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1. Introduction

In this survey we consider flow, cut, and integral routing problems in graphs. These
three types of problems are among the most extensively studied in Operations
Research, Optimization, Graph Theory, and Computer Science. Problems of these
types naturally arise in many applications, and algorithms for solving them are
among the most valuable and powerful tools in algorithm design and analysis.

In the classical maximum s–t flow problem, we are given an n-vertex graph
G = (V,E), that can be either directed or undirected, with non-negative capacities
c(e) on edges e ∈ E, and two special vertices: s, called the source, and t, called
the destination. Let P be the set of all paths connecting s to t in G. An s–t
flow f is an assignment of non-negative values f(P ) to all paths P ∈ P, such that
for each edge e ∈ E, the flow through e does not exceed its capacity c(e), that
is,
∑
P :e∈P f(P ) ≤ c(e). The value of the flow f is

∑
P∈P f(P ), and the goal is

to find a flow of maximum value. The maximum flow problem was introduced in
the 50’s in order to model the capacity of the Soviet and East European railway
systems. Ford and Fulkerson [FF62] were the first to provide an efficient algorithm
for solving the problem. The problem can be expressed as a linear program (LP):

∗Supported in part by NSF grant CCF-1318242.



2 Julia Chuzhoy

(LP-flow) max
∑
P∈P f(P )

s.t. ∑
P :e∈P f(P ) ≤ c(e) ∀e ∈ E

f(P ) ≥ 0 ∀P ∈ P

So far, in our definition of the maximum s–t flow problem, the number of paths
P with non-zero flow value f(P ) may be exponentially large in the graph size, and
so can the number of variables of (LP-flow). Fortunately, there is an equivalent
“compact” LP-formulation of the problem, whose solution can be efficiently con-
verted into a solution to (LP-flow), where the number of paths P with f(P ) > 0
is bounded by |E|. This provides an efficient algorithm to solve (LP-flow), as long
as we are only required to list the non-zero values f(P ) in the solution.

A very useful feature of the maximum s-t flow problem is that, if all edge
capacities c(e) are integral, then there is a maximum flow where for each P ∈
P, f(P ) is integral, and such a flow can be found efficiently. This property is
often referred to as the integrality of flow. In particular, if all edge capacities are
unit, then we can efficiently find a maximum-cardinality collection P ′ of paths
connecting s to t, such that the paths in P ′ are edge-disjoint : that is, every edge
of G belongs to at most one path of P ′.

A problem closely related to maximum s–t flow is minimum s–t cut. The input
to this problem is the same as the input to the maximum s–t flow problem, only
now we will think of the values c(e) as edge costs and not capacities. The goal is
to select a minimum-cost subset E′ ⊆ E(G) of edges, such that G \E′ contains no
path connecting s to t, where the cost of E′ is

∑
e∈E′ c(e). It is easy to see that

the value of the maximum s–t flow cannot exceed the value of the minimum s–t
cut in any graph: every path P ∈ P must contain at least one edge of E′, and so
the total flow carried by the paths in P cannot exceed the total capacity of the
edges in E′. The classical result of Ford and Fulkerson [FF62], often referred to as
the Max-Flow Min-Cut Theorem, shows that the opposite is also true, that is, in
any graph, the value of the minimum s–t cut is equal to the value of the maximum
s–t-flow! In fact, their algorithm for computing maximum flow can also be used
to compute a minimum cut. Therefore, we can see minimum cut as revealing the
bottleneck in the routing capacity of a graph: if the maximum amount of flow that
can be sent from s to t is x, then we can produce a certificate for this fact in the
form of a valid flow of value x, and an s–t cut of cost x. A convenient way of seeing
the connection between flows and cuts is by computing the dual linear program of
(LP-flow), that we will call (LP-cut) for reasons that will become apparent below.

(LP-cut) min
∑
e∈E cexe

s.t. ∑
e∈P xe ≥ 1 ∀P ∈ P (1)

xe ≥ 0 ∀e ∈ E (2)
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Let us start by adding the following integrality constraints to (LP-cut):

xe ∈ {0, 1} ∀e ∈ E (3)

This combination of a linear program with integrality constraints is called in-
tegral linear program, and we denote it by (ILP-cut). It is immediate to see that
(ILP-cut) is equivalent to the minimum s–t cut problem: we set xe = 1 if e belongs
to the solution E′, and xe = 0 otherwise. Constraint (1) ensures that every path
from s to t contains at least one edge from E′ - that is, G \ E′ contains no s–t
path. Of course, any feasible solution of (ILP-cut) is also a feasible solution to
(LP-cut). However, (LP-cut) allows more solutions: for example, solutions where
the variables xe take fractional values. We say that (LP-cut) is a relaxation of the
minimum s–t cut problem. The optimal solution to (LP-cut) is called the optimal
fractional solution to minimum s–t cut, and its value is denoted by OPTLP. The
optimal solution to (ILP-cut) is called the optimal integral solution; its value is
denoted by OPT, and it is also the value of the minimum s–t cut in G. Since the
optimal integral solution is a valid solution to (LP-cut), OPTLP ≤ OPT must hold.
Interestingly, in this particular linear program, the two values are equal. More-
over, there is an efficient algorithm, that, given a fractional solution to (LP-cut),
computes a valid integral solution of the same value.

We describe the algorithm for directed graphs; the algorithm for undirected
graphs is similar, with minor adjustments. The idea is to view the values xe in the
optimal solution of (LP-cut) as edge lengths. We can then define, for every pair
(u, v) of vertices, the distance d(u, v) from u to v, to be the length of the shortest
path connecting u to v, under the edge lengths xe. Constraint (1) ensures that
d(s, t) ≥ 1, and it is easy to see that for every edge e = (u, v):

d(s, v) ≤ d(s, u) + xe (4)

Let us choose a value ρ ∈ (0, 1) uniformly at random, and let B(s, ρ) =
{v | d(s, v) ≤ ρ} be the ball of radius ρ around s. This ball defines an s–t cut
E′ρ ⊆ E, where e = (u, v) ∈ E′ρ if u ∈ B(s, ρ) and v 6∈ B(s, ρ). The probability
that e = (u, v) belongs to E′ρ is the probability that ρ lies between d(s, u) and
d(s, v), which, from (4), is bounded by xe. The expected cost of the cut E′ρ is
then: ∑

e∈E
c(e) ·Prρ

[
e ∈ E′ρ

]
≤
∑
e∈E

c(e)xe = OPTLP.

At least one value ρ : 0 < ρ < 1 must satisfy
∑
e∈E′ρ

ce ≤ OPTLP. We can find

this value by going over all possible values of ρ and computing E′ρ for each of them.
Fortunately, the number of different values of ρ that we need to check is not very
large - it is enough to consider all values in set {d(s, v) | v ∈ V }.

