i.e. distZKj

(sK , v) ≤ Rcj + 1). For each v ∈ Λ≥j , we maintain a list of all ES-Trees TK that cov-

ers it. Within the list of v, we maintain the core K ∈ Fjv from the smallest layer index jv such that
TK covers v. These indices can be explicitly maintained using the standard dictionary data structure
such as balanced binary search trees. The time for maintaining such lists for all vertices is clearly
subsumed by the time for maintaining the ES-Trees.

Responding to path-queryD(u, v). Given a pair of vertices u and v, let Ku be the core from smallest
level ju such that TKu covers u and Kv be the core from smallest level jv such that TKvcovers v. Assume
w.l.o.g. that ju ≤ jv. If v /∈ TKu , then we report that distG(u, v) > 2D. Otherwise, compute the unique
u-v path P in the tree TKu . This can be done in time in time O(|P | log n), as follows. We maintain
two current vertices u′, v′, starting with u′ = u and v′ = v. In every iteration, if the distance of u′

from the root of TKu in tree TKu is less than the distance of v′ from the root, we move v′ to its parent
in the tree; otherwise, we move u′ to its parent. We continue this process, until we reach a vertex z
that is a common ancestor of both u and v′. We denote the resulting u-v path by P . Notice that so
far the running time of the algorithm is O(|E(P )|). Next, we consider two cases. First, if z is not
the root of the tree TKu , then P is a path in graph G, and we return P . Otherwise, the root of the
tree sKu lies on path P . We let a and b be the vertices lying immediately before and immediately
after sKu in P . We compute Q = Short-Core-Path(Ku, a, b) in time (γ(n))O(q). Finally, we modify
the path P by replacing vertex sKu with the path Q, and merging the endpoints a, b of Q with the
copies of these vertices on path P . The resulting path, that we denote by P ′, is a u-v path in graph
G. We return this path as the response to the query. It is immediate to verify that the query time is
O(|E(P )| log n) + (γ(n))O(q) = Ô(|P |).

We now argue that the response of the algorithm to the query is correct.

Let P ∗ be the shortest path between u and v in graph G. Let x be a vertex of P ∗ that minimizes the
index j∗ for which x ∈ Λj∗ ; therefore, V (P ∗) ⊆ Λ≥j∗ . We start with the following crucial observation.

Lemma 5.4 There is a far core K ′ in some level Λj′, with 1 < j′ ≤ j∗, such that distZj′ (V (K ′), x) ≤
Rcj′ −D.

Proof: Let x1 = x. We gradually construct a path connecting x1 to a vertex in a far core K ′, as
follows. First, using query To-Core-Path(x) of the LCD data structure, we can obtain a path of length
at most α, connecting x1 to a vertex a1 lying in some core K1, such that, if K1 ∈ Fj1 , then j1 ≤ j∗.
If K1 is a far core, then we are done. Otherwise, there is a vertex b1 in K1 which is not a far vertex.
By using a query Short-Core-Path(K1, a1, b1) of the LCD data structure, we obtain a path of length at
most α connecting a1 to b1 inside the core K1. As b1 is not a far vertex, there must be some vertex
x2 ∈ Λ<j1 , for which distZj1 (b1, x2) ≤ Rdj1 . We repeat the argument for x2 and subsequent vertices xi,
until we reach a vertex that lies in some far core K ′. Note that, if K ′ ∈ Fj′ , then j′ > 1 must hold,
as Λ1 = ∅. Observe that, for each i, the constructed paths that connect xi and ai, or connect ai to
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bi, or connect bi to xi+1, all lie inside Zj′ . By concatenating all these paths, we obtain a path in Zj′ ,
connecting x to a core of K ′. The length of the path is bounded by:

(2α+Rdj∗) + (2α+Rdj∗−1) + · · ·+ (2α+Rdj′+1) + α ≤ Rdj∗ +Rdj∗−1 + · · ·+Rdj′+1 + 2αk

= (3D + 2αk)(1 + 2 + · · ·+ 2r−(j′+1)) + 2αk

= (3D + 2αk)(2r−j
′ − 1) + 2αk

= Rdj′ − 3D

= Rcj′ −D

We conclude that that distZj′ (V (K ′), x) ≤ Rcj′ −D.

We assume w.l.o.g. that x is closer to u than v, that is, distG(u, x) ≤ distG(v, x). Assume that P ∗ has
length at most 2D. As x lies in P ∗ and V (P ∗) ⊆ Λ≥j∗ , we get that distZj∗ (u, x) ≤ 2D

2 = D. As Zj∗

is a subgraph of Zj′ , we conclude that distZj′ (u, x) ≤ distZj∗ (u, x) ≤ D. Using the triangle inequality
together with Lemma 5.4, we get that distZj′ (u, V (K ′)) ≤ distZj′ (u, x) + distZj′ (x, V (K ′)) ≤ Rcj′ . In
other words, tree TK′ must cover u. Recall that we have let Ku be the core lying in smallest level ju,
such that TKu covers u. Therefore, ju ≤ j′ which implies that V (P ∗) ⊆ Λ≥ju . Therefore, path P ∗ is
contained in Zju . Moreover, as Rdju = Rcju + 2D and |P ∗| ≤ 2D, vertex v must be contained in TKu as
well. If this is not the case, then we can conclude that |P ∗| > 2D. The same argument applies if the
index jv of the layer Λjv to which the core Kv belongs is smaller than ju.

Let P be the unique u-v path in the tree TKu . Clearly, |P | ≤ distTKu (sKu , u) + distTKu (sKu , v) ≤
2Rdju ≤ 2k · 3D + (γ(n))O(k). If the root vertex sKu of the tree does not lie on the path P , then path

P is a u-v path in graph G, whose length is bounded by 2k · 3D + (γ(n))O(k); the algorithm then
returns P . Otherwise, the algorithm replaces the vertex sKuwith the path Q returned by the query
Short-Core-Path(Ku, a, b) to the LCD data structure, where a and b are the vertices of P appearing
immediately before and after sKu on it. As |Q| ≤ α, the length of returned path is bounded by
2Rdju + α ≤ 2k · 3D + (γ(n))O(k).

Responding to dist-queryD(u, v). The algorithm for responding to dist-queryD(u, v) is similar. As
before, we let Ku be the core from smallest level ju such that TKu covers u, and we let Kv be the
core from smallest level jv such that TKvcovers v. Assume w.l.o.g. that ju ≤ jv. If v /∈ TKu , then
we report that distG(u, v) > 2D. Otherwise, we declare that dist(u, v) ≤ 2k · 3D + (γ(n))O(k). The
correctness of this algorithm follows immediately from the analysis of the algorithm for responding
to path-queryD(u, v). The algorithm can be implemented to run in time O(1) if we store, together
with every vertex v ∈ V (G), the list of the cores that cover v, sorted by the index j of the set Fj to
which the core belongs. It is easy to see that time that is required to maintain this data structure is
subsumed by the total update time of the algorithm that was analyzed previously.

A Proofs Omitted from Section 2

A.1 Proof of Observation 2.3: Degree Pruning

It is immediate that the degree of every vertex in graph H[A] is at least d. We now prove that A is
the unique maximal set with this property at any time. Assume for contradiction that at some time
there is a subset A′ ⊆ V (H) where every vertex in H[A′] has degree at least d but A′ 6⊆ A. Denote
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{v1, . . . , vr} = V (H) \A where the vertices are indexed in the order in which they were removed from
A. Then there must be some vertex v ∈ A′ \A. Let vi be such a vertex with the smallest index i. But
then v1, . . . , vi−1 6∈ A′, so vi must have fewer than d neighbors in A′, a contradiction.

B Proofs Omitted from Section 3

B.1 Proof of Observation 3.3: Bounding Number of Edges Incident to Layers

Fix some index 1 ≤ j ≤ r. In order to define an (hj∆)-orientation of E≥j , we first define an ordering ρ
of the vertices of V (G). Consider the following experiment. We run Alg-Maintain-Pruned-Set(G, hj−1)
in order to maintain the vertex set Aj−1, as G undergoes edge deletions. For a vertex v ∈ V (G), we
define its drop time to be the first time in the execution of this algorithm when v did not belong to
set Aj−1; if no such time exists, then the drop time of v is infinite. Recall that, from Observation 2.4,
if the drop time of v is finite and equal to t, then at time t, v had fewer than hj−1 = ∆hj neighbors
in Aj−1. We let ρ be the ordering of the vertices of V (G) by their drop time, from smallest to largest,
breaking ties arbitrarily. Notice that every edge in E≥j must have an endpoint with a finite drop time.
Consider now some edge e = (u, v) ∈ E≥j . If u appears before v in the ordering ρ, then we assign the
direction of the edge e to be from u to v; note that, from the definition of E≥j , the drop time of u must
be finite. This gives a (hj∆)-orientation for E≥j . It now follows immediately that |E≥j | ≤ ∆hjn.

Next, let Sj be the set of vertices that join the layer Λj at any time of the algorithm’s execution.
Observe that |Sj | ≤ n≤j must hold because virtual degrees may only decrease, and so |E≥j(Sj)| ≤
n≤j · hj∆. As the edges whose both endpoints are contained in Λj at any point of time must belong
to E≥j(Sj), the number of such edges is at most n≤jhj∆. We conclude that the number of edges e,
such that, at any time during the algorithm’s execution, both endpoints of e are contained in Λj is at
most n≤jhj∆.

B.2 Existence of Expanding Core Decomposition

The goal of this section is to prove the following theorem about the existence of a core decomposition
in a high-degree graph. We note that a theorem that is very similar in spirit (but different in the exact
definitions and parameters) was shown in [CK19], and the proof that we provide uses similar ideas.

Theorem B.1 (Expanding Core Decomposition) Let H be an n-vertex simple graph with mini-
mum degree at least h. There exists a collection F = {K1, . . . ,Kt} of vertex-disjoint induced subgraphs,
called expanding cores or just cores, where t = O((n log n)/h) such that

• Each core K ∈ F is a ϕ-expander and degK(u) ≥ ϕh/3 for all u ∈ V (K) where ϕ = Ω(1/ log n).
Moreover, K has diameter O((log n)/ϕ) and is (ϕh/3)-edge-connected.

• For each vertex u /∈
⋃
K∈F V (K), there are at least 2h/3 edge-disjoint paths of length O(log n)

from u to vertices in
⋃
K∈F V (K).

Proof: We start with the following two propositions.

Proposition B.2 Let G = (V,E) be an n-vertex m-edge graph. Then there is a partition V1, . . . , Vk
of V into disjoint sets, such that

∑k
i=1 δ(Vi) ≤ m/2, and for all 1 ≤ i ≤ k, G[Vi] is strong ϕ-expander

w.r.t. G where ϕ = Ω(1/ log n).
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Proof: The well-known ϕ-expander decomposition (e.g. Observation 1.1. of [SW19]) says that, given
any graph G = (V,E) with m edges (possibly with self-loops and multi-edges) and a parameter ϕ, there
exists a partition V1, . . . , Vk of V such that

∑k
i=1 δG(Vi) ≤ O(ϕm logm) and G[Vi] is a ϕ-expander.

