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Abstract

We study the Excluded Grid Theorem, a fundamental struc-

tural result in graph theory, that was proved by Robert-

son and Seymour in their seminal work on graph minors.

The theorem states that there is a function f : Z+ → Z+,

such that for every integer g > 0, every graph of treewidth

at least f(g) contains the (g × g)-grid as a minor. For

every integer g > 0, let f(g) be the smallest value for

which the theorem holds. Establishing tight bounds on f(g)

is an important graph-theoretic question. Robertson and

Seymour showed that f(g) = Ω(g2 log g) must hold. For

a long time, the best known upper bounds on f(g) were

super-exponential in g. The first polynomial upper bound

of f(g) = O(g98 poly log g) was proved by Chekuri and

Chuzhoy. It was later improved to f(g) = O(g36 poly log g),

and then to f(g) = O(g19 poly log g). In this paper we fur-

ther improve this bound to f(g) = O(g9 poly log g). We be-

lieve that our proof is significantly simpler than the proofs

of the previous bounds. Moreover, while there are natural

barriers that seem to prevent the previous methods from

yielding tight bounds for the theorem, it seems conceivable

that the techniques proposed in this paper can lead to even

tighter bounds on f(g).

1 Introduction

The Excluded Grid theorem is a fundamental result in
graph theory, that was proved by Robertson and Sey-
mour [RS86] in their Graph Minors series. The theorem
states that there is a function f : Z+ → Z+, such that
for every integer g > 0, every graph of treewidth at
least f(g) contains the (g×g)-grid as a minor. The the-
orem has found many applications in graph theory and
algorithms, including routing problems [RS95], fixed-
parameter tractability [DH07a, DH07b], and Erdos-
Pósa-type results [RS86, Tho88, Ree97, FST11]. For an
integer g > 0, let f(g) be the smallest value, such
that every graph of treewidth at least f(g) contains the
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(g×g)-grid as a minor. An important open question
is establishing tight bounds on f . Besides being a fun-
damental graph-theoretic question in its own right, im-
proved upper bounds on f directly affect the running
times of numerous algorithms that rely on the theorem,
as well as parameters in various graph-theoretic results,
such as, for example, Erdos-Pósa-type results.

On the negative side, it is easy to see that f(g) = Ω(g2)
must hold. Indeed, the complete graph on g2 vertices
has treewidth g2 − 1, while the size of the largest
grid minor in it is (g × g). Robertson et al. [RST94]
showed a slightly stronger bound of f(g) = Ω(g2 log g)
using constant-degree Ω(log n)-girth expanders, and
they conjectured that this bound is tight. Demaine et
al. [DHK09] conjectured that f(g) = Θ(g3).

On the positive side, for a long time, the best known
upper bounds on f(g) remained super-exponential in g:
the original bound of [RS86] was improved by Robert-

son, Seymour and Thomas in [RST94] to f(g) = 2O(g5).

It was further improved to f(g) = 2O(g2/ log g) by
Kawarabayashi and Kobayashi [KK12] and by Leaf and
Seymour [LS15]. The first polynomial upper bound of
f(g) = O(g98 poly log g) was proved by Chekuri and
Chuzhoy [CC16]. The proof is constructive and pro-
vides a randomized algorithm that, given an n-vertex
graph G of treewidth k, finds a model of the (g × g)-
grid minor in G, with g = Ω̃(k1/98), in time polyno-
mial in both n and k. Unfortunately, the proof itself is
quite complex. In a subsequent paper, Chuzhoy [Chu15]
suggested a relatively simple framework for the proof
of the theorem, that can be used to obtain a polyno-
mial bound f(g) = O(gc) for some constant c. Us-
ing this framework, she obtained an upper bound of
f(g) = O(g36 poly log g), but unfortunately the at-
tempts to optimize the constant in the exponent re-
sulted in a rather technical proof. Combining the ideas
from [CC16] and [Chu15], the upper bound was further
improved to f(g) = O(g19 poly log g) in [Chu16]. We
note that the results in [Chu15] and [Chu16] are exis-
tential.

The main result of this paper is the proof of the
following theorem.

Theorem 1.1. There exist constants c1, c2 > 0, such
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that for every integer g ≥ 2, every graph of treewidth
at least k = c1g

9 logc2 g contains the (g × g)-grid as a
minor.

Aside from improving the best current upper bounds
for the Excluded Grid Theorem, we believe that our
framework is significantly simpler than previous proofs.
Even though a relatively simple strategy for proving
the Excluded Grid Theorem was suggested in [Chu15],
this strategy only led to weak polynomial bounds on
f(g), and obtaining tighter bounds required technically
complex proofs. Moreover, there are natural barriers
that we discuss below, which prevent the strategy
proposed in [Chu15] from yielding tight bounds on f(g),
while it is conceivable that the approach proposed in
this paper will lead to even tighter bounds on it.

Our Techniques. We now provide an overview of
our techniques, and of the techniques employed in
the previous proofs [CC16, Chu15, Chu16] that achieve
polynomial bounds on f(g).

One of the central graph-theoretic notions that we use
is the notion of well-linkedness. Informally, we say that
a subset T of vertices of a graph G is well-linked if the
vertices of T are, in some sense, well-connected in G.
Formally, for every pair T ′, T ′′ ⊆ T of disjoint subsets
of T with |T ′| = |T ′′|, there must be a collection P of
paths connecting every vertex of T ′ to a distinct vertex
of T ′′ in G, such that the paths in P are disjoint in
their vertices — we call such a set P of paths a set of
node-disjoint paths. It is well known that, if T is the
largest-cardinality subset of vertices of G, such that T
is well-linked in G, then the treewidth of G is Θ(|T |)
(see e.g. [Ree97]).

As in the proofs of [CC16, Chu15, Chu16], the main
combinatorial object that we use is the Path-of-Sets
System, that was introduced in [CC16]; a somewhat
similar object (called a grill) was also studied by Leaf
and Seymour [LS15]. A Path-of-Sets System P of
length ` and width w (see Figure 1(a)) consists of a
sequence C = (C1, . . . , C`) of ` connected sub-graphs
of the input graph G that we call clusters. For each
cluster Ci ⊆ V (G), we are given two disjoint subsets
Ai, Bi ⊆ Ci of its vertices of cardinality w each. We
require that the vertices of Ai ∪ Bi are well-linked in
G[Ci]

1. Additionally, for each 1 ≤ i < `, we are given a
set Pi of w node-disjoint paths, connecting every vertex
of Bi to a distinct vertex of Ai+1. The paths in

⋃
i Pi

must be all mutually disjoint, and they cannot contain

1We use a somewhat weaker property than well-linkedness

here, but for clarity of exposition we ignore these technicalities
for now.

the vertices of
⋃`
i′=1 Ci′ as inner vertices. Chekuri and

Chuzhoy [CC16], strengthening a similar result of Leaf
and Seymour [LS15], showed that, if a graph G contains
a Path-of-Sets System of length g2 and width g2, then G
contains the (Ω(g)×Ω(g))-grid as a minor. Therefore, in
order to prove Theorem 1.1, it is enough to show that a
graph of treewidth Ω(g9 logc2 g) contains a Path-of-Sets
System of both length and width Ω(g2).