An algorithm that, given a fractional solution to a linear program, computes
an integral solution is called an LP-rounding algorithm. If the value of the so-
lution produced by the algorithm equals to the value of the fractional solution,
then this algorithm can be used to solve the problem exactly. If additionally the
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LP-rounding algorithm is efficient, then we obtain an efficient algorithm for the
problem, thus proving that it is in P. This is exactly what we have just shown
for minimum s–t cut. However, many optimization problems that we consider in
this survey are NP-hard, and therefore we do not expect them to have efficient
algorithms. Instead, we will often look for approximation algorithms - efficient al-
gorithms that solve the problem approximately. Given a minimization problem Π,
we say that an efficient algorithm A is an α-approximation algorithm for Π, if for
any instance I of Π, algorithm A produces a solution of value at most α ·OPT(I),
where OPT(I) is the value of the optimal solution for I. For a maximization prob-
lem, an α-approximation algorithm needs to produce a solution of value at least
OPT(I)/α. Different optimization problems often have different approximation
factors achievable by efficient algorithms. The approximation factor α may be a
constant, or some function of the input size n (like O(log n), O(

√
n), and so on).

For many optimization problems, we still do not know what is the best approxima-
tion factor α∗ achievable for them. In order to determine this factor, in addition to
designing an approximation algorithm, that establishes an upper bound on α∗, we
need to provide a lower bound on α∗. This is usually done by proving hardness of
approximation, or inapproximability results: namely, that achieving a better than
α∗-approximation for a given problem Π is an NP-hard problem.

As we have shown, there is an efficient LP-rounding algorithm for minimum
s–t cut that can be used, together with (LP-cut), to solve the problem exactly.
For many other minimization problems, the value of the integral solution pro-
duced by an LP-rounding algorithm for a minimization problem is greater than
OPTLP. However, if the value of the solution is at most α · OPTLP for any input
instance I, then, since OPTLP ≤ OPT we obtain an α-approximate LP-rounding
algorithm. The technique of rounding linear programming relaxations is one of the
most powerful and widely used tools in the design of approximation algorithms.

From the strong duality theorem, the optimal value of (LP-flow) equals to the
optimum value of (LP-cut), that is, maximum flow equals to the value of the
minimum fractional cut. But since the values of the optimal fractional and the
optimal integral solutions to the s–t cut problem are the same, we get that the
maximum flow value equals to the value of the minimum cut in any graph G.

Linear program (LP-cut) is one of the rare cases where the optimal fractional
and the optimal integral solutions have the same value. For many other minimiza-
tion problems and their linear programming relaxations, OPTLP < OPT holds.
Given a minimization problem Π, and a linear programming relaxation (LP-rel)
for Π, the integrality gap of (LP-rel) is the largest possible ratio between the value
OPT of the optimal integral solution and the value OPTLP of the optimal frac-
tional solution, achieved by any instance I of Π. (For maximization problems we
reverse the ratio, and the integrality gap is the maximum of OPTLP/OPT over all
instances; so the integrality gap is always at least 1). If the integrality gap of a
linear programming relaxation (LP-rel) of problem Π is α, then no LP-rounding
algorithm can achieve a better than α-approximation for the problem. This state-
ment however is only true for the specific linear programming relaxation (LP-rel)
of Π. Often one can come up with different linear programming relaxations of the
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same problem, that have different integrality gaps, and LP-rounding algorithms
achieving different approximation factors. Studying integrality gaps of linear pro-
grams is therefore crucial in understanding the power and the limitations of the
LP-rounding approach for specific optimization problems. Often, instances ex-
hibiting large LP-integrality gaps can give us insight into the structure of hard
instances of the problem, and this can help us prove inapproximability results.
Alternatively, they can help us strengthen the LP relaxation and obtain better
LP-rounding algorithms.

As we have already seen, the integrality ratio of (LP-cut) is 1. We have also
already mentioned that, if all edge capacities are integral, then there is an optimal
solution to the maximum s–t flow problem where all values f(P ) are also integral.
Therefore, if all edge capacities are integral, then the integrality gap of (LP-flow)
is also 1. In the following sections we consider generalizations of the maximum
s–t flow problem, where instead of one source-destination pair, there are several
such pairs. There are two natural ways to define the objective function in this
setting: we can try to maximize the total amount of flow sent between all source-
destination pairs - a problem known as the maximum multicommodity flow; or we
can try to maximize a value λ such that all demand pairs can simultaneously send
λ flow units between them - this is known as maximum concurrent flow. We define
the two corresponding graph cut problems, minimum multicut and sparsest cut,
and study their LP-relaxations, as well as known approximation algorithms and
hardness results in Sections 2 and 3. Unfortunately, the integrality of flow does not
hold anymore in the multiple source-destination pairs setting, and the problem of
computing maximum integral flow becomes NP-hard. We discuss approximation
algorithms and hardness results for integral routing problems in Sections 4 and 5.

Before we proceed, let us mention another common and useful version of the
maximum s–t flow problem, where the capacities are on the graph vertices and
not on edges. In this problem, we are given a graph G = (V,E), a source vertex
s ∈ V and a destination vertex t ∈ V , and capacity values c(v) for all vertices
v ∈ V \{s, t}. As before, let P denote the set of all paths connecting s to t in G. A
valid flow assigns values f(P ) ∈ R+ to each path P ∈ P, so that for every vertex
v ∈ V \ {s, t},

∑
P :v∈P f(P ) ≤ c(v). In the corresponding vertex cut problem, we

are given costs c(v) on vertices v ∈ V , and the goal is to select a minimum-cost
subset S ⊆ V \ {s, t} of vertices, so that G \ S contains no path connecting s to t.
The node-capacitated version of the maximum flow problem behaves very similarly
to the edge-capacitated one. We can write a linear programming relaxation, simi-
lar to (LP-flow), which can be solved efficiently using similar methods. The dual of
this linear program is a relaxation of the minimum vertex cut problem. As in the
edge-capacitated version of the problem, the integrality gap of the LP-relaxation
for minimum vertex cut is 1, and, when all vertex capacities are integral, the inte-
grality gap of the LP-relaxation for node-capacitated maximum flow is also 1. The
maximum flow value and the minimum cut value are therefore equal for any graph
G even in this model. If all vertex capacities are unit, then we obtain an efficient
algorithm for computing a maximum-cardinality set P ′ of internally node-disjoint
paths connecting s to t (so every vertex v ∈ V \ {s, t} may belong to at most one
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path of P ′). Therefore, the cardinality of P ′ is equal to the value of the minimum
vertex s–t cut in any graph G - this is known as Menger’s theorem [Men27].

2. Maximum Multicommodity Flow and Minimum
Multicut

A natural generalization of the maximum s–t flow problem is maximum multicom-
modity flow. In this problem, instead of a single source-destination pair (s, t), we
are given a collection of k such pairs {(s1, t1), . . . , (sk, tk)}, that we call demand
pairs. The goal is to send maximum amount of flow between the demand pairs,
without violating the edge capacities: that is, for each 1 ≤ i ≤ k, the flow leav-
ing si must arrive at ti, and the total amount of flow traversing any edge e is at
most c(e). It is sometimes convenient to think of having k different flow types, or
commodities, where the ith commodity needs to be sent from si to ti. For each
1 ≤ i ≤ k, let Pi denote the set of all paths connecting si to ti in G. The following
linear program is a generalization of (LP-flow) to the multi-commodity setting:

(LP-multi-flow) max
∑k
i=1

∑
P∈Pi f(P )

s.t. ∑
P :e∈P f(P ) ≤ c(e) ∀e ∈ E

f(P ) ≥ 0 ∀1 ≤ i ≤ k ∀P ∈ Pi

Like (LP-flow), this linear program can be solved efficiently using similar meth-
ods. The cut counterpart of maximum multicommodity flow is minimum multicut.
In this problem, the input is the same as in the maximum multicommodity flow
problem, but we view the values c(e) as edge costs, rather than capacities. The
goal is to select a minimum-cost subset E′ ⊆ E of edges, such that in graph
G \ E′, there is no path connecting any source si to its destination ti. As in the
single-commodity scenario, it is easy to see that the value of the maximum multi-
commodity flow cannot exceed the value of the minimum multicut in any graph G,
since for each 1 ≤ i ≤ k, every path P ∈ Pi must contain at least one edge of E′.
Therefore, the total amount of flow carried by the paths in

⋃k
i=1 Pi is bounded by

the total capacity of the edges in E′. The dual linear program of (LP-multi-flow)
also happens to be a relaxation of minimum multicut:

(LP-multicut) min
∑
e∈E c(e)xe

s.t. ∑
e∈P xe ≥ 1 ∀1 ≤ i ≤ k ∀P ∈ Pi (5)

xe ≥ 0 ∀e ∈ E (6)

Indeed, if we restrict the values xe to be in {0, 1}, and let E′ be the set of all
edges e with xe = 1, then Constraint (5) ensures that every path connecting any
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source si to its destination ti contains at least one edge of E′, or, equivalently, G\E′
contains no path connecting si to ti, for any 1 ≤ i ≤ k. Let OPTLP be the value
of the optimal solution to (LP-multicut), that we also call the minimum fractional
multicut value. The optimal solution to the minimum multicut problem is denoted
by OPT, and is called the minimum integral multicut value. From the LP-duality
theorem, the value of the maximum multicommodity flow equals to the value of
the minimum fractional multicut. However, the integrality gap of (LP-multicut)
is no longer 1, and so the maximum multicommodity flow value may be smaller
than the value of minimum multicut. The equality between maximum flow and
minimum cut therefore breaks down in the multicommodity setting. However, we
can still hope to obtain an approximate version of the Max-Flow Min-Cut Theorem,
by bounding what is called the flow-cut gap - the largest possible ratio between
maximum multicommodity flow and minimum multicut in any graph. Since the
maximum multicommodity flow value equals to the value of the minimum fractional
multicut, the flow-cut gap is precisely the integrality gap of (LP-multicut).

For undirected graphs, Garg, Vazirani and Yannakakis [GVY96], building on
the work of Leighton and Rao [LR99] and Klein et al. [KARR90] showed that the
integrality gap of (LP-multicut) is O(log k), by providing an efficient LP-rounding
algorithm, whose approximation factor is O(log k). This bound on the integrality
gap is almost tight: there is an instance of the minimum multicut problem, for
which OPT = Ω(log k) ·OPTLP [LR99]. The integrality gap of (LP-multicut), and
the flow-cut gap for undirected graphs are therefore well understood (to within a
constant factor), and stand on Θ(log k). The question of whether one can obtain
a better than O(log k)-approximation algorithm for undirected multicut by other
methods, or perhaps by LP-rounding of a different linear programming relaxation
remains wide open. The best currently known hardness of approximation result
shows that for some constant c, the problem does not have a c-approximation
algorithm, assuming that P 6= NP [DJP+94]. Under a complexity assumption
called the Unique Games Conjecture [Kho02], the undirected multicut problem is
hard to approximate to within any constant factor [CKK+06, KV05]. The status
of the Unique Games Conjecture is however still wide open.

The situation is very different in directed graphs. It is easy to obtain a fac-
tor k-approximation to the minimum multicut problem, by computing, for each
1 ≤ i ≤ k, a minimum si–ti cut E′i, and returning

⋃k
i=1E

′
i as the solution to mini-

mum multicut. Surprisingly, a beautiful construction of Saks et al. [SSZ04] shows
that this algorithm is close to the best one can achieve via the LP-rounding of
(LP-multicut), since the integrality gap of (LP-multicut), and hence the flow-cut
gap, can be as large as k−ε for any ε > 0 in directed graphs. The number of pairs k
in their construction is however quite small when compared to the total number of
vertices n in the graph: k = Θ(log n/ log log n), and hence, as a function of n, the
lower bound they achieve on the integrality gap is only Ω(log n/ log log n). Unfortu-
nately, [CK09] have shown that the integrality gap of (LP-multicut), and therefore
the flow-cut gap in directed graphs is at least Ω(n1/7/poly log n)1. The best current
approximation algorithm achieves an O(n11/23 · poly log n)-approximation via LP-

1We say that f(n) = poly logn if there is some constant c, such that f = Θ((logn)c).
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rounding of (LP-multicut), thus providing an upper bound of O(n11/23 ·poly log n)
on the flow-cut gap [CKR05, Gup03, AAC07]. The value of the flow-cut gap for
directed graphs therefore remains open, but, unlike undirected graphs, it is poly-
nomially large in n. Minimum multicut in directed graphs is hard to approximate
to within factor 2Ω(log1−ε n) for any constant ε > 0, under the plausible com-
plexity assumption that some problems in NP do not have efficient randomized
algorithms [CK09].

3. Concurrent Flow and Sparsest Cut

Maximum concurrent flow problem can be seen as multicommodity flow with addi-
tional fairness requirements. The input to this problem is the same as in maximum
multicommodity flow, but instead of routing maximum amount of flow between all
demand pairs, we would like to ensure that every demand pair routes a signifi-
cant amount of flow, and we measure our success by the smallest amount of flow
routed between any demand pair. In other words, we would like to maximize a
value λ, such that each demand pair (si, ti) can route λ flow units from si to ti
simultaneously, and the total flow on any edge e does not exceed its capacity c(e).
The linear programming formulation of this problem uses the same notation as in
(LP-multi-flow), and is as follows:

(LP-concurrent-flow) max λ

s.t. ∑
P∈Pi f(P ) ≥ λ ∀1 ≤ i ≤ k∑

P :e∈P f(P ) ≤ c(e) ∀e ∈ E
f(P ) ≥ 0 ∀1 ≤ i ≤ k ∀P ∈ Pi

Often, a more general version of this problem is considered, where each demand
pair (si, ti) is associated with a demand value Di ≥ 0, and we need to route λDi

flow units from si to ti simultaneously, without violating the edge capacities, for
largest possible value λ. Linear program (LP-concurrent-flow) can also be solved
efficiently using methods similar to those discussed in Section 1. The dual linear
program for (LP-concurrent flow), that we call (LP-spcut), appears below.

(LP-spcut) min
∑
e∈E c(e)xe

s.t. ∑
e∈P xe ≥ hi ∀i : 1 ≤ i ≤ k, ∀P ∈ Pi (7)∑k
i=1 hi ≥ 1 (8)

xe ≥ 0 ∀e ∈ E
hi ≥ 0 ∀1 ≤ i ≤ k
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This linear program can be seen as a relaxation of a different graph cut problem,
called the sparsest cut problem. Suppose we are given a graph G = (V,E) with
costs c(e) on edges e ∈ E, and a collection M = {(s1, t1), . . . , (sk, tk)} of demand
pairs. For any subset S ⊆ V of vertices, let S = V \ S. Let E(S, S) denote the
set of all edges with exactly one endpoint in S, and let D(S, S) be the set of all
demand pairs (si, ti), where exactly one of si, ti belongs to S. The sparsity of S

is
∑
e∈E(S,S) c(e)

|D(S,S)| . In the sparsest cut problem, the goal is to find a subset S ⊆ V

of vertices of minimum sparsity. If the set M of the demand pairs contains every
pair of vertices of G, then the problem is called uniform sparsest cut. The general
version of the problem, whereM can be arbitrary, is often called the non-uniform
sparsest cut problem.