Let G′ be obtained from G by adding, for each vertex v, degG(v) self-loops at v. We claim that
a ϕ-expander decomposition V ′1 , . . . , V

′
k of G′ where ϕ = Ω(1/ logm) is indeed the desired strong

expander decomposition for G. This is because, for any set ∅ 6= S ⊂ Vi, we have volG′[V ′i ](S) ≥

volG(S) because of the self-loops and δG′[Vi](S) = δG[Vi](S). So we have that
δG[V ′

i
](S)

min{volG(S),volG(V ′i \S)} ≥
δG′[V ′

i
](S)

min{volG′[V ′
i
](S),volG′[V ′

i
](Vi\S)} ≥ ϕ. That is, G[V ′i ] is indeed a strong ϕ-expander with respect to G. Also,

for each i, δG(V ′i ) = δG′(V
′
i ). So we have

∑k
i=1 δG(V ′i ) =

∑k
i=1 δG(V ′i ) ≤ O(ϕ · (2m) log(2m)) ≤ m/2

by choosing an appropriate constant in ϕ = Ω(1/ logm).

Proposition B.3 Let H ′ be an n-vertex graph with minimum degree h′. Then there is a collection
F ′ of vertex-disjoint induced subgraphs of H ′ that we call cores, such that:

• Each core K ∈ F ′ is a ϕ-expander and for all u ∈ V (K), degK(u) ≥ ϕh′, where ϕ = Ω(1/ log n);
and

•
∑

K∈F ′ |E(K)| ≥ 3|E(H ′)|/4.

Proof: We apply Proposition B.2 to graph H ′ to obtain a partition (V1, . . . , Vk) of V (H ′). We then
let F contain all graphs H ′[Vi] with |Vi| ≥ 2. Notice that, from Proposition B.2, each such graph
H ′[Vi] is a ϕ-expander. Moreover, from by Observation 2.1, for all u ∈ Vi, degG[Vi](u) ≥ ϕh′ Lastly,

observe that
∑

K∈F ′ |E(K)| = |E(H ′)| − (
∑k

i=1 δH′(Vi))/2 ≥ 3|E(H ′)|/4.

We are now ready to provide the algorithm for constructing the core decomposition, that will be used
in the proof of Theorem B.1.

The algorithm. We start with F ← ∅, H ′ ← H, and h′ ← h/3. LetA = Proc-Degree-Pruning(H ′, h′).
We set H ′ ← H ′[A], so that H ′ has minimum degree at least h′. Then, we apply Proposition B.3 to H ′

and obtain the collection F ′ of cores. We set F ← F ∪F ′ and delete all vertices in
⋃
K∈F ′ V (K) from

H ′. Then, we again set A = Proc-Degree-Pruning(H ′, h′) and repeat this process until H ′ = ∅. Let F
be the final collection of cores that the algorithm computes. We now prove that it has all required
properties.

The first guarantee. Proposition B.3 directly guarantees that each coreK ∈ F is a ϕ-expander, and
moreover, for all u ∈ V (K), degK(u) ≥ ϕh′. By the standard ball-growing argument, any ϕ-expander
has diameter at most O(log(n)/ϕ) = O(log2 n). Next, to prove that K is (ϕh′)-edge connected, it
is enough show that, for any vertex set S ⊆ V (K) with volK(S) ≤ vol(K)/2, δK(S) ≥ ϕh′ holds.
Observe that, since K is a ϕ-expander, δK(S) ≥ ϕvolK(S) ≥ ϕ2h′|S| must hold. At the same time,
since the minimum degree in K is at least ϕh′ and K is a simple graph, δK(S) ≥ ϕh′|S| −

(|S|
2

)
must

hold. We now consider two cases. First, if |S| ≥ 1/ϕ, then ϕ2h′|S| ≥ ϕh′. Otherwise, it can be verified
that ϕh′|S| −

(|S|
2

)
≥ ϕh′ for all 1 ≤ |S| < 1/ϕ. In any case, δK(S) ≥ ϕh′.

The second guarantee. We denote U = V (H) \
⋃
K∈F V (K). Note that v ∈ U only if, for some

graph H ′ that arose over the course of the algorithm, v 6∈ A, where A = Proc-Degree-Pruning(H ′, h′).
We say that vertex v was removed when procedure Proc-Degree-Pruning was applied to that graph
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H ′. By orienting edges incident to v towards v whenever v is removed, we can orient all edges of H

incident to the vertex set U such that in-degH(v) ≤ h′ for each v ∈ U . Let
−→
H be a directed graph

obtained from H by contracting all vertices in
⋃
K∈F V (K) into a single vertex t, while keeping the

orientation of edges incident to U . Observe that V (
−→
H ) = U ∪ {t} and

−→
H is a DAG with t as a single

sink. It is now enough to show that, for every vertex u ∈ U , there are 2h/3 edge-disjoint directed

paths of length O(log n) in
−→
H from u to t.

For any S ⊆ V (
−→
H ), let in-vol−→

H
(S) =

∑
u∈S in-deg−→

H
(u), out-vol−→

H
(S) =

∑
u∈S out-deg−→

H
(u), and

vol−→
H

(S) = in-vol−→
H

(S) + out-vol−→
H

(S). Observe that, for v ∈ U , out-deg−→
H

(v) ≥ 2in-deg−→
H

(v) because
in-deg−→

H
(v) ≤ h′ = h/3 but deg−→

H
(v) ≥ h. So, for any S ⊆ U , out-vol−→

H
(S) ≥ 2in-vol−→

H
(S).

Fix a vertex u ∈ U . Let Bd = {v | dist−→
H

(u, v) ≤ d}. Suppose that Bd ⊆ U , then we have

vol−→
H

(Bd+1) = vol−→
H

(Bd) + vol−→
H

(Bd+1 \Bd)
≥ vol−→

H
(Bd) + |E−→

H
(Bd, Bd+1 \Bd)|

= vol−→
H

(Bd) + |E−→
H

(Bd, Bd+1)| − |E−→
H

(Bd, Bd)|
≥ vol−→

H
(Bd) + out-vol−→

H
(Bd)− in-vol−→

H
(Bd)

≥ vol−→
H

(Bd) + vol−→
H

(Bd)/3 = (4/3)vol−→
H

(Bd)

where the last inequality is because out-vol−→
H

(Bd) ≥ 2in-vol−→
H

(Bd). This proves that t ∈ B3 log4/3 n,

otherwise vol−→
H

(B3 log4/3 n) ≥ (4/3)3 log4/3 n ≥ n3 which is a contradiction. This implies that there

is a directed u-t path P of length O(log n) in
−→
H , but we want to show that there are many such

edge-disjoint paths.

Observe that the argument above only exploits the fact that out-deg−→
H

(v) ≥ 2in-deg−→
H

(v) for all v ∈ U .

So even if we remove edges of a u-t path P from
−→
H , this inequality still holds for all v ∈ U \ {u}.

As we can assume that in-deg−→
H

(u) = 0 because in-coming edges to u do not play a role for finding
u-t paths, we also have out-deg−→

H
(u) ≥ 2in-deg−→

H
(u) = 0. Therefore, we can repeat the argument

out-deg−→
H

(u) ≥ h − h′ ≥ 2h/3 times, and obtains 2h/3 edge-disjoint u-t paths in
−→
H . So we conclude

that, for each vertex u ∈ U = V (H) \
⋃
K∈F V (K), there are 2h/3 edge-disjoint paths of length

O(log n) from u to vertices in
⋃
K∈F V (K).

B.3 Proof of Theorem 3.6: Strong Expander Decomposition

We will use the recent almost-linear time determinstic algorithm for computing a (standard) expander
decomposition by Chuzhoy et al. [CGL+19].

Theorem B.4 (Restatement of Corollary 7.7 from [CGL+19]) There is a deterministic algo-
rithm that, given a graph G = (V,E) with m edges (possibly with self-loops and parallel edges), a
parameter ϕ ∈ (0, 1), and a number r ≥ 1, computes a partition of V into disjoint subsets V1, . . . , Vk
such that

∑k
i=1 δG(Vi) ≤ ϕm · (logm)O(r2), and for all 1 ≤ i ≤ k, G[Vi] is a ϕ-expander. The running

time of the algorithm is O(m1+O(1/r)+o(1) · (logm)O(r2)).

We can now complete the proof of Theorem 3.6 using Theorem B.4. Given an input graph G = (V,E)
for Theorem 3.6, we construct a graph G′ as follows. We start by setting G′ ← G and, for each
vertex v ∈ V , we add degG(v) self-loops to it in G′. We then apply Theorem B.4 to graph G′, with
parameters ϕ and r = log1/4m, to obtain a partition of V (G′) into disjoint subsets V1, . . . , Vk such
that

∑k
i=1 δG′(Vi) ≤ (log |E(G′)|)O(r2) · ϕ · |E(G′)|, and for all 1 ≤ i ≤ k, G′[Vi] is a ϕ-expander.
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First, observe that for each i, δG(Vi) = δG′(Vi) because G and G′ differ only by self-loops. So we have∑k
i=1 δG(Vi) = (log |E(G′)|)O(r2) · ϕ · |E(G′)| ≤ γ(m)ϕm.

Second, observe that, for any set ∅ 6= S ( Vi, volG′[Vi](S) ≥ volG(S) because of the self-loops in G′,

and δG′[Vi](S) = δG[Vi](S). So we have that
δG[Vi]

(S)

min{volG(S),volG(Vi\S)} ≥
δG′[Vi]

(S)

min{volG′[Vi]
(S),volG′[Vi]

(Vi\S)} ≥ ϕ.

That is, for each i, G[Vi] is indeed a strong ϕ-expander with respect to G. Therefore, we can simply
return the partition {V1, . . . , Vk} as an output for Theorem 3.6. The running time is O(m1+O(1/r)+o(1) ·
(logm)O(r2)) = Ô(m) by Theorem B.4.

B.4 Proof of Theorem 3.8: Embedding Small Expanders

In this section we prove Theorem 3.8. The proof uses the cut-matching game, that was introduced by
Khandekar, Rao, and Vazirani [KRV09] as part of their fast randomized algorithm for the Sparsest
Cut and Balanced Cut problems. Chuzhoy et al. [CGL+19] provided an efficient deterministic im-
plementation of this game (albeit with weaker parameters), based on a variation of this game due to
Khandekar et al. [KKOV07]. We start by describing the variant of the Cut-Matching game that we
use, that is based on the results of [CGL+19].

B.4.1 Deterministic Cut-matching Game

The cut-matching game is a game that is played between two players, called the cut player and
the matching player. The game starts with a graph W whose vertex set V has cardinality n, and
E(W ) = ∅. The game is played in rounds; in each round i, the cut player chooses a partition (Ai, Bi)
of V with |Ai| ≤ |Bi|. The matching player then chooses an arbitrary matchings Mi that matches
every vertex of Ai to some vertex of Bi. The edges of Mi are then added to Wi, completing the
current round. Intuitively, the game terminates once graph W becomes a ψ-expander, for some given
parameter ψ. It is convenient to think of the cut player’s goal as minimizing the number of rounds,
and of the matching player’s goal as making the number of rounds as large as possible. We prove the
following theorem, that easily follows from [CGL+19].

Theorem B.5 (Deterministic Algorithm for Cut Player) There is a deterministic algorithm,
that, for every round i ≥ 1, given the graph W that serves as input to the ith round of the cut-
matching game, produces, in time O(nγ(n)), a partition (Ai, Bi) of V with |Ai| ≤ |Bi|, such that,
no matter how the matching player plays, after R = O(log n) rounds, the resulting graph W is a
1/γ(n)-expander.

Proof: For the sake of the proof, it is more convenient to work with the notion of sparsity instead of
conductance.