…

…

(a) A Path-of-Sets System
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(b) A hairy Path-of-Sets System

Figure 1: A Path-of-Sets System and a hairy Path-of-
Sets System

Note that, if a graph G has treewidth k, then it contains
a set T of Ω(k) vertices, that we call terminals, that are
well-linked in G. In [CC16], the following approach was
employed to construct a large Path-of-Sets System in
a large-treewidth graph. Let C be any connected sub-
graph of G, and let Γ(C) be the set of the boundary
vertices of C — all vertices of C that have a neighbor
lying outside of C. We say that C is a good router if: (i)
the vertices of Γ(C) are well-linked2 in C; and (ii) there
is a large set of node-disjoint paths connecting vertices
of Γ(C) to the terminals in T . The proof of [CC16]
consists of two steps. First, they show that, if the
treewidth of G is large, then G contains a large number
of disjoint good routers. In the second step, a large
subset of the good routers are combined into a Path-
of-Sets System. While the bound on f(g) that this
result produces is weak: f(g) = O(g98 poly log g), this
result has several very useful consequences that were
exploited in all subsequent proofs of the Excluded Grid
Theorem, including the one in the current paper. First,
the result implies that for any integer ` > 0, a graph

2Here, a much weaker definition of well-linkedness was used,
but we ignore these technicalities in this informal overview.
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of treewidth k contains a Path-of-Sets System of length
` and width Ω(k/(poly(` log k))). In particular, setting
` = Θ(log k), we can obtain a Path-of-Sets System of
length ` and width Ω(k/poly log k). This fact was used
in [CC15] to show that any graph G of treewidth k
contains a sub-graph G′ of treewidth Ω(k/ poly log k),
whose maximum vertex degree bounded by a constant,
where the constant bounding the degree can be made as
small as 3. This latter result proved to be a convenient
starting point for subsequent improved bounds on the
Excluded Grid Theorem.

In [Chu15], a different strategy for obtaining the Path-
of-Sets System was suggested. Recall that, if a graph
G has treewidth k, then it contains a set T of Ω(k)
vertices, that we call terminals, which are well-linked in
G. Partitioning the terminals into two equal-cardinality
subsets A1 and B1, and letting C1 = G, we obtain a
Path-of-Sets System of length 1 and width Ω(k). The
strategy now is to perform a number of iterations, where
in every iteration, the length of the current Path-of-Sets
System doubles, while its width decreases by some small
constant factor c. Since we need to construct a Path-
of-Sets System of length g2, we will need to perform
roughly 2 log g iterations, eventually obtaining a Path-
of-Sets System of length g2 and width Ω(k/c2 log g) =
Ω(k/g2 log c). In order to execute a single iteration,
we employ a subroutine, that, given a single cluster
of the Path-of-Sets System, splits this cluster into two.
Equivalently, given a Path-of-Sets System of length 1
and width w, it produces a Path-of-Sets System of
length 2 and width w/c. By iteratively applying this
procedure to every cluster of the current Path-of-Sets
System, we obtain a new Path-of-Sets System, whose
length is double the length of the original Path-of-Sets
System, and the width decreases by factor c. Recall
that the width of the final Path-of-Sets System that we
obtain is Ω(k/g2 log c), and we require that it is at least
Ω(g2), so k ≥ Ω(g2 log c+2) must hold. Therefore, the
factor c that we lose in the splitting of a single cluster is
critical in the final bound on f(g) that we obtain, and,
even if this factor is quite small (which seems very non-
trivial to achieve), it seems unlikely that this approach
would lead to tight bounds for the Excluded Grid
Theorem. The best current bound on the loss parameter
c is estimated to be roughly 215. Finally, in [Chu16], the
ideas from [CC16] and [Chu15] are carefully combined to
obtain a tighter bound of f(g) = Õ(g19). We note that
both the results of [Chu15] and [Chu16] critically require
that the maximum vertex degree of the input graph is
bounded by a small constant, which can be achieved
using the results of [CC15] and [CC16], as discussed
above.

Our proof proceeds quite differently. Our starting point
is a Path-of-Sets System of length ` = Θ(log k) and
width w = Ω(k/ poly log k), where k is the treewidth
of the input graph G. The Path-of-Sets System can
be constructed, using, e.g., the results of [CC16]. We
then transform it into a structure called a hairy Path-
of-Sets System (see Figure 1(b)) by further splitting
every cluster Ci of the original Path-of-Sets System into
two clusters, C ′i and Si. The clusters C ′1, . . . , C

′
` are

connected into a Path-of-Sets System as before, albeit
with a somewhat smaller width w/c for some constant
c, and for each 1 ≤ i ≤ `, there is a set Qi of w node-
disjoint paths, connecting C ′i to Si, that are internally
disjoint from both clusters. Let Xi and Yi denote the
sets of endpoints of the paths of Qi that belong to
C ′i and Si, respectively. We require that Yi is well-
linked in Si, and that Ai ∪Bi ∪Xi is well-linked in C ′i.
The construction of the hairy Path-of-Sets System from
the original Path-of-Sets System employs a theorem
from [Chu16], that allows us to split the clusters of the
Path-of-Sets System appropriately.

The main new combinatorial object that we define is a
crossbar. Recall that we are interested in showing that
our input graph G contains the (g× g)-grid as a minor.
Intuitively, a crossbar inside cluster Ci of a Path-of-Sets
System consists of a set P∗i of g2 node-disjoint paths,
connecting vertices of Ai to vertices of Bi; and another
set Q∗i of g2 node-disjoint paths, where each path of Q∗i
connects a distinct path of P∗i to a distinct vertex of
Xi (see Figure 2). Moreover, we require that the paths
of Q∗i are internally disjoint from the paths in P∗i . The
main structural result that we prove is that, if the width
w′ of the hairy Path-of-Sets System is sufficiently large,
then for each cluster Ci, either it contains a crossbar; or
it contains a Path-of-Sets System of length and width
Ω(g2). If the latter happens in any cluster Ci, then
we immediately obtain the (g × g)-grid minor inside
Ci. Therefore, we can assume that each cluster Ci
contains a crossbar. We then exploit these crossbars
in order to show that the input graph G must contain
an expander on Ω(g2) vertices as a minor, such that
the maximum vertex degree in the expander is bounded
by O(log g). We can then employ known results for
routing on expanders to show that such an expander
must contain the (g × g)-grid as a minor.

Organization. We start with preliminaries in Sec-
tion 2. In Section 3 we define a crossbar, state our main
structural theorem regarding its existence, and provide
the proof of Theorem 1.1 using it. The proof of the
structural theorem appears in Section 4.
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Figure 2: A Crossbar. The paths of P∗ are shown in
blue and the paths of Q∗ in red.