Sparsest cut is one of the central combinatorial optimization problems. It is
closely related to the important graph theoretic notions of graph expansion and
graph conductance. Approximation algorithms for the sparsest cut problem are
often used as subroutines in algorithms for problems arising in many different
areas of Computer Science. As an example, one of the most useful paradigms
in algorithm design is divide-and-conquer, that often requires a small balanced
partition of a given graph G. That is, we need to partition V (G) into two sub-
sets V1, V2, each of which only contains a constant fraction (say at most 2/3) of
the vertices of G, such that the number of edges |E(V1, V2)| is minimized. This
problem can be approximately solved by using an approximation algorithm for the
sparsest cut problem as a subroutine.

In order to see that (LP-spcut) is a relaxation of the sparsest cut problem, con-
sider any solution S to the sparsest cut problem, and let E′ = E(S, S). For each
edge e ∈ E, define a new variable x′e whose value is 1 if e ∈ E′ and 0 otherwise. For
each i : 1 ≤ i ≤ k, define a new variable h′i, whose value is 1 if (si, ti) ∈ D(S, S),
and 0 otherwise. Let D = |D(S, S)|. We are now ready to define a solution to (LP-
spcut): for each edge e ∈ E, set xe = x′e/D, and for each 1 ≤ i ≤ k, set hi = h′i/D.
It is then easy to see that we have defined a feasible solution to the linear program

(LP-spcut), and the value of the solution
∑
e c(e)xe =

∑
e∈E c(e)x

′
e

D =
∑
e∈E′ c(e)

|D(S,S)| is

exactly the sparsity of S. As with undirected multicut, there is an LP-rounding
approximation algorithm for the sparsest cut problem, whose approximation fac-
tor is O(log k) in undirected graphs [LR99, LLR95, AR98], and a matching lower
bound of Ω(log k) on the integrality gap of (LP-spcut) [LR99]. Therefore, the flow-
cut gap between maximum concurrent flow and sparsest cut in undirected graphs
is Θ(log k). In a major breakthrough, Arora, Rao and Vazirani [ARV09] designed
an O(

√
log n)-approximation algorithm for uniform sparsest cut, by rounding a

semidefinite relaxation of the problem. Their algorithm was later generalized to
the non-uniform sparsest cut problem, where the approximation ratio becomes
O(
√

log k · log log k) [ALN05]. Somewhat surprisingly, these techniques do not
seem to help with the minimum multicut problem, where the best approxima-
tion ratio still stands on O(log k), and is achieved by an LP-rounding algorithm
of [LR99, GVY96]. On the negative side, it is known that the sparsest cut prob-
lem does not have a factor c-approximation for some specific constant c, unless
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all problems in NP have randomized subexponential time algorithms [AMS07],
and this holds even for the uniform sparsest cut problem. Assuming the Unique
Games Conjecture, the non-uniform sparsest cut is hard to approximate to within
any constant factor [CKK+06, KV05]. The approximability of the sparsest cut
problem remains one of the central open questions in the area of approximation
algorithms. Some progress has recently been made on special cases of the prob-
lem [GS11, AGS13].

For directed graphs, the notion of a sparsest cut can be defined in two distinct
ways. In one version of the problem, which we refer to as the bipartite sparsest cut,
the sparsest cut in a graph is a bipartition of vertices into two sets S and S̄ that

minimizes the ratio of
∑
e∈|E(S,S)| c(e)

|D(S,S)| . In the second version, which we refer to as

the non-bipartite sparsest cut, we need to select a subset E′ of edges, minimizing the
ratio of

∑
e∈E′ c(e) to the number of the demand pairs disconnected in G \E′. We

note that (LP-spcut) is a relaxation of the non-bipartite sparsest cut. In undirected
graphs, it is easy to see that the two notions are equivalent, but this is not the
case in directed graphs. The best currently known approximation ratio for the
non-bipartite sparsest cut is O(n11/23 poly log n), achieved by LP-rounding of (LP-
spcut) [HR06, AAC07]. As in minimum multicut, the integrality gap of (LP-spcut)
is Ω(n1/7/ poly log n) [CK09]. Therefore, the integrality gap of (LP-spcut), and the
flow-cut gap between maximum concurrent flow and sparsest cut in directed graph
is polynomial in n. The non-bipartite sparsest cut problem in directed graphs is
hard to approximate to within factor 2Ω(log1−ε n) for any constant ε > 0, assuming
that some problems in NP do not have efficient randomized algorithms [CK09].
The bipartite sparsest cut is known to be hard to approximate to within 2Ω((logn)ε)

for some ε > 0, unless 3SAT has subexponential-time algorithms [CMM06].

4. Integral Routing

In this section we consider integral routing problems. We start with the edge-
disjoint paths problem, that can be seen as the integral counterpart of maximum
multicommodity flow, and discuss several closely related problems, such as node-
disjoint paths and congestion minimization. We then consider an integral counter-
part of the maximum concurrent flow problem, called integral concurrent flow.

Edge-disjoint paths problem (EDP) is one of the basic problems in integral
routing, and we can think of it as an integral version of maximum multicommodity
flow. For simplicity, in this section, we assume that all edge capacities are unit.
The input to the EDP problem is an n-vertex graph G = (V,E), that can be
either directed or undirected, and a collection M = {(s1, t1), . . . , (sk, tk)} of k
pairs of vertices, that we call demand pairs. In order to route a pair (si, ti), we
need to select a path Pi connecting si to ti. The goal is to route a maximum
possible number of the demand pairs via edge-disjoint paths: that is, every edge
e may participate in at most one path in the solution. A closely related problem
is node-disjoint paths (NDP), defined exactly like EDP, except that the paths
chosen to route the demand pairs now need to be node-disjoint, so a vertex of G
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may belong to at most one such path. For directed graphs, the two problems are
almost equivalent: an EDP instance (G,M) can be transformed into an instance
of the NDP problem, by sub-dividing every edge of G with a new vertex. (This
transformation does not preserve the number of vertices, which can grow, so if
we are interested in approximation factors as a function of |V (G)|, we should be
careful when using this transformation). An instance G of NDP in a directed
graph can be transformed into an instance of the EDP problem, by replacing every
vertex v with a directed edge (av, bv), and every edge (u, v) with an edge (bu, av).
For undirected graphs, it is only known that NDP is more general than EDP, as
every instance of EDP can be transformed into an instance of NDP via the same
transformation, but the transformation in the opposite direction is not known for
undirected graphs.