Definition. (Sparsity) The sparsity Ψ(G) of a graph G = (V,E) is the minimum, over all vertex
sets S ⊆ V with 1 ≤ |S| ≤ |V \ S|, of δ(S)/|S|.

From the definition, it is immediate to see that, if a graph G has maximum degree d, then Φ(G) ≤
Ψ(G) ≤ d · Φ(G). In particular, if Ψ(G) ≥ ϕ′ for any parameter ϕ′, then G is a (ϕ′/d)-expander.
Clearly, for any subgraph H ⊆ G with V (H) = V (G), Ψ(H) ≤ Ψ(G) must hold. We need the
following observation:

Observation B.6 (Observation 2.3 of [CGL+19]) Let G = (V,E) be an n-vertex graph with
Ψ(G) ≥ ψ, and let G′ be another graph that is obtained from G by adding to it a new set V ′ of
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at most n vertices, and a matching M connecting every vertex of V ′ to a distinct vertex of G. Then
Ψ(G′) = Ω(ψ).

In order to implement the algorithm of the cut player, we will employ the following algorithm by
[CGL+19]:

Theorem B.7 (Theorem 1.6 of [CGL+19]) There is a deterministic algorithm, called CutOrCertity,
that, given an n-vertex graph G = (V,E) with maximum vertex degree O(log n), and a parameter r ≥ 1,
returns one of the following:

• either a cut (A,B) in G with n/4 ≤ |A| ≤ |B| and |EG(A,B)| ≤ n/100; or

• a subset S ⊆ V of at least n/2 vertices, such that Ψ(G[S]) ≥ 1/ logO(r) n.

The running time of the algorithm is O(n1+O(1/r) · (log n)O(r2)).

The following lemma (first proved by [KKOV07]) shows that it is impossible for the cut player to
return a balanced sparse cut for more than O(log n) iterations of the cut-matching game.

Lemma B.8 (Restatement of Theorem 2.5 of [CGL+19]) There is a constant c, for which the
following holds. Consider the cut-matching game where in each iteration 1 ≤ i ≤ c log n, we use
Algorithm CutOrCertity in order to implement the cut player; specifically, if the algorithm returns
a partition (Ai, Bi) of V with |EW (Ai, Bi)| ≤ n/100 and n/4 ≤ |Ai| ≤ |Bi|, then we let (A′i, B

′
i) be

any partition of V with A′i ⊆ Ai and |A′i| = |B′i|, and we use the partition (A′i, B
′
i) as the response of

the cut player in round i. Otherwise, we terminate the cut-matching game. Then no matter how the
matching player plays in each iteration, the game will be terminated before reaching iteration bc log nc.

We are now ready to complete the proof of Theorem B.5. In each iteration 1 ≤ i ≤ O(log n) of the
cut-matching game, we apply algorithm CutOrCertity to graph Wi−1 (where W0 is the initial graph
with E(W ) = ∅), with the parameter r = O(log1/4 n). Since the edge set E(Wi−1) is the union of
i − 1 matchings, graph Wi−1 it has maximum degree at most i − 1. We will ensure that the number
of rounds is bounded by O(log n), so graph Wi−1 is a valid input for CutOrCertity.

If CutOrCertity returns a cut (Ai, Bi) with EWi−1(Ai, Bi) ≤ n/100 and n/4 ≤ |Ai| ≤ |Bi|, then we
output an arbitrary partition (A′i, B

′
i) of V with A′i ⊆ Ai and |A′i| = |B′i|. By Lemma B.8, this can

happen for at most O(log n) iterations, regardless of the responses of the matching player. Otherwise,
if CutOrCertity returns a subset S ⊆ V of at least n/2 vertices, with Ψ(Wi−1[S]) ≥ 1/ logO(r) n, we
output the partition (Ai, Bi), where Ai = V \S and Bi = T . Let Mi be the matching returned by the
matching player, that matches every vertex of V \S to a distinct vertex of S. We are then guaranteed

that the graph Wi = Wi−1 ∪Mi is a ϕ′-expander, where ϕ′ = 1/ logO(r) n = 1/(log n)O(log1/4 n) ≥ γ(n)
(recall that γ(n) = exp(log3/4 n); we have also used the fact that the maximum vertex degree in Wi is
at most O(log n)). We conclude that Wi is a (1/γ(n))-expander.

The running time of the algorithm is dominated by Algorithm CutOrCertity, whose running time
is O(n1+O(1/r) · (log n)O(r2)) = O(nγ(n)). This completes the proof of Theorem B.5.

In order to complete the proof of Theorem 3.8, we next provide an efficient deterministic algorithm
for the cut player. The idea (that is quite standard) is that, in addition to producing the required
matching Mi in each round of the game, the cut player will also embed the edges of Mi into the graph
G, where the embedding paths have a relatively short length and cause a relatively small congestion.

51



B.4.2 Implementing the Matching Player

There are well-known efficient algorithms, that, given a ϕ-expander G = (V,E), and any two vertex
subsets A,B ⊆ V , compute a large collection of paths between vertices of A and vertices of B, that
cause congestion Õ(1/ poly(ϕ)), such that every path has length Õ(1/ poly(ϕ)). We will use such an
algorithm in order to implement the matching player. The algorithm is summarized in the following
theorem, that uses the approach of [CK19, CGL+19]. We include the proof for completeness.

Theorem B.9 There is a deterministic algorithm, that we call TerminalMatching(G,A,B, ϕ),
that receives as input a parameter ϕ ∈ (0, 1), a ϕ-expander G = (V,E) with m edges, and two subsets
A,B ⊆ V of vertices of G called terminals, with |A| ≤ |B|. The algorithm returns a matching M
between vertices of A and vertices of B of cardinality |A|, and a set P of paths of length at most
O(log n/ϕ) each, embedding the matching M into G with edge-congestion O(log2 n/ϕ2). The running
time of the algorithm is Õ(m/ϕ3).

The remainder of this subsection is dedicated to proving Theorem B.9. The proof is almost identical
to that in [CGL+19]. The key subroutine that is used in the proof is the following lemma.

Lemma B.10 There is a deterministic algorithm, that, given an m-edge graph G = (V,E), two
disjoint subsets A′, B′ of its vertices with |A′| ≤ |B′|, and an integer ` ≥ 32 logm, computes one of the
following:

• either a matching M ′ between vertices of A′ and vertices of B′ with |M ′| ≥ |A′| · 8 logm
`2

, together
with a collection P ′ paths of length at most ` each that embed M ′ into G with edge-congestion 1;
or

• a cut (X,Y ) in G with ΦG(X,Y ) ≤ 24 logm/`.

The running time of the algorithm is Õ(`|E(G)|).

Proof: We can assume w.l.o.g. that the graph G is connected, as otherwise we can compute a cut
(X,Y ) with conductance zero in time O(m). Next, we create an auxiliary graph Gst as follows. We
start with graph G, and then add a source vertex s that connects with an edge to every vertex of A′,
and a sink vertex t, that connects with an edge to every vertex of B′. We then initialize an ES-Tree
data structure on graph Gs,t, with source vertex s, and distance threshold ` + 2. We denote by T
the shortest-path tree rooted at s that the data structure maintains. We also initialize P ′ = ∅ and
M ′ = ∅.

The algorithm performs iterations, as long as distGst(s, t) ≤ `+ 2 and |P ′| < 8|A′| logm
`2

hold.

In order to execute an iteration, let Pst be the shortest s-t path in T . Observe that path P ′ = Pst\{s, t}
is a simple path in graph G, of length at most `, connecting some vertex a′ ∈ A′ to some vertex b′ ∈ B′.
We delete the edges of Pst from Gst and update the ES-Tree data structure accordingly. Also, we add
the path Pst \ {s, t} to set P ′ and set A′ ← A′ \ {a′} and B′ ← B′ \ {b′}. Lastly, we add (a′, b′) to M ,
and continue to the next iteration.

Notice that the total running time of the algorithm so far is O(m`), by the guarantees of the ES-Tree
data structure.

We now consider two cases. First, if, when the above algorithm terminates, |P ′| = 8|A′| logm
`2

holds,

then we return the matching M ′ and the paths set P ′. Clearly, |M ′| ≥ |A′| · 8 logm
`2

holds, the paths in
P ′ are edge-disjoint (so they cause edge-congestion 1), and the length of every path is at most `.
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Therefore, we assume from now on that, when the above algorithm terminates, |P ′| < 8|A′| logm
`2

holds,
and so, from the algorithm description, distGst(s, t) > ` + 2. In particular, distGst(A

′, B′) > ` now
holds, where distGst(A

′, B′) = mina′∈A′,b′∈B′ distGst(a
′, b′). We use the following standard claim:

Claim B.11 There is a deterministic algorithm, that, given an m-edge graph H with two sets S, T of
its vertices, such that distH(S, T ) > ` for some parameter `, computes a vertex set Z with ΦH(Z) <
8 logm
` , and volH(Z) ≤ vol(H)/2, such that either S ⊆ Z or T ⊆ Z hold. The running time of the

algorithm is O(m).

Proof: For any vertex set X ⊆ V (H) and a parameter d, let BallH(X, d) = {u | distH(X,u) ≤ d}.
Note that we are guaranteed that BallH(S, `/3) ∩ BallH(T, `/3) = ∅. Therefore, we can assume
w.l.o.g. that vol(BallH(S, `/3)) ≤ vol(H)/2. We claim that there must be an index 0 ≤ i ≤ `/3 such
that δ(BallH(S, i)) ≤ 8 logm

` · vol(BallH(S, i)). Indeed, assume otherwise. Then vol(BallH(S, `/3)) ≥
(1 + 8 logm

` )`/3 > vol(H)/2 which is a contradiction. We can compute the index i and the vertex set
Z = BallH(S, i) by performing breadth-first search from vertices of S and vertices of T , in time O(m).
It is now easy to verify that ΦH(Z) < 8 logm

` , volH(Z) ≤ vol(H)/2, and either S ⊆ Z or T ⊆ Z hold.

We are now ready to complete the proof of Lemma B.10. Let H = Gst \ {s, t}. We invoke Claim B.11
on graph H, with the sets A′ and B′ of vertices, and obtain a cut Z. We claim that ΦG(Z) < 24 logm

` .
Indeed, let E1 denote the set of all edges lying on the paths in P ′, and let E2 denote the set of all edges
in δG(Z) \E1. From the guarantees of Lemma B.10, |E2| ≤ 8 logm

` · volH(Z) ≤ 8 logm
` · volG(Z). Let k

denote the cardinality of the set A′ at the beginning of the algorithm. Since |P ′| < 8k logm
`2

< k
2 (as we

have assumed that ` ≥ 32 logm), we get that |A′| ≥ k/2, and in particular, volG(Z) ≥ |A′| ≥ k/2.

In order to complete the proof that ΦG(Z) < 24 logm
` , it is now enough to show that |E1| ≤ 16 logm

` ·
volG(Z). Indeed, recall that the length of every path in P ′ is bounded by `, and |P ′| < 8k logm

`2
.

Therefore:

|E1| ≤ ` · |P ′| <
8k logm

`
.

Since we have established that volG(Z) ≥ k/2, we get that |E1| < 16 logm
` volG(Z). We conclude that

EG(Z) ≤ 24 logm
` volG(Z), as required.

As the total running time of the algorithm is bounded byO(m`), this concludes the proof of Lemma B.10.

We obtain the following corollary of Lemma B.10.