2 Preliminaries

All logarithms in this paper are to the base of 2. All
graphs are finite and they do not have loops. By default,
graphs are not allowed to have parallel edges; graphs
with parallel edges are explicitly called multi-graphs.

We say that a path P is disjoint from a set U of vertices,
if U ∩ V (P ) = ∅. We say that it is internally disjoint
from U , if every vertex of U ∩ V (P ) is an endpoint of
P . Given a set P of paths in G, we denote by V (P) the
set of all vertices participating in paths in P. We say
that two paths P, P ′ are internally disjoint, if, for every
vertex v ∈ V (P )∩V (P ′), v is an endpoint of both paths.
For two subsets S, T ⊆ V (G) of vertices and a set P of
paths, we say that P connects S to T if every path in P
has one endpoint in S and another in T (or it consists
of a single vertex lying in S∩T ). We say that a set P of
paths is node-disjoint iff every pair P, P ′ ∈ P of distinct
paths are disjoint, that is, V (P )∩V (P ′) = ∅. Similarly,
we say that a set P of paths is edge-disjoint iff for every
pair P, P ′ ∈ P of distinct paths, E(P ) ∩ E(P ′) = ∅.
We sometimes refer to connected subgraphs of a given
graph as clusters.

Treewidth, Minors and Grids. The treewidth of a
graph G = (V,E) is defined via tree-decompositions. A
tree-decomposition of G consists of a tree τ , and, for
each node v ∈ V (τ), a subset Bv ⊆ V of vertices of G
(called a bag), such that: (i) for each edge (v, v′) ∈ E,
there is a node u ∈ V (τ) with v, v′ ∈ Bu; and (ii) for
each vertex v ∈ V , the set {u ∈ V (τ) | v ∈ Bu} of nodes
of τ induces a non-empty connected subtree of τ . The
width of a tree-decomposition is maxv∈V (τ) {|Bv|} − 1,
and the treewidth of a graph G, denoted by tw(G), is
the width of a minimum-width tree-decomposition of G.

We say that a graph H is a minor of a graph G, iff
H can be obtained from G by a sequence of vertex
deletion, edge deletion, and edge contraction operations.
Equivalently, a graph H is a minor of G iff there is
a function ϕ, mapping each vertex v ∈ V (H) to a

connected subgraph ϕ(v) ⊆ G, and each edge e =
(u, v) ∈ E(H) to a path ϕ(e) in G connecting a vertex
of ϕ(u) to a vertex of ϕ(v), such that: (i) For all
u, v ∈ V (H), if u 6= v, then ϕ(u) ∩ ϕ(v) = ∅; and
(ii) The paths in set {ϕ(e) | e ∈ E(H)} are pairwise
internally disjoint, and they are internally disjoint from⋃
v∈V (H) ϕ(v). A map ϕ satisfying these conditions is

called a model3 of H in G. We sometimes also say that
ϕ is an embedding of H into G, and, for all v ∈ V and
e ∈ E, we specifically refer to ϕ(v) as the embedding of
vertex v and to ϕ(e) as the embedding of edge e.

The (g × g)-grid is a graph whose vertex set
is: {v(i, j) | 1 ≤ i, j ≤ g}. The edge set con-
sists of two subsets: a set of horizontal edges
E1 = {(v(i, j), v(i, j + 1)) | 1 ≤ i ≤ g; 1 ≤ j < g};
and a set of vertical edges E2 =
{(v(i, j), v(i+ 1, j)) | 1 ≤ i < g; 1 ≤ j ≤ g}. We say
that a graph G contains the (g× g)-grid minor iff some
minor H of G is isomorphic to the (g × g)-grid.

Well-linkedness and Linkedness. We use standard
notions of well-linkedness and linkedness.

Definition 2.1. Let G be a graph and let T be a
subset of its vertices. We say that T is node-well-linked
in G, iff for any two disjoint subsets T ′, T ′′ of T , there is
a set P of node-disjoint paths in G connecting vertices
of T ′ to vertices of T ′′, with |P| = min {|T ′|, |T ′′|}.
We say that T is edge-well-linked in G, iff for any two
disjoint subsets T ′, T ′′ of T , there is a set P ′ of edge-
disjoint paths in G connecting vertices of T ′ to vertices
of T ′′, with |P ′| = min {|T ′|, |T ′′|}. (Note that in the
latter definition we allow the paths of P ′ to share their
endpoints and inner vertices).

Even though we do not use it directly, a useful fact to
keep in mind is that, if T is the largest-cardinality subset
of vertices of some graph G, such that T is node-well-
linked, then the treewidth of G is between |T |/4−1 and
|T | − 1 (see e.g. [Ree97]).

Definition 2.2. Let G be a graph, and let A,B be
two disjoint subsets of its vertices. We say that (A,B)
are node-linked (or simply linked) in G, iff for any two
subsets A′ ⊆ A,B′ ⊆ B of vertices, there is a set P
of node-disjoint paths in G connecting vertices of A′ to
vertices of B′, with |P| = min {|A′|, |B′|}.

3Note that this is somewhat different from the standard
definition of a model, where for each edge e ∈ E(H), ϕ(e) is

required to be a single edge, but it is easy to see that the two
definitions are equivalent.
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A Path-of-Sets System. As in previous proofs of the
Excluded Grid Theorem, we rely on the notion of Path-
of-Sets System, that we define next (see Figure 1(a)).

Definition 2.3. Given integers `, w > 0, a Path-of-
Sets System P of length ` and width w consists of
the following three ingredients: (i) a sequence C =
(C1, . . . , C`) of mutually disjoint clusters; (ii) for each
1 ≤ i ≤ `, two disjoint subsets Ai, Bi ⊆ V (Ci) of
vertices of cardinality w each, and (iii) for each 1 ≤ i <
`, a set Pi of w node-disjoint paths connecting Bi to
Ai+1, such that all paths in

⋃`−1
i=1 Pi are node-disjoint,

and they are internally disjoint from
⋃`
i=1 V (Ci). In

other words, a path P ∈ Pi starts from a vertex of
Bi ⊆ Ci, terminates at a vertex of Ai+1 ⊆ Ci+1, and is
otherwise disjoint from the clusters in C.
We say that P is a weak Path-of-Sets System iff for each
1 ≤ i ≤ `, Ai∪Bi is edge-well-linked in Ci. We say that
P is a strong Path-of-Sets System iff for each 1 ≤ i ≤ `,
each of the sets Ai, Bi is node-well-linked in Ci, and
(Ai, Bi) are linked in Ci.

We sometimes call the vertices of
⋃
i(Ai ∪Bi) the nails

of the Path-of-Sets System.

Note that a Path-of-Sets System P of length ` and width
w is completely determined by C, {Pi}`−1

i=1 , A1 and B`, so
we will denote P = (C, {Pi}`−1

i=1 , A1, B`). The following
theorem was proved in [CC16]; a similar theorem with
slightly weaker bounds was proved in [LS15].