In directed graphs, both NDP and EDP are NP-hard even when the number
of the demand pairs is 2 [FHW80]. The following simple algorithm achieves an
O(
√
m)-approximation for EDP, where m is the number of the graph edges [KS04,

GKR+99, Kle96, KS06]. Start with the empty solution. While at least one demand
pair can be routed in G, select a shortest path P , connecting any demand pair
(si, ti). Add P to the solution, delete all edges of P from the graph, and delete
(si, ti) from the list of the demand pairs that need to be routed. In order to
see that this algorithm obtains an O(

√
m)-approximation, consider any optimal

solution OPT to the problem. In every iteration, if a path P connecting si to ti
is added to the solution, then we delete from OPT all paths sharing edges with P ,
and the path routing the demand pair (si, ti), if such belongs to OPT. As long as
P contains fewer than

√
m edges, we delete at most

√
m + 1 paths from OPT in

every iteration, while adding at least one path to our solution. Consider now the
first iteration where the length of the selected path P is more than

√
m. Since we

choose the shortest path routing any demand pair, and all paths that currently
belong to OPT can be chosen by the algorithm, every path in OPT contains at
least

√
m edges, and, since these paths are edge-disjoint, OPT contains at most√

m paths in total. Therefore, even if we delete all paths from OPT in the current
iteration, while adding only one path to the solution, we still preserve the O(

√
m)-

ratio between the number of paths deleted from OPT and the number of paths
added to the solution, thus obtaining an O(

√
m)-approximation. Surprisingly, this

simple algorithm is almost the best we can hope for: EDP in directed graphs is hard
to approximate to within a factor of Ω(m1/2−ε) for any constant ε [GKR+99]. For
the NDP problem, the algorithm described above gives an O(

√
n)-approximation,

and the problem is hard to approximate in directed graphs to within a factor of
Ω(n1/2−ε) for any constant ε [GKR+99].

While the approximation status of EDP and NDP is well understood in di-
rected graphs, both problems remain wide open in undirected graphs. When the
number k of the demand pairs is bounded by a constant, there is an efficient al-
gorithm to solve both NDP and EDP [RS95, RS90a]. We discuss this algorithm
in more detail in the following section. For general values of k, it is NP-hard
to even decide whether all pairs can be simultaneously routed on edge-disjoint
paths [Kar72]. The best currently known approximation algorithms achieve an
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O(
√
n)-approximation for both problems [KS04, CKS06], while the best current

negative result shows that neither problem has an O(log1/2−ε n)-approximation
for any constant ε, unless all problems in NP have randomized algorithms with
running time nO(poly logn) [AZ05, ACG+10].

The vertices in the set T = {s1, . . . , sk, t1, . . . , tk} are called terminals. We will
assume for simplicity that all terminals are distinct, that is, |T | = 2k, and that
each terminal is incident on exactly one edge. This can be assumed without loss
of generality, by performing the simple transformation of the input graph G, that
preserves the routing solutions: for each terminal v ∈ T , if v participates in z
demand pairs, we add z new vertices v1, . . . , vz to G, each of which connects to v
with an edge. We then replace v with the vertices v1, . . . , vz in all demand pairs in
which v participates, so that each of these new vertices participates in exactly one
demand pair. If we add the following integrality constraints to the linear program
(LP-multi-flow):

f(P ) ∈ {0, 1} ∀1 ≤ i ≤ k, ∀P ∈ Pi,

and set the values c(e) for all edges e ∈ E in the linear program to 1, then we obtain
an integral linear program, which is equivalent to EDP. Therefore, (LP-multi-flow)
is an LP-relaxation of EDP. The best currently known approximation algorithm
for EDP achieves an O(

√
n)-approximation by rounding (LP-multi-flow) [CKS06].

Unfortunately, the integrality gap of (LP-multi-flow) is very large even in undi-
rected graphs: if n denotes the number of the graph vertices, and k is the number
of the demand pairs, then the integrality gap can be as large as Ω(

√
n), and as

large as Ω(k) [GVY93]. An example of an instance realizing this integrality gap is a
wall graph. Wall graphs play an important role in algorithms for routing problems
and in Graph Minor Theory. They are also among the simplest examples of graphs
for which we do not have good approximation algorithms for the EDP problem.
A wall of height 5 and width 4 is shown in Figure 1(a). A wall of height h and
width w can be constructed from a 2-dimensional grid of width 2w and height h.
Let C1, . . . , C2w be the columns of the grid, in their natural left-to-right order.
Consider some column Ci, and let ei1, . . . , e

i
h−1 be the edges of column Ci in their

top-to-bottom order. If i is odd, then we delete all edges eij where j is even, and if

i is even, we delete all edges eij where j is odd. We also delete all vertices of degree
at most 1 in the resulting graph, obtaining a wall of height h and width w. This
wall contains h horizontal lines corresponding to the h rows of the grid, that we call
the rows of the wall, denoting them by R1, . . . , Rh in their natural top-to-bottom
order. There are also exactly w disjoint paths connecting the vertices of R1 to the
vertices of Rh, which do not contain the vertices of R1∪Rh as their inner vertices.
We call these paths the columns of the wall, and we denote them by C1, . . . , Cw in
their natural left-to-right order.

In order to define an instance of the edge-disjoint-paths problem, we start with
a wall of height k+2 and width 2k. For each 1 ≤ i ≤ k, let si be the unique vertex
in the intersection of R1 and Ci, and let ti be the unique vertex in the intersection
of Rk+2 and C2k−i+1. The set of the demand pairs is M = {(s1, t1), . . . , (sk, tk)}.
It is easy to see that the value of the optimal fractional solution for this instance
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is at least k/2: for each 1 ≤ i ≤ k, we will define a path Pi connecting si to ti,
and we will send 1/2 flow unit along each such path. We will ensure that every
edge of the wall belongs to at most two such paths, obtaining a feasible solution
of value k/2 to (LP-multi-flow). In order to define path Pi, for 1 ≤ i ≤ k, we start
from si, and follow column Ci, until we reach row Ri+1; we then follow Ri+1 to
column C2k−i+1, and column C2k−i+1 until we reach ti. It is immediate to verify
that every edge belongs to at most two such paths, and so setting f(Pi) = 1/2 for
each 1 ≤ i ≤ k gives a feasible solution of value k/2 to (LP-multiflow). However,
the value of the optimal integral solution is at most 1: assume for contradiction
that we can route two demand pairs: (si, ti) and (sj , tj), for i 6= j, and let Pi, Pj
be the two corresponding paths. Let Γ be the cycle that serves as the boundary
of the wall. The wall is a planar graph, and has a drawing in the plane, with Γ
being the boundary of the outer face - this is the natural drawing, as the one in
Figure 1(a). The resulting drawings of the paths Pi, Pj have to cross, since their
endpoints appear in the circular order (si, sj , ti, tj) along Γ. But this is impossible
since Pi, Pj are disjoint, and the drawing is planar. Therefore, the integrality gap
of (LP-multi-flow) is at least k/2, and, since the number of the vertices in our
graph is O(k2), the gap is Ω(

√
n) as a function of n.

(a) A wall of height 5 and width
4. The columns are shown in red.

s1 s2 s3

t1t2t3

(b) An integrality gap example with k = 3.

Figure 1. A wall graph

Interestingly, even though there are several approximation algorithms achiev-
ing constant or polylogarithmic approximation factors for large families of planar
graphs, such as grids and grid-like graphs [AR95, AGLR94, KT98, KT95], The
best currently known approximation ratio for EDP on planar graphs is no better
than that for general graphs, namely O(

√
n). Even if the underlying graph is a

wall of height Θ(
√
n) (but the terminals can be located anywhere in the wall and

not necessarily on the boundary), no better than O(
√
n)-approximation is known,

to the best of our knowledge. Closing the gap in our understanding of the approx-
imability of EDP is one of the central problems in the area of graph routing, and
a good starting point may be planar graphs or even wall graphs.