Corollary B.12 There is a deterministic algorithm, that, given an m-edge graph G = (V,E), two
disjoint subsets A,B of its vertices with |A| ≤ |B|, and a parameter ` ≥ 32 logm, computes one of the
following:

• either a matching M between vertices of A and vertices of B with |M | = |A|, and a collection P
of paths of length at most ` each, that embeds M into G with congestion at most `2; or

• a cut (X,Y ) in G where ΦG(X,Y ) ≤ 24 logm/`.

The running time of the algorithm is Õ(`3m).

Proof: We start with M = ∅ and P = ∅, and then iterate. In every iteration, we let A′ ⊆ A and
B′ ⊆ B be the subsets of vertices that do not participate in the matching M ; since |A| ≤ |B|, we
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are guaranteed that |A′| ≤ |B′|. If A′ = ∅, then we terminate the algorithm, and return the current
matchings M and its embedding P that we have computed. Otherwise, we apply the algorithm
from Lemma B.10 to graph G and vertex sets A′, B′. If the outcome is a cut (X,Y ) in G with
ΦG(X,Y ) ≤ 24 logm/`, then we terminate the algorithm, and return the cut (X,Y ). Therefore, we
assume from now on that, whenever Lemma B.10 is called, it returns a matching M ′ between A′ and

B′ with |M ′| ≥ 8|A′| logm
`2

, and its corresponding embedding P ′ with congestion 1 and length `. We
then add the paths in P ′ to P, and we add the matching M ′ to M , and continue to the next iteration.

As |M ′| ≥ 8|A′| logm
`2

in every iteration, after `2 iterations, we must have A′ = ∅, and the algorithm will
terminate. Notice that the congestion of the final path set P is bounded by the number of iterations,
`2. Moreover, since the running time of each iteration is Õ(`m), the total running time of the algorithm
is Õ(`3m).

We are now ready to complete the proof of Theorem B.9. We set ` = 32 logm/ϕ, and then run the
algorithm from Corollary B.12 on graph G, with vertex sets A and B. As graph G is a ϕ-expander,
the algorithm for Theorem B.9 may never return a cut (X,Y ) with ΦG(X,Y ) ≤ 24 logm/` < ϕ.
Therefore, the algorithm must return a matching M between the vertices of A and the vertices of B
of cardinality |A|, together with its embedding P, whose congestion is `2 = O(log2m/ϕ2), such that
the length of every path in P is bounded by ` = O(logm/ϕ). The total running time of the algorithm
is Õ(`3m) = Õ(m/ϕ3).

B.4.3 Completing the Proof of Theorem 3.8.

We are now ready to complete the proof of Theorem 3.8. We run the cut-matching game on a graph
W whose vertex set is the set T of terminals, and the edge set is initially empty. In every round i of the
game, we use the algorithm from Theorem B.5 to compute a partition (Ai, Bi) of T with |Ai| ≤ |Bi|,
that we treat as the move of the cut player. Then we apply Algorithm TerminalMatching from
Theorem B.9 to graph G, and the sets Ai and Bi of vertices. We denote by Mi the matching returned
by the algorithm, and by Pi its embedding. We then add the edges of Mi to graph W and continue
to the next iteration. From Theorem B.5, after O(log |T |) iterations, graph W is guaranteed to be
a (1/γ(|T |))-expander. Since the edge set E(W ) is a union of O(log |T |) matchings, every vertex of
W has degree at most O(log |T |). We also compute an embedding P =

⋃
i Pi of W into G, where

every path in P has length O(log(n)/ϕ). Moreover, since each path set Pi causes edge congestion at
most O(log2(n)/ϕ2), the congestion of the embedding P is at most O(log3(n)/ϕ2). Lastly, it remains
to bound the running time of the algorithm. Recall that the algorithm consists of O(log n) rounds.
In every round we apply the algorithm from Theorem B.5, whose running time is O(nγ(n)), and
Algorithm TerminalMatchingfrom Theorem B.9, whose running time is Õ(m/ϕ3). Therefore, the
total running time of the algorithm is bounded by Õ

(
m/ϕ3 + |T |γ(|T |)

)
= Õ

(
mγ(|T |)/ϕ3

)
. This

concludes the proof of Theorem 3.8.

C Application: Maximum Bounded-Cost Flow

In this section, we provide an algorithm for the Maximum Bounded-Cost Flow problem, as the main
application of our algorithm for decremental SSSP from Theorem 1.1. The technique is a standard
application of the multiplicative weight update framework [GK98, Fle00, AHK12]. We provide the
proofs for completeness. In [CK19], the same technique was used to provide algorithms for Maximum
s-t Flow in vertex-capacitated graphs. We note that the Maximum Bounded-Cost Flow problem is
somewhat more general, and it is a useful subroutine for a large number of applications; we discuss
some of these applications in Appendix D. We start with some basic definitions.
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Definitions. Given a directed graph G = (V,E) and a pair s, t ∈ V of its vertices, an s-t flow is a
function f ∈ RE≥0, such that, for every vertex v ∈ V − {s, t}, the amount of flow entering v equals the
amount of flow leaving v, that is,

∑
(u,v)∈E f(u, v) =

∑
(v,u)∈E f(v, u). Let f(v) =

∑
(u,v)∈E f(u, v)

be the amount of flow at v. The value of the flow f is
∑

(s,v)∈E f(s, v) −
∑

(v,s)∈E f(v, s). Assume

further that we are given capacities c ∈ (R>0 ∪ {∞})E and costs b ∈ RE≥0 on edges. A flow f is
edge-capacity-feasible if f(e) ≤ c(e) for all e ∈ E. The cost of the flow f is

∑
e∈E b(e)f(e). If we

are given a cost bound b ≥ 0, then we say that f is edge-cost-feasible iff
∑

e∈E b(e)f(e) ≤ b. We can
define capacities and costs on the vertices of G similarly. Let c ∈ (R>0 ∪ {∞})V be vertex capacities
and let b ∈ RV≥0 be vertex costs. As before, we say that f is vertex-capacity-feasible if f(v) ≤ c(v)

for all v ∈ V − {s, t}, and it is vertex-cost-feasible if
∑

v∈V−{s,t} b(v)f(v) ≤ b. We may just write
capacity-feasible and cost-feasible when clear from context. If G is undirected, one way to define an
s-t flow is by treating G as a directed graph, where we replace each undirected edge {u, v} with a pair
(u, v) and (v, u) of bi-directed edges. We will assume w.l.o.g. that the flow only traverses the edges in
one direction, that is, for each edge {u, v} ∈ E, either f(u, v) = 0 or f(v, u) = 0.

Next, we define the Maximum Bounded-Cost Flow problem (MBCF). In the edge-capacitated version,
we are given a graph G = (V,E) with edge capacities c ∈ (R>0 ∪ {∞})E and edge costs b ∈ RE≥0,

together with two special vertices s and t, and a cost bound b. The goal is to compute an s-t flow
f of maximum value, such that f is both capacity-feasible and cost-feasible. The vertex-capacitated
version is defined similarly except that we are given vertex capacities c ∈ (R>0 ∪ {∞})V and vertex
cost b ∈ RV≥0 instead. A (1 + ε)-approximate solution for this problem is a flow f which is both

capacity-feasible and cost-feasible, such that the value of the flow is at least OPT(b)/(1 + ε) where
OPT(b) is the maximum value of a capacity-feasible flow of cost at most b.

Connection to the Min-Cost Flow Problem. The classical Min-Cost Flow problem is defined
exactly like MBCF, except that, instead of the cost bound, we are given a target flow value τ . The
goal is to either (i) compute an s-t flow f of value at least τ , such that f is capacity-feasible and
has the smallest cost among all flows satisfying these requirements, or (ii) to certify that there is no
capacity-feasible flow of value at least τ . Let OPTcost(τ) be the minimum cost of any capacity-feasible
flow of value at least τ . Observe that an exact algorithm for MBCF implies an exact algorithm for the
min-cost flow problem and vice versa, via binary search. Moreover, a (1 + ε)-approximation algorithm
for MBCF gives a (1 + ε)-factor pseudo-approximation for the Min-Cost Flow problem, that is: we
either find a flow of cost at most OPTcost(τ) and value at least τ/(1 + ε), or certify that there is no
capacity-feasible flow of value at least τ . Note that, if we insist that the value of the flow that we
obtain in the min-cost flow is at least τ , then the problem is at least as difficult as the exact maximum
s-t flow. From now on we focus on the MBCF problem.

Our results. We show approximation algorithms for the MBCF problem in undirected graphs for
both edge-capacitated and vertex-capacitated settings, though in the former scenario we only consider
unit edge-capacities.

Theorem C.1 (Unit-edge capacities) There is a deterministic algorithm that, given a simple undi-
rected n-vertex m-edge graph G = (V,E) with unit edge capacities c(e) = 1 and edge costs b(e) > 0
for e ∈ E, together with a source s, a sink t, a cost bound b, and an accuracy parameter 0 < ε < 0.1,

computes a (1 + ε)-approximate solution for MBCF in time Ô
(
n2 · logB

εO(1)

)
, where B is the ratio of

largest to smallest edge cost.

Previously, Cohen et al. [CMSV17] gave an exact algorithm for MBCF with running time Õ(m10/7 ·
logB) when the input graph G has unit edge-capacities as well, but G can be directed and is not neces-
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sarily simple. Lee and Sidford [LS14] showed an exact algorithm with running time Õ(m
√
n·logO(1)B)

on directed graphs with general edge-capacities. To the best of our knowledge, no faster algorithms
for MBCF are currently known, even when approximation is allowed. Our algorithm provides a (1+ε)-
approximate solution, and only works in simple, undirected graphs with unit edge-capacities. It is
faster than these previously known algorithms when m = ω(n1.5+o(1)), and it implies a number of
applications, as shown in Appendix D.

We also show a deterministic algorithm for graphs with (arbitrary) vertex capacities and costs.

Theorem C.2 (Vertex capacities) There is a deterministic algorithm that, given an undirected n-
vertex graph G = (V,E) with vertex capacities c(v) > 0 and vertex costs b(v) > 0 for all v ∈ V , a source
s, a sink t, a cost bound b, and an accuracy parameter 0 < ε < 0.1, computes a (1 + ε)-approximate

MBCF in time Ô
(
n2 · log(BC)

εO(1)

)
, where B is the ratio of largest to smallest vertex cost, and C is the

ratio largest to smallest vertex capacity.

We note that a randomized algorithm with similar guarantees can be obtained from the algorithm of
Chuzhoy and Khanna [CK19] for SSSP, though this was not explicitly noted in their paper (they only
explicitly provide an algorithm for approximate max flow). We obtain a deterministic algorithm by
using our deterministic algorithm for SSSP instead of the randomized algorithm of [CK19]. The best
previous algorithm for vertex-capacitated MBCF, with running time Õ(m

√
n logO(1)(BC)), follows

from the work of Lee and Sidford [LS14]; the algorithm solves the problem exactly. Our algorithm has
a faster running time when m = ω(n1.5+o(1)).

The remainder of this section is dedicated to proving Theorem C.1 and Theorem C.2. We start by
describing, in Appendix C.1, an algorithm for MBCF in general edge-capacitated graphs, based on the
multiplicative weight update (MWU) framework, and we bound the number of “augmentations” in
the algorithm. Then, in Appendix C.2, we show how to perform the “augmentations” efficiently when
the input graph is as in Theorem C.1 and Theorem C.2, using our algorithm for decremental SSSP.
We will use the following observation:

Remark C.3 It is easy to extend Theorem 1.1 so that the algorithm can handle edges of length 0, if
we have a promise that in every query dist-query(s, v) or path-query(s, v), the distance from the source
s to the query vertex v is non-zero. To do this, let `min and `max be the minimum and the maximum
non-zero edge lengths in the graph respectively. For each edge of length 0, we set the length to be
ε`min/n instead. This will not increase the length of any non-zero length path by more than a factor
(1 + ε). Let L′ = `max

`min
be the ratio between the original largest to smallest non-zero length. We can

now use Theorem 1.1 with the new bound L = L′n/ε.