Theorem 2.1. There is a constant c ≥ 1, such that
for every integer g ≥ 2, and for every graph G, if G
contains a strong Path-of-Sets System of length ` = g2

and width w = g2, then it contains the (g′ × g′)-grid as
a minor, for g′ = bg/cc.

Stitching a Path-of-Sets System. Suppose we are
given a Path-of-Sets System P = (C, {Pi}`−1

i=1 , A1, B`),
with C = (C1, . . . , C`). Assume that for each odd-
indexed cluster C2i−1, we select some subsets A′2i−1 ⊆
A2i−1 ,B′2i−1 ⊆ B2i−1 of vertices of cardinality w′ each,
that have some special properties that we desire. We
would like to construct a new Path-of-Sets System,
whose clusters are all odd-indexed clusters of C, and

whose nails are
⋃d`/2e
i=1 (A′2i−1 ∪ B′2i−1). The stitching

procedure allows us to do so, by exploiting the even-
indexed clusters of P as connectors. The proof of the
following claim is straightforward and is deferred to the
full version of the paper.

Claim 2.1. Let P = (C, {Pi}`−1
i=1 , A1, B`) be a Path-of-

Sets System of length ` and width w for some `, w ≥ 1.

Suppose we are given, for all 1 ≤ i ≤ d`/2e, subsets
A′2i−1 ⊆ A2i−1 ,B′2i−1 ⊆ B2i−1 of vertices of cardinality

w′ each. Then there is a Path-of-Sets System P̂ =

(Ĉ,
{
P̂i
}d`/2e−1

i=1
, Â1, B̂d`/2e) of length d`/2e and width

w′, such that Ĉ = (C1, C3, . . . , C2d`/2e−1); and for each

1 ≤ i ≤ d`/2e, Âi = A′2i−1 and B̂i = B′2i−1.

Notice that, if P is a strong Path-of-Sets System in the
statement of Claim 2.1, then so is P̂.

Hairy Path-of-Sets System. Our starting point
is another structure, closely related to the Path-of-
Sets System, that we call a hairy Path-of-Sets System
(see Figure 1(b)). Intuitively, the hairy Path-of-Sets
System is defined similarly to a strong Path-of-Sets
System, except that now, for each 1 ≤ i ≤ `, we have
an additional cluster Si that connects to Ci with a
collection of w node-disjoint paths. We require that
the endpoints of these paths are suitably well-linked in
Ci and Si, respectively.

Definition 2.4. A hairy Path-of-Sets System H of
length ` and width w consists of the following four
ingredients:

• a strong Path-of-Sets System P =
(C, {Pi}`−1

i=1 , A1, B`) of length ` and width w;

• a sequence S = (S1, . . . , S`) of disjoint clus-
ters, such that each cluster Si is disjoint from⋃`
j=1 V (Cj) and from

⋃`−1
j=1 V (Pj);

• for each 1 ≤ i ≤ `, a set Yi ⊆ V (Si) of w vertices
that are node-well-linked in Si, and a set Xi ⊆
V (Ci) of w vertices, such that Xi ∩ (Ai ∪ Bi) = ∅,
and (Ai, Xi) are node-linked in Ci; and

• for each 1 ≤ i ≤ `, a collectionQi of w node-disjoint
paths connecting Xi to Yi, such that all paths in⋃`
j=1Qj are disjoint from each other and from the

paths in
⋃`−1
j=1 Pj , and they are internally disjoint

from
⋃`
j=1(Sj ∪ Cj).

Note that a hairy Path-of-Sets System H of length `
and width w is completely determined by C,S, {Pi}`−1

i=1 ,
{Qi}`i=1, A1 and B`, so will sometimes denote H =
(C,S, {Pi}`−1

i=1 , {Qi}`i=1, A1, B`).

We note that Chekuri and Chuzhoy [CC16] showed that
for all integers `, w, k > 1 with k/ poly log k = Ω(w`48),
every graph G of treewidth at least k contains a strong
Path-of-Sets System of length ` and width w. We prove
an analogue of this result for the hairy Path-of-Sets
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System. The proof mostly follows from previous work
and is delayed to the Appendix. We will exploit this
theorem only for the setting where ` = Θ(log k) and
w = k/ poly log k.

Theorem 2.2. There are constants c, c′ > 0, such that

for all integers `, w, k > 1 with k/ logc
′
k > cw`48, every

graph G of treewidth at least k contains a subgraph G′ of
maximum vertex degree 3, such that G′ contains a hairy
Path-of-Sets System of length ` and width w.

3 Proof of the Excluded Grid Theorem

In this section we provide the proof of Theorem 1.1,
with some details delayed to Section 4. We start by
introducing the main new combinatorial object that we
use, called a crossbar.

Definition 3.1. Let H be a graph, let A,B,X be
three disjoint subsets of its vertices, and let ρ > 0 be
an integer. An (A,B,X)-crossbar of width ρ consists
of a collection P∗ of ρ paths, each of which connects a
vertex of A to a vertex of B, and, for each path P ∈ P∗,
a path QP , connecting a vertex of P to a vertex of X,
such that:

• The paths in P∗ are completely disjoint from each
other;
• The paths in Q∗ = {QP | P ∈ P∗} are completely

disjoint from each other; and
• For each pair P ∈ P∗ and Q ∈ Q∗ of paths, if
Q 6= QP , then P andQ are disjoint; otherwise P∩Q
contains a single vertex, which is an endpoint of QP
(see Figure 2).

The following theorem is the main technical result of
this paper.

Theorem 3.1. Let H be a graph and let g ≥ 2 be
an integer, such that g is an integral power of 2. Let
A,B,X be three disjoint sets of vertices of H, each
of cardinality κ ≥ 222g9 log g. Assume further that
there is a set P̃ of κ node-disjoint paths connecting
vertices of A to vertices of B in H, and a set Q̃ of κ
node-disjoint paths connecting vertices of A to vertices
of X in H (but the paths P ∈ P̃ and Q ∈ Q̃ are
not necessarily disjoint). Then, either H contains an
(A,B,X)-crossbar of width g2, or there is a minor H ′ of
H, that contains a strong Path-of-Sets System of length
Ω(g2) and width Ω(g2).

We defer the proof of Theorem 3.1 to Section 4. The
following theorem will be used to complete the proof of
Theorem 1.1.

Theorem 3.2. There is a constant c̃, such that the fol-
lowing holds. Let G be any graph with maximum vertex
degree at most 3, such that G contains a hairy Path-
of-Sets System H = (C,S, {Pi}`−1

i=1 , {Q}
`
i=1 , A1, B`) of

length ` = c̃ log g and width w̃ ≥ g2, for some integer
g ≥ 2 that is an integral power of 2. Assume further that
for every odd integer 1 ≤ i ≤ `, there is an (Ai, Bi, Xi)-
crossbar in Ci of width g2. Then G contains the (g′×g′)-
grid as a minor, for g′ = Ω(g/ log5 g).