The situation with the NDP problem in undirected graphs is very similar: the
best current upper and lower bounds on its approximability stand on O(

√
n) and

Ω(log1/2−ε n) for any constant ε, respectively [KS04, GKR+99, Kle96, KS06, AZ05,
ACG+10]. We can again use the multi-commodity flow relaxation of the NDP
problem, defined similarly to (LP-multi-flow), except that the capacity constraints
are on the vertices and not on the edges of G. This relaxation has an integrality
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gap of Ω(
√
n), and the graph realizing this gap is a 2-dimensional (

√
n×
√
n)-grid.

No better than O(
√
n)-approximation is known for NDP on planar graphs, and

even on grid graphs.

Another important class of graphs is expander graphs. We say that a graph G =
(V,E) is an α-expander, iff for any subset S ⊆ V of its vertices with |S| ≤ |V |/2,
|E(S, V \S)| ≥ α · |S|. In general, we say that a graph is an expander if it is an α-
expander for some fixed constant α independent of the graph size. Both EDP and
NDP have polylogarithmic approximation algorithms on bounded-degree expander
graphs [LR99, BFU94, BFSU94, KR96, Fri00]. Both these problems also have
constant-factor approximation algorithms on trees [GVY93, CMS07], and EDP
has constant-factor approximation algorithms on grids and grid-like graphs [AR95,
AGLR94, KT98, KT95].

Routing with Small Congestion Seeing that the status of the EDP problem
in undirected graphs is still wide open, it is natural to investigate what happens
if we relax the problem requirements slightly, by allowing small congestion. We
say that a set of paths P causes edge-congestion c, if every edge belongs to at
most c paths in P. When the congestion c = 1, we sometimes say that P causes
no congestion. Vertex congestion is defined similarly. It is a common practice to
compare a solution to this relaxed version of EDP with an optimal solution that
has no congestion. We say that an algorithm achieves an approximation factor α
with congestion c for the EDP problem, iff it routes OPT/α demand pairs with
congestion c, where OPT is the maximum number of pairs that can be routed with
no congestion.

The classical algorithm of Raghavan and Thompson [RT87] gives a constant
factor approximation for EDP with congestion O(log n/ log log n). The algorithm
performs LP-rounding of (LP-multi-flow), by viewing the values f(P ) for each
path P as probabilities. Each path P ∈

⋃
i Pi is selected to the solution inde-

pendently with probability f(P ). If several paths routing the same demand pair
are selected, we discard the additional paths arbitrarily. It is not hard to show
that with a constant probability we obtain a solution where the number of the de-
mand pairs routed is within a constant of the optimal fractional solution, and each
edge participates in at most O(log n/ log log n) paths. This randomized round-
ing scheme can be slightly altered to give, for any congestion value c, a factor
O(cn1/(c−1))-approximation [AR06, BS00, KS04, Sri97]. More recent result give
LP-rounding algorithms for EDP that achieve O(poly log k)-approximation with
smaller congestion [And10, Chu12, CL12], with the best current algorithm giving
O(poly log k)-approximation with congestion 2.

An important class of instances of the EDP problem is well-linked instances.
We say that a set T of vertices in graph G is well-linked if for any pair T1, T2 ⊆ T
of equal-sized subsets of T , there is a set of |T1| node-disjoint paths connecting
the vertices of T1 to the vertices of T2 in G. We say that an instance of EDP is
well-linked if every terminal participates in exactly one demand pair, and the set of
all terminals is well-linked. Chekuri, Khanna and Shepherd [CKS13, CKS05] have
shown an efficient algorithm, that, given any EDP instance (G,M), partitions it
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into a number of sub-instances (G1,M1), . . . , (G`,M`), such that each instance Gi
is well-linked, while the sum of the values of the optimal fractional solutions in all
these instances is Ω(OPT/ log2 k). Therefore, in order to obtain a polylogarithmic
approximation with congestion 2 to EDP, it is enough to find a polylogarithmic
approximation with congestion 2 in each such sub-instance separately. The main
result of [CL12] is a structural theorem, that shows that any well-linked instance
with k demand pairs contains a large crossbar. The crossbar can be viewed as a
degree-3 tree T on poly log k vertices, such that every vertex v of T is mapped
to a connected subgraph Cv of G, and every edge e = (u, v) of T is mapped to a
collection Pe of k/ poly log k disjoint paths in G, where each path connects a vertex
of Cv to a vertex of Cu. Moreover, each edge of G participates either in at most
one graph in {Cv}v∈V (T ), or in at most one path of

⋃
e∈E(T ) Pe, but not both. This

crossbar is then exploited to embed an expander X on k/poly log k vertices into G
with congestion at most 2. Specifically, we select a subsetM′ ⊆M of k/poly log k
demand pairs that we will attempt to route. Every vertex v of the expander X
is mapped to a connected sub-graph Hv of G, and every edge e = (u, v) of X is
mapped to a path Pe in G connecting a vertex of Hv to a vertex of Hu. Each edge
of G may participate in up to two sub-graphs Hv, or at most one such sub-graph
and at most one path Pe. Each terminal participating in the pairs in M′ belongs
a distinct sub-graph Hvt for some vt ∈ V (X). The embedding of the expander
is performed using the crossbar, building on a beautiful result of Khandekar, Rao
and Vazirani [KRV09] on constructing expanders via cut-matching games. Finally,
known algorithms for routing on expander graphs are used to find the final routing.

These results demonstrate a fundamental difference between routing with con-
gestion 1 and routing with congestion 2 or higher: Suppose we are given a solution
P to the EDP problem that connects D of the demand pairs with congestion c,
and we are interested in obtaining another solution with a lower congestion. By
sending 1/c flow units along each path in P, we obtain a valid fractional solution
to (LP-multi-flow) of value D/c. We can then use the LP-rounding algorithm
of [CL12] to find a solution connecting Ω (D/(cpoly log k)) of the demand pairs
with congestion 2. That is, we can lower the congestion to 2 with only a factor
(cpoly log k) loss in the number of the demand pairs routed. However, if we are in-
terested in routing with no congestion, then we may have to lose an Ω(

√
n)-factor

in the number of pairs routed, as we can see from the integrality gap example
described above: we can view the fractional solution as routing k demand pairs
integrally with congestion 2 (by sending 1 flow unit along each path instead of 1

2 ),
but if we require an integral routing with congestion 1, then at most one pair can
be routed.

The O(poly log k)-approximation algorithm with congestion 2 is close to the
best one can hope to obtain from rounding (LP-multi-flow): as discussed above,
any sub-polynomial approximation for EDP obtained via this relaxation must incur

congestion at least 2. The integrality gap of (LP-multi-flow) is Ω

((
logn

(log logn)2

)1/(c+1)
)

for any constant congestion value c [ACG+10], and so the integrality gap for
congestion 2 is polylogarithmic. An almost matching hardness of approxima-
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tion result shows that for any constant ε, for any congestion value c : 1 ≤ c ≤
O
(

log logn
log log logn

)
, there is no O

(
(log n)

1−ε
c+1

)
-approximation algorithm for EDP with

congestion c, unless all problems in NP have randomized algorithms with running

time (npoly logn) [ACG+10]. This gives an Ω
(

log(1−ε)/3 n
)

-hardness of approxi-

mation for EDP with congestion 2. These algorithms for EDP were generalized to
NDP, giving an O(poly log(k))-approximation with a constant congestion [CE13].