C.1 A Multiplicative Weight Update-Based Flow Algorithm

We describe an algorithm for computing approximate MBCF in edge-capacitated graphs in Algo-
rithm 4. The algorithm is based on the multiplicative weight update (MWU) framework, and it is a
straightforward adaptation of the algorithms of Garg and Könemann [GK98], Fleischer [Fle00], and
Madry [Mad10].

Algorithm 4 is stated for both undirected and directed graphs. Let G = (V,E) be the input graph
and let Ps,t be the set of all s-t paths. If G is (un)directed, then Ps,t contains all (un)directed s-t
paths. We always augment a flow along some s-t path P ∈ Ps,t. Let f(P ) denote the amount of flow
through path P . We use the shorthand f(P ) ← f(P ) + c to indicate that we increase the flow value
f(e) for all e ∈ E(P ) by c, that is, f(e)← f(e)+c. The algorithm maintains lengths ` ∈ RE≥0 on edges
and a parameter ϕ ≥ 0. For any path P , let `(P ) =

∑
e∈P `(e) be the length of P and similarly let
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Algorithm 4 An approximate algorithm for max bounded-cost s-t flow in edge-capacitated graphs

Input: An undirected or a directed graph G = (V,E) with edge capacities c ∈ (R>0 ∪ {∞})E and
edge costs b ∈ RE≥0, a source s, a sink t, a cost bound b, and an accuracy parameter 0 < ε < 1.
Output: An s-t flow which is capacity-feasible and cost-feasible.

1. Set δ = (2m)−1/ε

2. Set `(e) = δ/c(e) if c(e) is finite; otherwise `(e) = 0. Set ϕ = δ/b. Set f ≡ 0.

3. while
∑

e∈E c(e)`(e) + bϕ < 1 do

(a) P ← a (1 + ε)-approximate (`+ ϕb)-shortest s-t path

(b) c← min{mine∈P c(e), b/b(P )}
(c) f(P )← f(P ) + c

(d) for every edge e ∈ E(P ), set `(e)← `(e)(1 + εc
c(e))

(e) ϕ← ϕ(1 + εc·b(P )

b
)

4. return the scaled down flow f/ log1+ε(
1+ε
δ )

b(P ) =
∑

e∈P b(e) be the cost of P . In general, for any function d ∈ RE≥0, we let d(P ) =
∑

e∈P d(e).
We use the shorthand d = ` + ϕb to indicate a new edge-length function d(e) = `(e) + ϕb(e) for all
e ∈ E. A d-shortest s-t path is an s-t path P ∗ that minimizes d(P ∗) among all paths in Ps,t. An
α-approximate d-shortest path P̃ is a path P ∈ Ps,t with d(P̃ ) ≤ α · d(P ∗).

Lemma C.4 The flow f/ log1+ε(
1+ε
δ ) computed by Algorithm 4 is capacity-feasible and cost-feasible.

Proof: When the flow on an edge e is increased by an additive amount of a · c(e), where 0 ≤ a ≤ 1,
then `(e) is multiplicatively increased by factor (1+aε) ≥ (1+ε)a. As `(e) = δ/c(e) initially and `(e) <
(1 + ε)/c(e) at the end, it grows by the multiplicative factor at most (1 + ε)/δ = (1 + ε)log1+ε((1+ε)/δ)

over the course of the algorithm. Therefore, the flow on e is at most c(e) · log1+ε(
1+ε
δ ) before scaling

down9, and so f/ log1+ε(
1+ε
δ ) is capacity-feasible. Similarly, every time the cost of the flow increases

by additive amount ab, where 0 ≤ a ≤ 1, the value of ϕ is multiplicatively increased by factor
(1 + aε) ≥ (1 + ε)a. As ϕ = δ/b initially and ϕ < (1 + ε)/b at the end, the value of ϕ grows by at
most factor (1 + ε)/δ over the course of the algorithm. Therefore, the cost of the final flow f before
the scaling down is at most b · log1+ε(

1+ε
δ ), and so flow f/ log1+ε(

1+ε
δ ) is cost-feasible.

Next, we bound the number of augmentation in Algorithm 4, that is, the number of times that the
“while” loop is executed.

Lemma C.5

1. If graph G has unit edge capacities, and there is an s-t cut of capacity k, then there are at most
Õ(k/ε2) augmentations. In particular, if G is a simple graph with unit edge-capacities, then
there are at most Õ(n/ε2) augmentations.

2. If graph G is has at most k edges with finite capacity, then are at most Õ(k/ε2) augmentations.

9If G is undirected, it can be the case that f(e) is even decreased while `(e) is increased. This gives even more slack
to the analysis.
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Proof: (1) By assumption, there is an s-t cut (S, S) with |E(S, S)| = k. In each augmentation, either
ϕ is increased by factor (1 + ε) or there is some edge e ∈ E(S, S), for which `(e) is increased by factor
(1+ε). Again, we have `(e) = δ/c(e) initially and `(e) < (1+ε)/c(e) at the end. Also, ϕ = δ/b initially
and ϕ < (1 + ε)/b at the end. So there can be at most (k + 1) log1+ε(

1+ε
δ ) = Õ(k/ε2) augmentations.

(2) Let E′ be the set of edges with finite capacity. In each augmentation, either ϕ is increased by
factor (1 + ε) or there is some edge e ∈ E′, for which `(e) is increased by factor (1 + ε). As before,
we start with `(e) = δ/c(e), and at the end, `(e) < (1 + ε)/c(e) holds. Similarly, ϕ = δ/b initially and
ϕ < (1 + ε)/b holds at the end. Since the total number of edges with finite capacity is at most k, the
total number of augmentations is bounded by (k + 1) log1+ε(

1+ε
δ ) = Õ(k/ε2).

Lemma C.6 Flow f/ log1+ε(
1+ε
δ ) is a (1 +O(ε))-approximate solution to the MBCF problem.

Proof: For each edge e, let Pe ⊆ Ps,t be the set of all paths containing e. We first write the standard
LP relaxation for MBCF and its dual LP (we can use the same relaxation for both undirected and
directed graphs, except that the set Ps,t of paths is defined differently)

(P LP )
max

∑
P∈Pst f(P )

s.t.
∑

P∈Pe f(P ) ≤ c(e) ∀e ∈ E∑
P∈Ps,t b(P ) · f(P ) ≤ b

x ≥ 0

(DLP )

min
∑

e∈E c(e)`(e) + bϕ
s.t. `(P ) + ϕb(P ) ≥ 1 ∀P ∈ Ps,t

`, ϕ ≥ 0

Denote D(`, ϕ) =
∑

e∈E c(e)`(e) + bϕ, and let α(`, ϕ) be the length of the (`+ ϕb)-shortest s-t path.
Let `i be the edge-length function ` after the i-th execution of the while loop, and let ϕi be defined
similarly for ϕ. We denote D(i) = D(`i, ϕi) and α(i) = α(`i, ϕi) for convenience. We also denote by
Pi the path found in the i-th iteration and by ci the amount by which the flow on Pi is augmented.
Observe that:

D(i) =
∑
e∈E

c(e)`i−1(e) + bϕi−1 +
∑
e∈Pi

c(e) ·
(
εci
c(e)

· `i−1(e)

)
+ bϕi−1 ·

εci · b(Pi)
b

= D(i− 1) + εci(`i−1(Pi) + ϕi−1b(Pi)).

Since Pi is a (1 + ε)-approximate shortest path with respect to α(i− 1), we get that:

D(i) ≤ D(i− 1) + ε(1 + ε)ciα(i− 1).

Let β = min`,ϕD(`, ϕ)/α(`, ϕ) be the optimal value of the dual LP DLP . Then:

D(i) ≤ D(i− 1) + ε(1 + ε)ciD(i− 1)/β

≤ D(i− 1) · eε(1+ε)ci/β.

If t is the index of the last iteration, then D(t) ≥ 1. Since D(0) ≤ 2δm:

1 ≤ D(t) ≤ 2δm · eε(1+ε)
∑t
i=1 ci/β.
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Taking a ln from both sides, we get:

0 ≤ ln(2δm) + ε(1 + ε)

t∑
i=1

ci/β. (4)

Let F =
∑t

i=1 ci. Note that F is exactly the total amount of flow by which we augment over all
iterations. Therefore, inequality (4) can be rewritten as:

Fε(1 + ε)

β
≥ ln(1/(2δm)).

From Lemma C.4, since the scaled-down flow is a feasible solution for P LP , F/ log1+ε(
1+ε
δ ) ≤ β must

hold. It remains to show that F/ log1+ε(
1+ε
δ ) ≥ (1−O(ε))β:

F/ log1+ε(
1+ε
δ )

β
≥ ln(1/(2δm))

ε(1 + ε)
· 1

log1+ε(
1+ε
δ )

=
ln(1/δ)− ln(2m)

ε(1 + ε)
· ln(1 + ε)

ln(1+ε
δ )

≥ (1− ε) ln(1/δ)

ε(1 + ε)
· ln(1 + ε)

ln(1+ε
δ )

≥ 1−O(ε),

where the penultimate inequality uses the fact that δ = (2m)−1/ε, so 2m = (1/δ)ε, and ln(2m) =
ε ln(1/δ), and the last inequality holds because ln(1 + ε) ≥ ε− ε2/2 and ln(1+ε

δ ) ≤ (1 + ε) ln(1/δ).

C.2 Efficient Implementation Using Decremental SSSP

In this section, we complete the proofs of Theorem C.1 and Theorem C.2 by providing an efficient
implementation of Algorithm 4 from Appendix C.1. The algorithm exploits the algorithm for decre-
mental SSSP from Theorem 1.1, that we denote by A. A similar technique was used in [Mad10] and
in [CK19]. Our proofs are almost the same as the ones in [CK19], except that we need to take care of
the cost function b.

C.2.1 Simple Graphs with Unit Edge Capacities

We start with the proof of Theorem C.1. Let G = (V,E) be the input undirected simple graph with n
nodes and m edges. We assume that all edge capacities are unit. Let b ∈ RE>0 be the edge costs, with
bmax = maxe b(e), bmin = mine b(e), and B = bmax/bmin. Let b be the cost bound. Let δ = (2m)−1/ε be
the same as in Algorithm 4. For every edge e ∈ E, we let its weight be w(e) = `(e) + ϕb(e). We run
Algorithm 4, but we will employ the algorithm A in order to compute (1 + ε)-approximate shortest
s-t paths in G, with respect to the edge weights w(e). In order to do so, we construct another simple

undirected graph G′ = (V ′, E′) as follows. Let K = log(1+ε/3)
1+ε
δ = O

(
logm
ε2

)
. Recall that, at the

beginning of the algorithm, for every edge e ∈ E, we set `(e) = δ, and we set ϕ = δ/b. Therefore,
the initial weight of edge e is w(e) = `(e) + ϕb(e) = δ(1 + b(e)/b). As long as the algorithm does
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not terminate, `(e) < 1 and ϕ < 1/b must hold, so w(e) < 1 + b(e)/b. Therefore, over the course of
the algorithm, w(e) may grow from δ(1 + b(e)/b) to at most (1 + b(e)/b). The idea is to discretize all
possible values that edge w(e) may attain by powers of (1 + ε/3).