We first complete the proof of Theorem 1.1 using
Theorems 3.2 and 3.1. Let G be any graph, and let
k be its treewidth. Let g ≥ 2 be an integer, such that g
is an integral power of 2, and such that for some large
enough constants c′1, c

′
2, k/(log k)c

′
2 > c′1g

9. We show
that G contains a grid minor of size (Ω(g/poly log g)×
(Ω(g/poly log g)).

Let ` = c̃ log g = O(log k), where c̃ is the constant from
Theorem 3.2, and let w = 222g9 log g = O(g9 log k).
By setting the constants c′1 and c′2 in the bound on
k appropriately, we can ensure that the conditions of
Theorem 2.2, hold for `, w and k. From Theorem 2.2,
there is a subgraph G′ of G, of maximum vertex degree
3, such that G′ contains a hairy Path-of-Sets System
H = (C,S, {Pi}`−1

i=1 , {Qi}
`
i=1A1, B`) of length ` and

width w.

Let 1 ≤ i ≤ ` be an odd integer. Consider the cluster
Ci of the hairy Path-of-Sets System. Since every pair
of the vertex subsets Ai, Bi, Xi are linked in Ci, there
is a set P̃i of w node-disjoint paths connecting vertices
of Ai to vertices of Bi, and a set Q̃ of w node-disjoint
paths connecting vertices of Ai to vertices of Xi in Ci.
We can therefore apply Theorem 3.1 to the cluster Ci,
and the sets Ai, Bi, Xi of its vertices. If, for any odd
integer 1 ≤ i ≤ `, the outcome of Theorem 3.1 is a
strong Path-of-Sets System of length Ω(g2) and width
Ω(g2) in some minor of Ci, then from Theorem 2.1,
graph G contains a grid minor of size (Ω(g) × Ω(g)).
Therefore, we can assume from now on that for every
odd integer 1 ≤ i ≤ `, the outcome of Theorem 3.1 is
an (Ai, Bi, Xi)-crossbar in Ci of width g2. But then
from Theorem 3.2, G contains the (g′ × g′)-grid as a
minor, for g′ = Ω(g/ log5 g). We conclude that there
are constants c′1, c

′
2, such that for all integers k, g with

k/ logc
′
2 k ≥ c′1g

9, if a graph G has treewidth at least
k, then it contains a grid minor of size (g′ × g′), where
g′ = Ω(g/ log5 g). (If g is not an integral power of 2,
then we round it up to the closest integral power of 2
and absorb this additional factor of 2 in the constants c′1
and c′2). It follows that there are constants c′′1 , c

′′
2 , such

that for all integers k, g′ with k/ logc
′′
2 (k) ≥ c′′1(g′)9, if

a graph G has treewidth at least k, then it contains a
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grid minor of size (g′ × g′).
One last issue is that we need to replace the poly log k
in the above bound on k by poly log g, as in the
statement of Theorem 1.1. Assume that we are given
a graph G of treewidth k, and an integer g ≥ 2, such
that k ≥ c1g

9 logc2 g holds, for large enough constants
c1, c2. Let k′(g) ≤ k be the smallest integer for which
the inequality k′(g) ≥ c1g

9 logc2 g holds. Clearly, for
some large enough constant c that is independent of
g, k′(g) ≤ cg10, and so log k′(g) = O(log g). The
treewidth of G is at least k′(g), and, by choosing the
constants c1 and c2 appropriately, we can guarantee that

k′(g)/ logc
′′
2 (k′(g)) ≥ c′′1g

9. From the above arguments,
graph G contains the (g × g)-grid as a minor.

We now provide a high-level sketch of the proof of
Theorem 3.2; a formal proof is deferred to the full
version of the paper. For simplicity, assume that ` is
an even integer. For every odd integer 1 ≤ i ≤ `, let
(P∗i ,Q∗i ) be the (Ai, Bi, Xi)-crossbar of width g2 in Ci,
and let A∗i ⊆ Ai, B

∗
i ⊆ Bi be the sets of endpoints

of the paths in P∗i , lying in Ai and Bi, respectively,
so that |A∗i | = |B∗i | = g2. Using the stitching claim
(Claim 2.1), we can obtain a hairy Path-of-Sets System

H′ = (C′,S ′, {P ′i}
`/2−1
i=1 , {Q′i}

`/2
i=1, A

′
1, B

′
`) of length `/2 =

Θ(log g) and width g2, where C′ = (C1, C3, . . . , C`−1),
S ′ = (S1, S3, . . . , S`−1), and for all 1 ≤ i < `/2,
set P ′i connects vertices of B′i = B∗2i−1 to vertices of
A′i+1 = A∗2i+1. Moreover, A′1 = A∗1 and B′`/2 = B∗`−1.

For convenience, for each 1 ≤ i ≤ `/2, we rename the
crossbar contained in C2i−1 by (P∗i ,Q∗i ). Recall that
we denoted the corresponding sets of endpoints of the
paths in P∗i as A′i and B′i. By concatenating the paths
in P∗1 ,P1, . . . ,P`/2−1,P∗`/2, we obtain a collection R of

paths, such that for each R ∈ R, for each 1 ≤ i ≤ `/2,
R ∩ C2i−1 is a path of P∗i . It is now easy to show,
using the Cut-Matching Game of [KRV09], that there
is an expander graph H on g2 vertices and maximum
vertex degree O(log g), such that H is a minor of G.
Moreover, we can construct a model ϕ of H in G, such
that for every vertex v ∈ V (H), ϕ(v) is a path of R. In
general, it is well-known that a large enough expander
contains a large enough grid as a minor. For example,
Kleinberg and Rubinfeld [KR96] show that a bounded-
degree n-vertex expander contains any graph with at
most n/ logc n edges as a minor, for some constant
c. Unfortunately, our expander is not bounded-degree,
but has degree O(log n) (where n denotes the number
of vertices in the expander). Recently, Chuzhoy and
Nimavat [CN18] showed that any expander H on n
vertices, with maximum vertex degree d, contains any
graph H ′ with at most n/(dc log n) edges and vertices as

a minor, for some constant c. We could use their result
as a black-box, but, as their result tries to optimize
the bounds they obtain on the minor size, its proof is
more involved than what we need here. Instead, we
provide a direct proof, that exploits the fact that routing
on expander graphs is easy. In particular, it is known
that, for any partition U1, . . . , U2r of the vertices of the
expander into large enough subsets (|Ui| = poly log n
for all i is sufficient), and any ordering of these subsets,
there is a set {P1, . . . , Pr} of node-disjoint paths, where
for each 1 ≤ i ≤ r, path Pi connects some vertex
of U2i−1 to some vertex of U2i. We use all except
the first cluster C1 of the hairy Path-of-Sets System in
order to embed an expander H over g2 vertices into G.
Recall that the vertices of the expander are embedded
into the paths of R. We then use the first cluster in
order to “group” these paths into groups of a large
enough cardinality, such that the paths participating in
every group can be connected to each other inside C1.
The subgraphs of C1 spanning these groups become the
embeddings of the vertices of the grid. We use the above
mentioned result about routing in expanders in order to
embed the edges of the grid minor.