Allowing congestion does not seem to help much in directed graphs: EDP re-
mains nΩ(1/c)-hard to approximate even when congestion c is allowed, for any value
c between 2 and δ log n/ log logn, for some fixed constant δ, unless all problems in
NP have randomized algorithms with running time npoly logn [AZ06, CGKT07], al-
most matching the O(cn1/(c−1))-approximation [AR06, BS00, KS04, Sri97] achiev-
able via the randomized rounding technique.

Congestion Minimization Congestion minimization is a natural counterpart of
the EDP problem: here, the goal is to route all demand pairs, while minimizing the
edge congestion. We can slightly alter (LP-multi-flow) to obtain an LP-relaxation
for the congestion minimization problem:

(LP-cong-min) min c

s.t. ∑
P∈Pi f(P ) = 1 ∀1 ≤ i ≤ k∑
P :e∈P f(P ) ≤ c ∀e ∈ E
f(P ) ≥ 0 ∀1 ≤ i ≤ k ∀P ∈ Pi

The randomized rounding algorithm of Raghavan and Thompson [RT87] gives
the best currently known approximation algorithm for the congestion minimiza-
tion problem, whose approximation factor is O(log n/ log log n), by independently
choosing, for each 1 ≤ i ≤ k, one path P ∈ Pi, where path P is chosen with
probability f(P ). For directed graphs, this algorithm is close to being the best
possible, as the problem is known to be hard to approximate to within factor
Ω(log n/ log log n) [AZ06, CGKT07]. But for undirected graphs the problem is

still wide open, with the best current negative result standing on Ω
(

log logn
log log logn

)
-

hardness of approximation, unless all problems in NP have randomized algorithms
with running time (npoly logn) [AZ07]. Even the integrality gap of (LP-cong-min)
for undirected graphs is not well understood: the current upper bound stands on
O(log n/ log log n), by the algorithm of [RT87], and the current lower bound is

Ω
(

log logn
log log logn

)
[AZ07].

Integral Concurrent Flow In the integral concurrent flow problem (ICF), we
are given an undirected n-vertex graphG = (V,E), a collection {(s1, t1), . . . , (sk, tk)}
of pairs of vertices that we call demand pairs, and a demand value Di for each
1 ≤ i ≤ k. The goal is to find a maximum value λ, and a collection P of paths,
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such that for each demand pair (si, ti) set P contains at least bλ ·Dic paths con-
necting si to ti, and each edge participates in at most one such path. This problem
is an integral counterpart of the maximum concurrent flow problem. To the best
of our knowledge, no approximation algorithms are known for the problem. As
with the EDP problem, we also consider a relaxed version, where a small conges-
tion is allowed on the edges. Chalermsook et al. [CCEL12] showed a poly log n-
approximation algorithm for ICF with a constant congestion, by rounding solutions
of an LP-relaxation similar to (LP-concurrent-flow). They also showed that for any
values η, α, such that η · α ≤ O(log log n/ log log log n), no efficient algorithm can
find an α-approximate solution with congestion η to ICF unless all problems in
NP have randomized algorithms with running time npoly logn.

Chalermsook at al. [CCEL12] also consider a more general version of the ICF,
called group-ICF, in which, instead of the k pairs of vertices {(s1, t1), . . . , (sk, tk)},
we are given k pairs of vertex subsets, ((S1, T1), . . . , (Sk, Tk)), so for each 1 ≤ i ≤ k,
Si, Ti ⊆ V . The goal is to find a maximum value λ, and a collection P of paths,
such that for each 1 ≤ i ≤ k, there are at least bλ · Dic paths connecting the
vertices of Si to the vertices of Ti in P, and every edge e ∈ E belongs to at most
one such path. It is easy to see that group-ICF generalizes both the ICF and the
EDP problems. We can use an LP-relaxation similar to (LP-concurrent-flow) for
the group-ICF problem. When no congestion is allowed, the integrality gap of the
relaxation is Ω(

√
n), even when k = 2. Moreover, even if we allow congestion c,

this ratio can still be as large as Ω(n1/c+1). Chalermsook et al. [CCEL12] show

that for any 0 < η ≤ O(log log n) and α = O
(
n1/22η+3

)
, no efficient algorithm can

find α-approximate solutions with congestion η for group-ICF, unless all problems
in NP have algorithms with running time nO(log logn). Given an optimal integral
solution P to the group-ICF problem instance, let D = mini {bλ∗ ·Dic} be the
minimum number of paths connecting any pair (Si, Ti) in this solution. Their
hardness result only holds for the regime where D << k. They further show that
if D > k poly log n, then there is an efficient algorithm that finds a (poly log n)-
approximate solution to group-ICF with constant congestion.

5. Routing with Few Demand Pairs

In this section we consider the NDP problem on undirected graphs when the num-
ber k of the demand pairs is bounded by a constant independent of the graph size.
(Recall that for directed graphs, NDP is NP-hard even for k = 2 [FHW80]).

Given a graph G, a separation of G is a pair (X,Y ) of sub-graphs of G, with
X ∪ Y = G and E(X)∩E(Y ) = ∅. The order of the separation is |V (X)∩ V (Y )|.
When the number of the demand pairs is k = 2, the following beautiful theorem
can be used to solve the NDP problem.

Theorem 5.1. [Jun70, RS90b, Sey06, Shi80, Tho80] Let G be a graph and
s1, t1, s2, t2 four vertices. Assume that there is no separation (X,Y ) in G of order
at most 3, such that s1, t1, s2, t2 ∈ V (X) and X 6= G. Then either both pairs
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(s1, t1) and (s2, t2) can be routed on disjoint paths in G, or there is a drawing of G
inside a disc in the plane, with s1, s2, t1, t2 appearing on the boundary of the disc
in this circular order. Moreover, there is an efficient algorithm that either finds
the routing or the drawing of G.

In order to apply the above theorem to the NDP problem instance, we pre-
process the input graph G as follows: if there is a separation (X,Y ) of G of order
at most 3, such that s1, t1, s2, t2 ∈ V (X) and X 6= G, then there must be a
separation (X ′, Y ′) of G with all the above properties, such that Y ′ is connected.
We delete from G all vertices of V (Y ′)\V (X ′), and add all edges connecting every
pair of vertices in V (X ′) ∩ V (Y ′). It is easy to see that the two pairs (s1, t1),
(s2, t2) can be routed on disjoint paths in the new graph iff they can be routed
on disjoint paths in the old graph. We repeat this process, until G contains no
separation (X,Y ) of order at most 3, with s1, t1, s2, t2 ∈ V (X) and X 6= G, and
then apply Theorem 5.1 to find the routing.

For the case where k > 2, but is still bounded by a constant, Robertson and
Seymour [RS95, RS90a] have shown an efficient algorithm for NDP, with running
time O(n3 ·f(k)), where n is the number of graph vertices, and f is some function.
This running time was later improved to O(n2 ·f(k)) [KKR12]. Before we describe
their algorithm, we need to define several graph-theoretic notions.