We now define the new graph G′ = (V ′, E′). For every vertex v ∈ V , we add (K+1) vertices v0, . . . , vK
to V ′. For every edge e = (u, v) ∈ E, we add (K+1) edges e0, . . . , eK to E′, where for each 0 ≤ i ≤ K,
ei = (ui, vi), and the weight w′(ei) = δ(1 + b(e)/b)(1 + ε/3)i. Additionally, for each original vertex
v ∈ V and index i ∈ {1, . . . ,K}, we add an edge (v0, vi) of weight w′(v0, vi) = 0 to E′. Note that

|V ′| = O(nK) = O
(
n logm
ε2

)
.

We run the algorithm A from Theorem 1.1 on graph G′, where the length of each edge e′ is w′(e′),
and the error parameter is ε/3. Note that the ratio L of largest to smallest non-zero edge length

is (1+bmax/b)

δ(1+bmin/b)
≤ B/δ. Note that some edges of G′ have length 0. However, as we show later, we

will never ask a query between a pair of vertices that lie within distance 0 from each other, and so,
using Remark C.3, we can use algorithm A, except that we need to replace the logL factor in its
running time by factor log(Lnε ) = log(Bnεδ ) = O(log(Bn)/εO(1)). Therefore, the total update time of

the algorithm A is Ô((|V ′|2 logB)/εO(1)) = Ô((n2 logB)/εO(1)).

Next, we need to describe the sequence of edge deletions in graph G′. The edges are deleted according
to the following rule. For every edge e = (u, v) ∈ E, we delete an edge ei = (ui, vi) ∈ E′ when w′(ei)
becomes smaller than `(e) + ϕb(e). These are the only edge deletions in G′. Lastly, we show that,
given a (1 + ε/3)-approximate shortest s0-t0 path in G′ (with respect to edge lengths w′(e′)), we can
efficiently obtain a (1 + ε)-approximate shortest s-t path in G (with respect to edge lengths w(e)).

Claim C.7 At any time before Algorithm 4 terminates, given any (1 + ε/3)-approximate w′-shortest
s0-t0 path P ′ in G′, we can construct, in time O(|P ′|), a (1 + ε)-approximate w-shortest s-t path P in
G.

Proof: Since we assume that Algorithm 4 did not yet terminate,
∑

e∈E `(e) + bϕ < 1, and so for
every edge e ∈ E, δ(1 + b(e)/b) ≤ `(e) + ϕb(e) ≤ 1 + b(e)/b. From the definition of the edge deletion
sequence, if i′ is the smallest index for which the edge ei′ lies in E′, then `(e) + ϕb(e) ≤ w(ei′) <
(`(e) + ϕb(e))(1 + ε/3).

Let dist denote the distance from s to t in G with respect to edge lengths w(e), and let dist′ denote
the distance from s0 to t0 with respect to edge lengths w′(e′). Then dist ≤ dist′ < dist · (1 + ε/3) must
hold.

Assume now that we are given a (1+ε/3)-approximate shortest s0-t0 in G′ with respect to edge lengths
w′(e′). Then, by contracting every subpath (vi, v0, vj) ⊆ P of length 0 which corresponds to the same
node v in G, we obtain an s-t path P in G whose length is w(P ′) ≤ (1 + ε/3)dist′ < (1 + ε/3)2dist ≤
(1 + ε)dist.

Our algorithm only employs query path-query for the vertex t0. In particular, it is easy to see that
the distance from s0 to t0 is always non-zero. Therefore, we obtain a correct implementation of Al-
gorithm 4. We now analyze its running time. As already observed, the total running time needed
to maintain the data structure from Theorem 1.1 is Ô((n2 logB)/εO(1)). Observe that in every iter-
ation of Algorithm 4, we employ a single call to path-query(t0) in graph G′. Each such query takes
Ô(|P | log log(Ln/ε)) = Ô(n log log(B/ε)) time to return a path P and, by Lemma C.5, the number of
queries is bounded by Õ(n/ε2). Therefore, the total time needed to respond to all queries is bounded
by Ô

(
(n2 logB)/εO(1)

)
. The running time of other steps for implementing Algorithm 4, such as main-

taining ` and ϕ, are subsumed by these bounds. Altogether, the total running time is Ô(n2 · logB
εO(1) ).
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C.2.2 Vertex-Capacitated Graphs

We now complete the proof Theorem C.2. Our proof is almost identical to that of [CK19]. Let
G = (V,E) be the input undirected simple graph with n nodes and m edges. Let b ∈ RV>0 be the
vertex costs, with bmax = maxv b(v), bmin = minv b(v), and B = bmax/bmin. Let b be the cost bound.
Additionally, let c ∈ RV>0 be the vertex capacities, with cmax = maxv c(v), cmin = minv c(v), and
C = cmax/cmin.

We proceed as follows. First, we use a standard reduction from vertex-capacitated flow problems in
undirected graphs to edge-capacitated flow problems in directed graphs, constructing a directed graph
G′′ with capacities on edges. We will run Algorithm 4 on G′′. In order to compute approximate (`+ϕb)-
shortest s-t paths in G′′, we will employ the algorithm A for decremental SSSP from Theorem 1.1 in
another graph G′ – a simple undirected edge-weighted graph that we will construct. We now describe
the construction of both graphs.

Graph G′′. We construct a directed graph G′′ = (V ′′, E′′) with edge capacities c′′(e) and edge costs
b′′(e) for e ∈ E′′, using a standard reduction from the input graph G = (V,E). The set V ′′ of vertices
contains, for every vertex v ∈ V of the original graph, a pair vin, vout of vertices. Additionally, we add
a directed edge (vin, vout) of capacity c′′(vin, vout) = c(v) and cost b′′(vin, vout) = b(v) to E′′. For each
undirected edge (u, v) ∈ E, we add a pair of new edges (vout, uin), (uout, vin) to E′′, both with capacity
∞ and cost 0. This completes the definition of the graph G′′, that we view as a flow network with
source sout and destination tin. Observe that for any s-t flow f in G, there is a corresponding sout-tin
flow f ′′ in G′′, of the same value and cost, such that f is capacity-feasible iff f ′′ is capacity-feasible.
Similarly, any sout-tin flow f ′′ in G′′ can be transformed, in time O(m), into an s-t flow of the same
value and the same cost in G, such that f is capacity-feasible iff f ′′ is capacity-feasible. We run
Algorithm 4 on G′′, and maintain edge lengths `′′ ∈ RE′′≥0 and a value ϕ ≥ 0. It now remains to show
how we compute a (1 + ε)-approximate (`′′ + ϕb′′)-shortest sout-tin path in graph G′′. In order to do
so, we define a new graph G′, on which we will run the algorithm A for decremental SSSP.

As before, for every edge e ∈ E′′, we maintain a weight w′′(e) = `′′(e) + ϕb′′(e). Recall that, at the
beginning of the algorithm, we set `′′(e) = δ/c′′(e) if c′′(e) is finite, and we set `′′(e) = 0 otherwise.
We also set ϕ = δ/b. Therefore, initially, w′′(e) = δ(1/c′′(e) + b′′(e)/b) (if c′′(e) = ∞, then w′′(e) =
δb′′(e)/b = 0, and it remains 0 throughout the algorithm). As long as the algorithm does not terminate,
`′′(e) < 1/c′′(e) and ϕ < 1/b must hold, so w′′(e) < (1/c′′(e) + b′′(e)/b). Therefore, over the course of
the algorithm, w′′(e) may increase from δ(1/c′′(e) + b′′(e)/b) to (1/c′′(e) + b′′(e)/b).

Graph G′. We construct an undirected simple graph G′ = (V ′, E′), from the original input graph
G = (V,E). We first place weights on the vertices of G′, and later turn it into an edge-weighted graph.

As before, we let K = log(1+ε/3)
1+ε
δ = O

(
logm
ε2

)
. For every vertex v ∈ V − {s, t}, we add K + 1 new

vertices v0, . . . , vK to V ′, and for all 0 ≤ i ≤ K, we set the weight w(vi) = δ
(

1
c(v) + b(v)

b

)
· (1 + ε/3)i.

For each edge e = (u, v) ∈ E in the original graph, we add (K + 1)2 new edges ei,j = (ui, vj)
for all i, j ∈ {0, . . . ,K} to E′. We also add two new vertices s and t to V ′, with weight 0. For
each edge e = (s, u) ∈ E, for all 0 ≤ i ≤ K, we add an edge esi = (s, ui) to E′. Similarly, for
each edge e = (u, t) ∈ E, for all 0 ≤ i ≤ K, we add an edge eti = (ui, t) to E′. Observe that

|V ′| = O(nK) = O
(
n logn
ε2

)
.

We would like to run the algorithm A for decremental SSSP on the graph G′. However, G′ has weights
on vertices and not edges. This can be easily fixed as follows. For each edge e = (u, v) in G′, we let
its weight be w(e) = (w(u) + w(v))/2. Since w(s) = w(t) = 0, for every s-t path P ′ in G′, the total
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weight of all edges on P ′ equals to the total weight of all vertices on P ′. Note that all edge weights
are non-zero.

We run the algorithm A from Theorem 1.1 on graph G′, where the length of each edge e is w(e), and
the error parameter is ε/3.

Notice that the ratio L of largest to smallest edge length in G′ is L = 1/cmin+bmax/b

δ(1/cmax+bmin/b)
≤ CB

δ . By

Theorem 1.1, the total running time of A is Ô
(

(nK)2 log(L)
ε2

)
= Ô

(
n2 · log(CB)

εO(1)

)
.

Next, we need to describe the sequence of edge deletions from the graph G′. The edges are deleted
according to the following rule. For every vertex v ∈ V in the original graph, for every 0 ≤ i ≤ K,
whenever w′′(vin, vout) > w(vi), we delete all edges incident to vi from G′. For convenience, we say
that vertex vi becomes eliminated. We use the following analogue of Claim C.7.

Claim C.8 Throughout the execution of Algorithm 4, given any (1 + ε/3)-approximate s-t path P ′ in
G′ with respect to edge lengths w(e), we can construct, in time O(|P ′|), a (1 + ε)-approximate sout-tin
path P ′′, with respect to edge lengths w′′(e), in G′′.

Proof: Let P ′′ be the shortest sout–tin path in graph G′′, with respect to the edge lengths w′′, and
assume that P ′′ = (sout, v

1
in, v

1
out, . . . , v

z
in, v

z
out, tin). Let W ′′ denote the length of the path P ′′. For all

1 ≤ j ≤ z, let ej = (vjin, v
j
out). Since Algorithm 4 did not yet terminate, w′′(ej) < 1/c′′(ej) + b′′(ej)/b.

Therefore, if we let ij be the smallest index, such that vertex vjij of G′ is not yet eliminated, then

w(vjij ) ≤ w′′(ej)(1 + ε/3). Consider now the following path in graph G′: P ′ = (s, v1
j1
, v2
j2
, . . . , vzjz).

Since no vertex on this path is eliminated, the path is indeed still contained in G′. The total weight of
the vertices on this path is bounded by (1 + ε/3)W ′′. From the above discussion, the total w′-weight
of the edges on this path is then also bounded by (1 + ε/3)W ′′.