4 Building the Crossbar

This section is dedicated to the proof of Theorem 3.1.
Recall that we are given a graph H, and three disjoint
subsets A,B,X of its vertices, each of cardinality κ ≥
222g9 log g. We are also given a set P̃ of κ node-disjoint
paths connecting vertices of A to vertices of B, and a
set Q̃ of κ node-disjoint paths connecting vertices of
A to vertices of X. Our goal is to prove that either
H contains an (A,B,X)-crossbar of width g2, or that
its minor contains a strong Path-of-Sets system whose
length and width are both at least Ω(g2).

As our first step, we construct two sets of paths: a set
P of κ node-disjoint paths connecting every vertex of
A to a distinct vertex of B, and a set Q of κ node-
disjoint paths, connecting every vertex of A to a distinct
vertex of X. Such two sets of paths are guaranteed
to exist, as we can use P = P̃ and Q = Q̃. Let
H(P,Q) =

⋃
P∈P∪Q P be the graph obtained by the

union of these paths. Among all such pairs (P,Q) of
path sets, we select the sets P,Q that minimize the
number of edges in H(P,Q). For each path P ∈ P,
we denote by QP ∈ Q the path originating at the same
vertex of A as P . Even though the graph is undirected,
it is convenient to think of the paths in P∪Q as directed
away from A.

The remainder of the proof consists of six steps. In
the first step, we define a new structure that we call
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a pseudo-grid. Informally, a pseudo-grid of depth D
consists of a collection R1, . . . ,RD of disjoint subsets
of paths in P (that is, for all 1 ≤ i ≤ D, Ri ⊆ P),
such that for all i, |Ri| ≤ g2. Additionally, if we
denote P ′ = P \ ⋃iRi, then there must be a large
subset Q′ ⊆ {QP | P ∈ P ′} of paths, such that, for
all 1 ≤ i ≤ D, every path Q ∈ Q′ intersects at least
one path of Ri. We show that, either H contains an
(A,B,X)-crossbar of width g2, or it contains a pseudo-
grid of a large enough depth.

In the second step, we slice this pseudo-grid into a
large enough number M of smaller pseudo-grids. Specif-
ically, for each path R ∈ R, we define a sequence
σ1(R), . . . , σM (R) of disjoint sub-paths of R, that ap-
pear on R in this order. Let Σi = {σi(R) | R ∈ R}. For
all 1 ≤ i ≤M , we let Qi ⊆ Q′ contain only those paths
Q, for which all vertices of Q ∩ V (R) belong to V (Σi).
We perform the slicing in a way that ensures that for
all i, |Qi| is large enough.

In general, for all 1 ≤ i ≤ M , there are many
intersections between the paths in Qi and the paths in
Σi. But it is possible that some paths R ∈ Σi intersect
few paths of Qi and vice versa. Our third step is a
clean-up step, in which we discard all such paths, so
that eventually, each path R ∈ Σi intersects a large
number of paths of Qi and vice versa.

In the fourth step, we create clusters that will be used
to construct the final Path-of-Sets System. Specifically,
for each 1 ≤ i ≤M , we show that there is some cluster
Ci in the graph obtained from the union of the paths in
Σi and Qi, such that there is a large enough collection
Σ′i ⊆ Σi of paths, each of which is contained in Ci,
and moreover, the endpoints of the paths in Σ′i are
well-linked in Ci. This step uses standard well-linked
decomposition, though its analysis is somewhat subtle.

In the fifth step, we exploit the paths in R in order
to select a subset of the clusters Ci and link them into
a Path-of-Sets System. Unfortunately, we will only be
able to guarantee that, for each cluster Ci, the resulting
vertex set Ai ∪ Bi is edge-well-linked in Ci; recall that
such a Path-of-Sets System is called a weak Path-of-
Sets System. We then turn it into a strong Path-
of-Sets System using standard techniques in our last
step. We note that the above high-level exposition of
the proof can be exploited to obtain slightly weaker
bounds for Theorem 3.1, that is, we need to assume
that κ = Ω(g10), leading to a weaker bound of f(g) =
O(g10 poly log g) for Theorem 1.1. A slightly more
involved process that is formally described below gives
a full proof of Theorem 3.1 with the claimed bounds.

We now provide a formal proof of Theorem 3.1, using

the sets P,Q of paths that we have defined above.

4.1 Step 1: Pseudo-Grid. We define a pseudo-grid,
one of our central combinatorial objects.

Definition 4.1. Let D > 0 be an integer. A pseudo-
grid of depth D consists of the following two ingredients.
The first ingredient is a family {R1,R2, . . . ,RD} of
subsets of P, where for all 1 ≤ i ≤ D, |Ri| ≤ g2, and

for all 1 ≤ i 6= j ≤ D, Ri ∩ Rj = ∅. Let R =
⋃D
i=1Ri,

and let P ′ = P \ R. The second ingredient is a set
Q′ of dκ/4e disjoint paths, where each path Q ∈ Q′
is a sub-path of a distinct path of {QP | P ∈ P ′} (so
in particular, |P ′| ≥ |Q′| = dκ/4e). Additionally, the
following two properties must hold:

P1. The paths in P ′ are completely disjoint from the
paths in Q′; and

P2. For every 1 ≤ i ≤ D, the number of paths Q ∈ Q′
with Q ∩ (

⋃
P∈Ri

P ) = ∅ is at most 2g2. In

other words, all but at most 2g2 paths of Q′ must
intersect some path of Ri.

The main result of this subsection is the following
theorem.

Theorem 4.1. Let D be any integer with 1 ≤ D ≤
κ/(4g2). Then either H contains an (A,B,X)-crossbar
of width g2, or it contains a pseudo-grid of depth D.

Proof. Assume first that at least κ/2 paths of P contain
vertices of X. In this case, we can obtain an (A,B,X)-
crossbar of width g2 as follows. We let P∗ contain all
paths P ∈ P with P ∩ X 6= ∅. As long as |P∗| > g2,
we discard paths from P∗ arbitrarily, until |P∗| = g2

holds. For each path P ∈ P∗, the corresponding path
QP consists of a single vertex in P ∩ X. It is easy to
verify that we obtain an (A,B,X)-crossbar of width g2.
Therefore, we assume from now on that at least κ/2
paths of P are disjoint from X, and we denote the set
of all such paths by P ′0, so |P ′0| ≥ κ/2.

We perform D iterations, where in iteration i we either
construct a crossbar of width g2, or we compute the
path set Ri of the pseudo-grid. For each 1 ≤ i ≤ D, we
will denote by P ′i = P \ (R1 ∪ · · · ∪ Ri) the collection of
the remaining paths of P. We will ensure that for all i,
|Ri| ≤ g2.