We start with the notion of treewidth. Intuitively, treewidth measures how close
our graph is to a tree: the lower the treewidth value (which is always at least 1),
the “closer” our graph is to being a tree. Trees are relatively simple graphs, and
many combinatorial optimization problems that are NP-hard on general graphs
have efficient algorithms on trees. Many other problems have good approximation
algorithms on trees, even if such algorithms are not known for general graphs.
Sometimes, when the graphs that we work with are not too complex, techniques
used for designing algorithms on trees may still be applicable. It would be therefore
useful to have some machinery that allows us to adapt known algorithms for trees
to “tree-like” graphs, and to have a formal way to measure the “closeness” of a
graph to a tree. The notion of treewidth achieves both these goals: it gives a way
to measure the closeness of a graph to a tree, while providing a convenient tree-like
representation of the graph, that often allows us to adapt the algorithms known
for trees to low-treewidth graphs.

The treewidth of a graph G = (V,E) is typically defined via tree decompo-
sitions. A tree-decomposition for G consists of a tree T = (V (T ), E(T )) and a
collection of sets {Xv ⊆ V }v∈V (T ) called bags, such that the following two prop-
erties are satisfied: (i) for each edge (a, b) ∈ E, there is some node v ∈ V (T )
with both a, b ∈ Xv and (ii) for each vertex a ∈ V , the set of all nodes of T
whose bags contain a form a non-empty (connected) subtree of T . The width of
a given tree decomposition is maxv∈V (T ) {|Xv| − 1}, and the treewidth of a graph
G, denoted by tw(G), is the width of a minimum-width tree decomposition for G.
There is an interesting connection between graph treewidth and well-linkedness: if
w denotes the size of the largest-cardinality well-linked set of vertices in G, then
w ≤ tw(G) ≤ 4w.

The problem of computing the treewidth of a graph is NP-hard [ACP87]. When



Flows, Cuts and Integral Routing in Graphs 19

the treewidth value k is bounded by a constant, the treewidth and the correspond-
ing tree decomposition can be computed in time O(n · f(k)) for some function
f [RS95, Lag90, Ree92, LA91, BK91, Bod93]. Using the best currently known ap-
proximation algorithms for the vertex version of the sparsest cut problem [FHL08],
one can obtain an O(

√
log k)-approximation algorithm for computing treewidth in

general graphs, together with the corresponding tree decomposition [BGHK92].

Suppose we are given an instance (G,M) of the NDP problem, where |M| = k,
and assume that we are given a tree decomposition T of G of width w. Then the
problem can be solved in time O(n) · f(w, k) for some function f , via dynamic
programming, as follows. Using standard methods, we can transform the tree
decomposition T into another tree decomposition T ′, such that |V (T ′)| ≤ n, the
width of T ′ is at most w + 2k, every vertex of T ′ has degree at most 3, and there
is one vertex v in T whose degree is 1, and Xv = {s1, . . . , sk, t1, . . . , tk}. We root
the tree T at the vertex v. For each vertex u of T , let Su be the set of all the
vertices of T contained in the sub-tree rooted at u, and let Yu =

⋃
u′∈Su Xu′ .

We define a graph Gu associated with the vertex u to be the sub-graph of G
induced by Yu. We will think of the vertices of Xu as the terminals for the graph
Gu. Since |Xu| ≤ w + 2k + 1, there are 2O(w+k) ways to define a matching M
between the vertices of Xu (where we allow the matchings to be partial). We say
that a matching M is routable in Gu iff there is a solution to the NDP problem
in graph Gu, where every pair of vertices in M is routed. A folio of the vertex
u ∈ V (T ), denoted by π(u), is the list of all such matchings M (defined over
the set Xu of vertices), such that M is routable in Gu. The main idea of the
algorithm is to use dynamic programming in order to compute a folio for every
vertex u ∈ V (T ), by processing the tree in the bottom-up fashion. For each
matching M in the folio π(u), we will also compute and store the set of paths in
Gu routing the matching M . Notice that once we compute π(v), we can select a
matching M ∈ π(v) containing the largest number of the demand pairs from M
to obtain a solution to the NDP problem. For each leaf vertex u ∈ V (T ), the folio
π(u) can be computed by exhaustively going over all possible matchings M , and
for each such matching, checking whether it can be routed in Gu by exhaustive
search, since |V (Gu)| ≤ w+ 2k. When a non-leaf vertex u is processed, we need to
check all possible ways to combine the matchings in the folios π(u′), π(u′′) of the
two children u′, u′′ of u into a single folio π(u) of u. Since the sizes of all three folios
are bounded by 2O(w+k), and |Xu| ≤ 2k + w, the running time of this algorithm
can be bounded by f(k + w) for some function f , and the overall running time
O(n · f(k + w)). This gives an efficient algorithm for NDP with constant number
of demand pairs on bounded-treewidth graphs. But what about general graphs,
whose treewidth may not be bounded by a constant? Robertson and Seymour’s
Excluded Grid Theorem is a very powerful tool for handling such graphs. The
theorem states that there is some function g : Z+ → Z+, such that for any integer
t, every graph of treewidth at least g(t) contains a sub-division of the (t× t)-wall
(this is equivalent to saying that G contains a (t × t)-grid as a minor). A long
line of work is dedicated to improving the known upper and lower bounds on the
function g [RS86, RST94, DJGT99, Die12, KK12, LS12, CC14]. The best current
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bounds show that the theorem holds for g(t) = O(t98 ·poly log(t)) [CC14], and the
best negative result shows that g(t) = Ω(t2 log t) must hold [RST94]. Robertson et
al. [RST94] suggest that this value may be sufficient, and Demaine et al. [DHK09]
conjecture that the bound of g(t) = Θ(t3) is both necessary and sufficient.

Notice that if the treewidth of G is w, then there is a well-linked set of size Ω(w)
in G. We can then use the machinery developed for approximating EDP and NDP
in well-linked instances. The first step in the proof of the excluded grid theorem
of [CC14] constructs a crossbar in G, given the set of Ω(w) well-linked vertices.
This step expands and generalizes the crossbar construction from [CL12, CE13].
In the next step, a new crossbar is constructed, where the underlying tree is a
path, and then a result of Leaf and Seymour [LS12] is used to build a large wall
in this new crossbar.

We are now ready to complete the description of the algorithm for NDP when
the number k of the demand pairs is bounded by a constant. We use some threshold
function τ(k). If the treewidth of graph G is at most τ(k), then we run the
dynamic programming algorithm described above to solve the NDP problem in
time O(n · f(τ(k))). Otherwise, the treewidth of G is at least τ(k), and we can
find a large wall in G. Using this wall, we can identify an irrelevant vertex v in
G, such that for any subset M′ ⊆ M of the demand pairs, the pairs in M′ are
simultaneously routable in G \ {v} iff they are simultaneously routable in G. We
then delete the vertex v from graph G and continue. Since the number of iteration
is bounded by |V (G)|, we will eventually arrive at a graph G whose treewidth is
at most τ(k), and then apply the dynamic programming algorithm to it.

Acknowledgements The author thanks Chandra Chekuri and David Kim for
their comments on an earlier version of this survey.
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