We denote by dist′′ the distance from sout to tin in G′′, with respect to the edge lengths w′′(e), and
we denote by dist′ the distance from s to t in graph G′, with respect to edge lengths w(e). From the
above discussion, dist′ ≤ (1 + ε/3)dist′′.

Consider now a (1 + ε/3)-approximate s-t path P ′ in graph G′, with respect to the edge lengths
w′(e), so the total weight w′(e) of all edges on P ′ is at most (1 + ε/3)dist′ ≤ (1 + ε/3)2dist′′ ≤
(1 + ε)dist′′. Assume that P ′ = (s, v1

j1
, v2
j2
, . . . , vzjz). Consider the following path in graph G′′: P =

(sout, v
1
in, v

1
out, . . . , v

z
in, v

z
out, tin). Note that for all 1 ≤ j ≤ z, the weight w′′(vjin, v

j
out) ≤ w′(vj) must

hold (or vertex vj would have been eliminated). Therefore, the total weight w′′(e) of the edges of P ′′

is bounded by the total weight w(v) of the vertices of P ′, which in turn is equal to the total weight
w(e′) of the edges of P ′, that is bounded by (1 + ε)dist′′.

From the above claim, in every iteration of Algorithm 4, we can use path-query(t) in graph G′ in
order to compute the (1 + ε)-approximate shortest sout-tin path in G′′, with respect to edge lengths
w′′ = `′′ + ϕb′′. It now remains to analyze the running time of the algorithm. Each query to the
decremental SSSP data structure takes time Ô(|P | log logL) = Ô((n log(BC)/εO(1)) to return a path
P and, from Lemma C.5(2), there are at most Õ(n/ε2) such queries. Therefore, the total time spent

on responding to the queries is Ô
(
n2 log(BC)

εO(1)

)
. As observed above, the total expected running time for

maintaining the decremental SSSP data structure is Ô
(
n2 · log(CB)

εO(1)

)
. The running time of other steps

for implementing Algorithm 4, such as maintaining `′′ and ϕ, is subsumed by these running times.

Overall, the total running time is Ô
(
n2 · log(CB)

εO(1)

)
.
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D Additional Applications

In this section, we describe additional applications of decremental SSSP, and some new results that
follow from our algorithm from Theorem 1.1, as well as additional results that could be obtained from
the algorithm of [CK19].

D.1 Concurrent k-commodity Bounded-Cost Flow

In the concurrent k-commodity bounded-cost flow problem, we are given a graph G with capacities
and costs on either edges or nodes, and a cost bound b. We are also given k demands represented by
tuples (s1, t1, d1), . . . , (sk, tk, dk), where for all 1 ≤ i ≤ k, si and ti are vertices of G, that we refer to
as a demand pair, and di is a non-negative real number. The goal is to find a largest value λ > 0,
and to compute, for all i ∈ {1, . . . , k}, an si-ti flow fi of value λdi (that is, flow fi routes λdi units of
flow from si to ti). We say that the resulting flow f =

⋃
i fi is edge-capacity-feasible, iff for all e ∈ E,∑k

i=1 fi(e) ≤ c(e). We say that the flow f is edge-cost-feasible, if
∑

e∈E(
∑

i≤k fi(e))b(e) ≤ b. The goal
is to maximize λ, while ensuring that the resulting flow f is both capacity-feasible and cost-feasible.
The problem with vertex capacities and cost is defined analogously.

The concurrent k-commodity flow problem is defined in the same way, except that we no longer have
costs on edges or vertices, and we do not require that the flow is cost-feasible.

We denote by TMBCF(n,m, ε,B,C) the time needed for computing a (1 + ε)-approximate solution for
an MBCF problem instance, in a graph with n nodes and m edges, where B is the ratio of largest to
smallest (edge or vertex) costs, C is the ratio of largest to smallest (edge or vertex) capacities. We
use the following result.

Lemma D.1 (Concurrent k-commodity bounded-cost flow [GK96, Fle00]) There is an al-
gorithm that, given a graph G with n nodes, m edges, (edge or vertex) capacities c, where C is the
ratio of largest to smallest capacity, (edge or vertex) costs b, and B is the ratio of largest to smallest
cost, and a set of k demands, computes a (1 + ε)-approximate concurrent k-commodity bounded-cost
flow in time Õ

(
k
ε2
· TMBCF(n,m, ε,BC/δ, C) · log(BC)

)
where δ = (2m)−1/ε.

Proof: [Sketch] A similar lemma was shown by Garg and Könemann in Section 6 of [GK96]. However,
the term TMBCF(n,m, ε,BC/δ, C) in [GK96] was the time for computing exact min-cost flow. We
sketch here why only (1 + ε)-approximate solution for MBCF is sufficient.

For any commodity 1 ≤ i ≤ k and edge lengths ` ∈ RE≥0, let mincosti(`) be minimum cost for sending
a flow of di units from si to ti in G = (V,E, c), where the edge costs are defined by `. It was shown in
[GK96], that, in order to solve concurrent k-commodity bounded-cost flow, it is enough to solve the
following problem O( 1

ε2
k log k logm) times: given i and `, compute an si-ti flow fi,` of value di and

cost mincosti(`) w.r.t. `.

Let A be the (1 + ε)-approximate algorithm for MBCF. We claim that, by calling this algorithm
O(logBC) times, we can compute an si-ti flow f ′i,` such that the value of f ′i,` is exactly di/(1 + ε),
and its cost is at most mincosti(`). Indeed, observe that, when given mincosti(`) as a cost bound to
A, algorithm A will return a flow of value at least di/(1 + ε). By scaling, we obtain a flow of value
exactly di/(1 + ε) and cost at most mincosti(`).

By following the analysis of [GK96], it is easy to see that that we can use f ′i,` instead of fi,`, for any
given i and `. Every step in the analysis works as it is except that the size of the solution at the end
is reduced by factor (1 + ε).
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By plugging Theorem C.1 and Theorem C.2 into the above lemma, we obtain the following corollary:

Corollary D.2 There is a deterministic algorithm for computing a (1 + ε)-approximate concurrent

k-commodity bounded-cost flow in time Ô(kn2 log2BC
εO(1) ) on either:

• undirected simple graphs with unit edge-capacities and arbitrary edge-costs; or

• undirected simple graphs with arbitrary vertex-capacities and vertex-costs.

Our algorithm for concurrent k-commodity flow is slower than the Õ(mk) algorithm of Sherman
[She17]. However, in the bounded-cost version, our algorithms are faster than the previous best
algorithms whenever m = ω(n1.5+o(1)) and k = O((m/n)2); see Table 3. We note that the algorithm
for vertex-capacitated graphs can also be obtained from the results of [CK19], except that the resulting
algorithm would be randomized.

D.2 Maximum k-commodity Bounded-Cost Flow

In the maximum k-commodity bounded-cost flow, we are given a graph G with capacities and costs on
either edges or nodes, and a cost bound b. We are also given k demand pairs (s1, t1), . . . , (sk, tk). The
goal is to compute, for all i ∈ {1, . . . , k}, an si-ti flow fi with the following constraints. Let f =

⋃
i fi

be the resulting k-commodity flow. We say that the flow is edge-capacity-feasible, if
∑k

i=1 fi(e) ≤ c(e)
for all e ∈ E, and we say that it is edge-cost-feasible, if

∑
e∈E(

∑k
i=1 fi(e))b(e) ≤ b. Let |fi| denote the

value of the flow fi – the amount of flow sent from si to ti. The goal is to find the flows f1, . . . , fk that
maximize

∑
i |fi|, such that the resulting flow f =

⋃
i fi is both edge-capacity-feasible and edge-cost

feasible. The problem with vertex capacities and cost is defined similarly.

The maximum k-commodity flow problem is defined similarly, except that there are no costs on edges
or vertices, and we do not require that the flow f is cost-feasible.

We obtain the following corollary.

Corollary D.3 There is a deterministic algorithm, that, given a graph G with n nodes, m edges,
capacities c where C is the ratio of largest to smallest capacity, costs b where B is the ratio of largest
to smallest cost, and a set of k demand pairs, can compute a (1+ε)-approximate maximum k-commodity
bounded-cost flow in time Ô(kn2 logBC

εO(1) ) on either:

• undirected simple graphs with unit edge-capacities and arbitrary edge-costs; or

• undirected simple graphs with arbitrary vertex-capacities and vertex-costs.

As before, the result for vertex-capacitated graphs could also be obtained from [CK19], except that the
resulting algorithm would be randomized. To our best knowledge, unlike the concurrent k-commodity
flow, there is no black-box reduction from maximum k-commodity flow or maximum k-commodity
bounded-cost flow to MBCF. However, Corollary D.3 can be proved by extending the MWU-based
technique used in Appendix C to the maximum k-commodity bounded-cost flow, and employing the
algorithm for dynamic SSSP for executing each iteration efficiently; we omit the proof.

Our algorithm for maximum k-commodity flow is faster than the O(kO(1)m4/3/εO(1))-time algorithm by
[KMP12] and the Õ(m2/ε2)-time algorithm by [Fle00] whenever m = ω(n1.5+o(1)) and k = O((m/n)2).
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The same bounds hold in the bounded-cost version and in the vertex-capacitated setting: our algo-
rithms are faster than the previous best algorithms whenever m = ω(n1.5+o(1)) and k = O((m/n)2);
see Table 3.

Lastly, we describe several additional applications of the SSSP problem, that can be obtained from
the algorithm of [CK19] (as well as from our algorithm from Theorem 1.1)

D.3 Most-Balanced Sparsest Vertex Cut

Given a graph G = (V,E), a vertex cut is a partition (A,B,C) of the vertex set V , such that there
are no edges between A and C, and A,C 6= ∅. The sparsity of the cut (A,B,C) is hG(A,B,C) =

|B|
min{|A|,|C|}+|B| . We say that a cut (A,B,C) is ϕ-sparse if hG(A,B,C) < ϕ. The most balanced ϕ-

sparse cut is a ϕ-sparse cut (A,B,C) such that min{|A|, |C|} is maximized. The vertex expansion of
a graph G is hG = min{hG(A,B,C) | (A,B,C) is a vertex cut of G}.

In the α-approximate most-balanced sparsest vertex cut problem, we are given a graph G = (V,E)
and a parameter hG. Let (A′, B′, C ′) be a most-balanced hG-sparsest cut. The goal is to find a vertex
cut (A,B,C) with hG(A,B,C) ≤ α · hG(A′, B′, C ′), such that min{|A|, |C|} ≥ min{|A′|, |C ′|}/3. The
following result follows from the algorithm of [CK19].

Lemma D.4 (Most-balanced sparsest vertex cut) There is a randomized algorithm, that, given
a graph G with n nodes, computes a O(log2 n)-approximate most-balanced sparsest vertex cut in time
O(Tmf (n, 2, n) log2 n) where and Tmf (n, ε, C) is the time required to compute a (1 + ε)-approximate
maximum s-t flow and a (1 + ε)-approximate minimum s-t cut in an n-vertex graph with vertex
capacities, where C is the ratio of largest to smallest vertex capacity.

The lemma follows from the cut-matching game framework of Khandekar, Rao, and Vazirani [KRV09].
The algorithm of [KRV09] is designed to compute a sparsest cut or minimum balanced cut in edge-
capacitated graphs, but this is only because it relies on maximum flow / minimum cut computation
in edge-capacitated graphs. By computing approximate maximum flow / minimum cut in vertex-
capacitated graphs, one can immediately obtain Lemma D.4. By plugging Theorem C.2 into the
above lemma, we obtain the following corollary:

Corollary D.5 There is a randomized algorithm for computing a O(log2 n)-approximate most-balanced
sparsest vertex cut in a given n-vertex graph G, in expected time Ô(n2).