We now describe the ith iteration of our algorithm,
whose input is a set P ′i−1 ⊆ P of at least κ/2 − (i −
1)g2 paths. In order to execute the ith iteration, we
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build a graph Hi, that is obtained from the graph
H, by contracting every path P ∈ P ′i−1 into a single
vertex vP . We keep parallel edges but discard loops.
Let Si =

{
vP | P ∈ P ′i−1

}
be the resulting set of

vertices corresponding to the contracted paths. We now
compute the largest set Q̂ of node-disjoint paths in Hi,
connecting the vertices of Si to the vertices of X. We
consider two cases.

Case 1. The first case happens if Q̂ contains at least
g2 paths.

In this case, we show that we can construct an
(A,B,X)-crossbar of width g2. Consider some path
Q ∈ Q̂. We can assume without loss of generality that
Q contains exactly one vertex of Si, that serves as one
of its endpoints. Let u(Q) be this vertex. If Q̂ contains
more than g2 paths, we discard paths from Q̂ arbitrar-
ily, until |Q̂| = g2 holds. We then define P∗ to be the
set of all paths P ∈ P ′i−1, such that vP = u(Q) for

some path Q ∈ Q̂. Finally, we define the set Q∗ of
paths of the crossbar, as follows. For each path Q ∈ Q̂
in graph Hi, we will define a corresponding path Q′ in

graph H, and we will set Q∗ =
{
Q′ | Q ∈ Q̂

}
. Con-

sider now some path Q ∈ Q̂, and let P ∈ P∗ be the
path with vP = u(Q). Recall that every vertex of Q is
either a vertex of H, or it is a vertex of the form vP ′

for some path P ′ ∈ P ′i−1. Let U ′(Q) be the set of all
vertices of Q that belong to H, and let U ′′(Q) be the
set of all vertices lying on the paths P ′ ∈ P ′i−1, such
that vP ′ ∈ V (Q). Finally, let U(Q) = U ′(Q) ∪ U ′′(Q).
Notice that for any two paths Q,Q′ ∈ Q̂, if Q 6= Q′,
then U(Q) ∩ U(Q′) = ∅, as the two paths are node-
disjoint. Let H(Q) be the sub-graph of H induced by
the vertices of U(Q). Then H(Q) is a connected graph,
that contains at least one vertex of P and at least one
vertex of X. We let Q′ be any path in H(Q) connect-
ing a vertex of P to a vertex of X, such that Q′ is

internally disjoint from P . Setting Q∗ =
{
Q′ | Q ∈ Q̂

}
,

we now obtain an (A,B,X)-crossbar (P∗,Q∗) of width
g2. Indeed, from the above discussion, it is immediate
that the paths of P∗ are mutually node-disjoint, and so
are the paths of Q∗. From our construction, each path
Q′ ∈ Q∗ connects a distinct path P ∈ P∗ to a vertex
of X. Consider now any pair P ∈ P∗, Q′ ∈ Q∗ of such
paths. If vP = u(Q′), then from our construction P ∩Q′
consists of a single vertex, that serves as an endpoint of
Q′. Otherwise, Q′∩P = ∅: indeed, if Q̂ ∈ Q̂ is the path
with u(Q̂) = vP , then, since Q′ and Q̂ are disjoint from
each other, Q′ may not contain the vertex vP , and so
Q′ may not contain any vertex of P .

Case 2. We now assume that Q̂ contains fewer than g2

paths. From Menger’s theorem, there is a set Ji of at
most g2 vertices in graph Hi, such that in Hi \Ji, there
is no path connecting a vertex of Si to a vertex of X.
Note that Ji may contain vertices of Si ∪X.

We partition Ji into two subsets: J ′i = Ji ∩ Si, and
J ′′i = Ji \ Si. Notice that each vertex in J ′′i is also a
vertex in the original graph H. We then let Ri ⊆ P ′i−1

be the set of all paths P ∈ P ′i−1, whose corresponding
vertex vP ∈ J ′i . Clearly, |Ri| ≤ |Ji| ≤ g2. We
define P ′i = P \ (R1 ∪ · · · ∪ Ri) = P ′i−1 \ Ri. Let
Vi = J ′′i ∪(

⋃
P∈Ri

V (P )), a set of vertices of the original
graph H, and let Q′i = {QP | P ∈ P ′i}. Then each path
in Q′i must contain a vertex of Vi. For each such path
Q ∈ Q′i, let vi(Q) be the last vertex of Q that belongs
to Vi, and let σi(Q) be the sub-path of Q between vi(Q)
and the endpoint of Q that belongs to X. Note that,
as |J ′′i | ≤ g2, for all but at most g2 paths Q ∈ Q′i, the
vertex vi(Q) lies on some path of Ri. We call such a
path Q ∈ Q′i an i-good path. We will use the following
immediate observation:

Observation 4.1. For each path Q ∈ Q′i, the segment
σi(Q) cannot contain any vertex of

⋃
P∈P′i V (P ).

We continue this process for D iterations, obtaining the
setsR1, . . . ,RD ⊆ P of paths, where for all i, |Ri| ≤ g2,
and we set P ′ = P ′D. Clearly, for all 1 ≤ i 6= j ≤ D,
Ri∩Rj = ∅. Since D ≤ κ/(4g2), we get that |P ′| ≥ κ/4.
We let Q′ = {σD(Q) | Q ∈ Q′D}. If |Q′| > dκ/4e, then
we discard arbitrary paths from Q′ until |Q′| = dκ/4e
holds. We now claim that {R1, . . . ,RD} and Q′ define
a pseudo-grid of depth D. Indeed, as already observed,
for each 1 ≤ i ≤ D, |Ri| ≤ g2, and for all 1 ≤ i 6= j ≤ D,
Ri ∩ Rj = ∅. From Observation 4.1, the paths in
Q′ are disjoint from the paths in P ′, thus establishing
Property (P1).

It now remains to establish Property (P2). Consider
some index 1 ≤ i ≤ D, and some path Q ∈ Q′,
that is both i-good and D-good. Consider the two
corresponding segments σi(Q) and σD(Q). Recall that,
since Q is i-good, σi(Q) intersects some path of Ri, but,
since RD ⊆ P ′i, from Observation 4.1, σi(Q) cannot
contain a vertex of

⋃
P∈RD

V (P ). As σD(Q) is D-good,
it contains a vertex of

⋃
P∈RD

V (P ). We conclude that
σi(Q) ⊆ σD(Q), and so σD(Q) intersects some path of
Ri. As at most g2 paths of Q′ are not i-good, and at
most g2 paths are not D-good, all but at most 2g2 paths
of Q′ must intersect some path of Ri. �

We apply Theorem 4.1 to graph H with the depth
parameter D = 64g4. If the outcome is an (A,B,X)-
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crossbar of width g2, then we return this crossbar and
terminate the algorithm. Therefore, we assume from
now on that the outcome of the theorem is a pseudo-
grid of depth D.