D.4 Treewidth and Tree Decompositions

Given a graph G = (V,E), a tree decomposition of G consists of a tree T , and, for every vertex
a ∈ V (T ), a subset Xa ⊆ V of vertices of G, that satisfy the following conditions: (i) for each edge
(u, v) ∈ E of G, there is a tree-node a ∈ V (T ) with u, v ∈ Xa; and (ii) for each vertex u ∈ V of G,
all tree-nodes a ∈ V (T ) with u ∈ Xa induce a non-empty connected subgraph of T . The width of
the tree decomposition is maxa∈V (T ) |Xa| − 1. The treewidth of G is the minimum width of a tree
decomposition of G. Treewidth and tree decomposition are used extensively in algorithmic graph
theory and in fixed parameter tractable (FPT) algorithms.

The following lemma reduces the problem of approximating treewidth to the most-balanced sparsest
vertex cut problem, using standard techniques. We omit the proof; see also [BGHK95].

Lemma D.6 There is an algorithm that, given an n-vertex graph G and a parameter α, computes
a tree decomposition of G of width O(kα log n), where k is the treewidth of G, in time Õ(Tsvc(n, α))
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where Tsvc(n, α) is the time needed for computing an α-approximate most-balanced sparsest vertex cut
in G.

By plugging Corollary D.5 into the above lemma, we obtain the following corollary:

Corollary D.7 There is a deterministic algorithm that, given an n-vertex graph G, computes a tree
decomposition of G, of width O(k log3 n), where k is the treewidth of G, in time Ô(n2).

For comparison, given a graph with n nodes and treewidth k, previous algorithms either have running
time exponentially depending on k [RS95, Ami01, Ami10, Bod96, BDD+16] or have a large polynomial
running time [BGHK95, Ami01, Ami10, FHL08]. One exception is the algorithm by Fomin et al.
[FLS+18] which computes an O(k)-approximation of treewidth in time O(k7n log n); see Table 5 for
a summary. Our algorithm is faster than [FLS+18] when k ≥ n1/7+o(1) and also gives a better
approximation.

Although most of fixed parameter tractable (FPT) algorithms only concern graphs with constant
treewidth k = O(1) or very small k, there is a recent line of work on fully-polynomial FPT algo-
rithms [FLS+18, IOO18] for many fundamental graph problems including maximum matching and
max flow, and matrix problems including determinant and solving linear system, which concern in-
stances whose treewidth can be polynomial. In those settings, the approximation factor of O(log3 n)
from Corollary D.7 is of interest.
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E Tables

Year (α, β)-
approximation

Total update time Query time
for dist-query

Weighted? Directed? Det?

[ES81]* 1981 (1, 0) O(mn2) O(1) Directed Det

[BHS07]* 2002 (1, 0) Õ(n3) O(1) Directed

[BHS07] 2002 (1 + ε, 0) Õ(n2√m/ε) O(1) Directed

[RZ12] 2004 (1 + ε, 0) Õ(mn/ε) O(1)

[FHN16]* 2013 (1 + ε, 0) Õ(mn/ε) O(log logn) Det

[Ber16]* 2013 (1 + ε, 0) Õ(mn logL/ε) O(1) Weighted Directed

[RZ11,
FHNS15]

2004 (α, β):
2α+ β < 4

Ω(n3−o(1)) Ω(n1−o(1))

[BKS12] (cf.
[FG19])*

2008 (2k − 1, 0) Õ(m) Õ(n1+1/k) Weighted

[BvdBG+20]* 2020 (poly logn, 0) Õ(m) Õ(n) Weighted Random
adaptive

[BR11] 2011 (2k − 1 + ε, 0) O(n2+1/k+o(1)) O(k)

[FHN16]* 2013 (2 + ε, 0) or
(1 + ε, 2)

Õ(n2.5/ε) O(1)

[ACT14] 2014 (2O(kρ), 0) O(mn1/k) O(kρ)

[FHN14a] 2014 ((2 + ε)k − 1, 0) O(m1+1/k+o(1) log2 L) O(kk) Weighted

[Che18]* 2018 ((2 + ε)k− 1, 0) O(mn1/k+o(1) logL) O(log log(nL)) Weighted

This
paper*

(3 · 2k, γO(k)) Ô(n2.5+2/kγO(k)) O(log logn) Det

Table 1: Upper and lower bounds for decremental APSP. We denote by n the number of graph
vertices, by m the initial number edges, L is the ratio of largest to smallest edge length, and k is

a positive integral parameter. We also use parameters ρ = (1 +
⌈

logn1−1/k

log(m/n1−1/k)

⌉
) ≤ k, 0 < ε < 1,

and γ = exp(log3/4 n). In the “Year” column, the year is according to the conference version of the
paper. If the algorithm only works for unweighted graphs or only undirected graphs, then we left
the columns “Weighted?” and “Directed?”, respectively, blank. If the result assumes an oblivious
adversary, then we left the column “Det?” blank. Otherwise, we write “Det” or “Random adaptive”
which means that the result is deterministic or randomized but works against an adaptive adversary,
respectively. The algorithms without the “*” mark are subsumed by other algorithms with the “*”
mark, to within no(1) factors. The fact that the algorithm in [ES81] can be extended to work in
directed graphs was observed in [HK95]. The algorithms by [BKS12, FG19, BvdBG+20] are actually
fully dynamic algorithms for maintaining spanners, but they automatically imply decremental APSP
with large query time for dist-query.
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Year Approx. Total update
time

Handles
path-query?

Query
time for

path-query

Weighted? Det? Notes

[ES81]* 1981 exact O(mn) Yes O(|P |) Det

[RZ11,
FHNS15]

2004 exact Ω(mn1−o(1))

[BR11] 2011 1 + ε O(n2+o(1)) Yes O(|P |)
[FHN14b] 2014 1 + ε O(n1.8+o(1) +

m1+o(1))
Yes O(|P |)

[FHN14a]* 2014 1 + ε O(m1+o(1) logL) Yes Õ(|P |) Weighted

[BC16] 2016 1 + ε Õ(n2) Det

[BC17] 2017 1 + ε Õ(n5/4√m) Det

[Ber17] 2017 1 + ε Õ(n2 logL) Weighted Det

[CK19] 2019 1 + ε Ô(n2 logL) Yes Õ(n logL) Weighted Random
adaptive

Vertex
deletions only

[GWN20] 2020 1 + ε Ô(m
√
n) Det

[BvdBG+20]* 2020 1 + ε Ô(m
√
n) Yes Õ(n) Random

adaptive

This
paper*

1 + ε Ô(n2 logL) Yes Ô(|P |) Weighted Det

Table 2: Upper and lower bounds for decremental SSSP. We denote by n the number of graph vertices,
by m the initial number of edges, L is the ratio of largest to smallest edge length, and 0 < ε < 1 is a
given parameter. The dependency of the running time on ε is omitted for simplicity. We denote by P
the (approximate) shortest path returned in response to path-query, and by |P | the number of edges
in P . In the “Year” column, the year is according to the conference version of the paper. If a result
works only on unweighted graphs, then we left the column “Weighted?” blank. If a result assumes an
oblivious adversary, then we left the column “Det?” blank. Otherwise, we write “Det” or “Random
adaptive” which means that the result is deterministic or randomized but works against an adaptive
adversary, respectively. The algorithms without the “*” mark are subsumed by other algorithms with
the “*” mark, to within poly log n factors.

Problems in unit
edge-capacity setting

Previous best This paper Faster when

maximum s-t flow Õ(m/ε) [She17] Ô(n2/εO(1)) -

k-commodity concurrent flow Õ(km/ε) [She17] Ô(kn2/εO(1)) -

maximum k-commodity flow O(kO(1)m4/3/εO(1)) [KMP12]
Õ(mn/ε2) [Mad10]

Ô(kn2/εO(1)) m = ω(n1.5+o(1)) and
k = O((m/n)2)

maximum bounded-cost s-t
flow

Õ(m
√
n) [LS14] (exact)

Õ(m10/7) [CMSV17](exact)
Ô(n2/εO(1)) m = ω(n1.5+o(1))

k-commodity concurrent
bounded-cost flow

Õ(km
√
n/εO(1)) [LS14]+Lemma D.1

Õ(m(m+ k)/ε2) [Fle00]
Ô(kn2/εO(1)) m = ω(n1.5+o(1)) and

k = O((m/n)2)

maximum k-commodity
bounded-cost flow

Õ(m(m+ k)/ε2) [Fle00] Ô(kn2/εO(1)) k = O((m/n)2)

Table 3: Best currently known running times of algorithms for flow and cut problems in undirected
simple graphs with unit edge capacities. We use the Õ notation to hide factors that are polylogarithmic
in n andB – the ratio of maximum to minimum edge cost. All algorithms obtain a (1+ε)-approximation
for the corresponding problem, unless explicitly stated otherwise.

68



Problem in
vertex-capacitated setting

Previous best This paper /
follows from
[CK19]

Faster when

maximum s-t flow Ô(n2/εO(1)) [CK19]
Õ(m

√
n) [LS14] (exact)

Ô(n2/εO(1)) -

k-commodity concurrent flow Õ(km
√
n/εO(1)) [LS14]+Lemma D.1,

Õ(mn/ε2) [Mad10]
Ô(kn2/εO(1)) m = ω(n1.5+o(1)) and

k = O((m/n)2)

maximum k-commodity flow Õ(mn/ε2) [Mad10] Ô(kn2/εO(1)) k = O((m/n)2)

maximum bounded-cost s-t
flow

Õ(m
√
n) [LS14] (exact) Ô(n2/εO(1)) m = ω(n1.5+o(1))

k-commodity concurrent
bounded-cost flow

Õ(km
√
n/εO(1)) [LS14]+Lemma D.1

Õ(m(m+ k)/ε2) [Fle00]
Ô(kn2/εO(1)) m = ω(n1.5+o(1)) and

k = O((m/n)2)

maximum k-commodity
bounded-cost flow

Õ(m(m+ k)/ε2) [Fle00] Ô(kn2/εO(1)) k = O((m/n)2)

O(log2 n)-approximate
sparsest cut

Ô(n2) [CK19]
Õ(m

√
n) [LS14]+Lemma D.4

Ô(n2) -

Table 4: Best currently known algorithms for flow and cut problems in undirected graphs with vertex
capacities. We use Õ notation to hide factors that are polylogarithmic in n,C and B, where C is the
ratio of maximum to minimum vertex capacity, and B is the ratio of maximum to minimum vertex
cost. All algorithms are for obtaining a (1 + ε)-approximation for the corresponding problem, unless
explicitly stated otherwise.

Reference Approximation Time

FPT time

[RS95] 4 2O(k)n2

[Ami01, Ami10] 32
3 2O(k)n3

[Bod96] 1 kO(k3)n

[BDD+16]
3 2O(k)n log n

5 2O(k)n

Polynomial time

[BGHK95] O(log n) poly(n)

[Ami01, Ami10] O(log k) k5n3polylog(nk)

[FHL08] O(
√

log k) poly(n)

[FLS+18] O(k) k7n

This paper / follows from [CK19] O(log3 n) n2+o(1)

Table 5: Algorithms for approximating treewidth of a graph with n nodes and treewidth k.
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