4.2 Step 2: Slicing the Paths of R. Recall that
for each 1 ≤ i ≤ D, there are at most 2g2 paths
Q ∈ Q′, such that Q does not intersect any path of
Ri. We discard all such paths from Q′, obtaining a set
Q′′ ⊆ Q′ of paths. Observe that we discard at most
2g2D = 128g6 < κ/8 paths, and, since Q′ = dκ/4e,
we get that |Q′′| ≥ κ/8. We now have the following
property:

I1. For each path Q ∈ Q′′, for every 1 ≤ i ≤ D, path
Q intersects at least one path of Ri.

We denote |R| = N , where D ≤ N ≤ Dg2. Let A′ ⊆ A
and B′ ⊆ B be the sets of endpoints of the paths of R
lying in A and B, respectively.

Let H ′ be the sub-graph of H, obtained by taking the
union of all paths in R and all paths in Q′′. The next
observation follows from the definition of the sets P and
Q of paths. The proof is deferred to the full version.

Observation 4.2. Let e be any edge of H ′ lying on
any path in R, such that e does not lie on any path Q
of the original set Q. Then the largest number of node-
disjoint paths connecting vertices of A′ to vertices of B′

in H ′ \ {e} is at most N − 1.

We need the following definition.

Definition 4.2. Given a graph Ĥ, and two subsets
Y,Z of its vertices, with |Y | = |Z| = r for some integer
r, we say that Ĥ has the unique linkage property with
respect to Y,Z iff there is a set R of r node-disjoint
paths in Ĥ connecting every vertex of Y to a distinct
vertex of Z (that we call a (Y,Z)-linkage), and moreover
this set of paths is unique. We say that Ĥ has the
perfect unique linkage property with respect to Y, Z iff
additionally every vertex of Ĥ lies on some path of R –
the unique (Y,Z)-linkage in Ĥ.

Recall that graph H ′ is the union of the paths in R and
the paths in Q′′. Next, we will slightly modify the graph
H ′ by contracting some of its edges, so that the resulting
graph has the perfect unique linkage property with
respect to A′ and B′, while preserving Property (I1).
We do so by performing the following two steps:

• While there is an edge e = (u, v) in H ′ that belongs
to a path of R and to a path of Q, contract edge
e by unifying u and v; update the corresponding
paths of R and Q accordingly.

• While there is a vertex u ∈ V (H ′) that lies on a
path of Q′′, but does not belong to any path in R,
contract any one of the (at most two) edges incident
to v, by unifying v with one of its neighbors; update
the corresponding path of Q′′.

Let H ′′ be the graph obtained at the end of this proce-
dure. The proof of the following simple observation is
deferred to the full version of the paper.

Observation 4.3. Graph H ′′ is a minor of H and
Property (I1) holds in H ′′. Moreover, H ′′ has the perfect
unique linkage property with respect to A′ and B′, with
the unique linkage being R.

Next, we define a new combinatorial object that will
be central to this step: an M̂ -slicing of a set of paths.
Eventually, we will use this object to slice the paths of
R. However, we may need to perform this slicing twice,
with two different sets of parameters, so the definition
that we give here, and the following theorem asserting
the existence of the slicing are stated in general terms.

Definition 4.3. Suppose we are given a set R̂ of node-
disjoint paths, where for each path R ∈ R̂, one of its
endpoints a(R) is designated as the first endpoint of
R, and the other endpoint b(R) is designated as the
last endpoint of R. Given an integer M̂ > 0, an M̂ -
slicing Λ = {Λ(R)}R∈R̂ of R̂ consists of a sequence

Λ(R) = (v0(R), v1(R), . . . , vM̂ (R)) of M̂ + 1 vertices of

R, for every path R ∈ R̂, such that v0(R) = a(R),
vM̂ (R) = b(R), and v0(R), v1(R), . . . , vM̂ (R) appear on
R in this order (we allow the same vertex to appear
multiple times in Λ(R).)

Assume now that we are given some set R̂ of node-
disjoint paths, and another set Q̂ of node-disjoint paths,
in some graph Ĝ, such that each path Q ∈ Q̂ intersects
at least one path of R̂. Assume also that we are given
an M̂ -slicing Λ = {Λ(R)}R∈R̂ of R̂. For all 1 ≤ i ≤ M̂ ,
we denote by σi(R) the sub-path of R lying strictly
between vi−1(R) and vi(R), so it excludes these two
vertices (notice that it is possible that σi(R) = ∅ if
vi−1(R) = vi(R), or if they are consecutive vertices on

R). For each 1 ≤ i ≤ M̂ , let Σi =
{
σi(R) | R ∈ R̂

}
,

and let Q̂i ⊆ Q̂ contain all paths Q ∈ Q̂ with the
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following property: for every path R ∈ R̂, for every
vertex v ∈ Q ∩R, v ∈ σi(R). Equivalently:

Q̂i =

{
Q ∈ Q̂ | (Q ∩ R̂) ⊆

⋃
σ∈Σi

σ

}
.

We say that the width of the M̂ -slicing Λ with respect
to Q̂ is ŵ iff min1≤i≤M̂{|Q̂i|} = ŵ. Notice that from our

definition, for all i 6= j, |Q̂i ∩ Q̂j | = ∅. We now provide

sufficient conditions for the existence of an M̂ -slicing of
a given width.

Theorem 4.2. Let Ĝ be a graph, Â, B̂ two sets of its
vertices of cardinality N̂ > 0 each, and assume that Ĝ
has the perfect unique linkage property with respect to
(Â, B̂), with the unique linkage denoted by R̂. Assume
that there is another set Q̂ of node-disjoint paths in
Ĝ, such that each path Q ∈ Q̂ intersects at least one
path of R̂, and integers M̂, ŵ > 0, such that |Q̂| ≥
M̂ŵ + (M̂ + 1)N̂ . Then there is an M̂ -slicing of R̂ of
width ŵ with respect to Q̂ in Ĝ.

Proof. We use the following Lemma of Robertson and
Seymour (Lemma 2.5 from [RS83]); we note that the
lemma appearing in [RS83] is somewhat weaker, but
their proof immediately implies the stronger result that
we state below.

Lemma 4.1. Let Ĝ be a graph, Â, B̂ ⊆ V (Ĝ) two
subsets of its vertices, such that |Â| = |B̂|, and Ĝ has the
perfect unique linkage property with respect to (Â, B̂),
with the unique (Â, B̂)-linkage denoted by R̂. Then

there is a bijection µ : V (Ĝ) →
{

1, . . . , |V (Ĝ)|
}

such

that the following holds. For an integer t > 0, let St
contain, for every path R ∈ R̂, the first vertex v on R
with µ(v) ≥ t; if no such vertex exists, then we add the

last vertex of R to St. Let Yt =
{
v ∈ V (Ĝ) | µ(v) < t

}
and Zt =

{
v ∈ V (Ĝ) | µ(v) ≥ t

}
. Then µ has the

following properties: (i) For each path R ∈ R̂, for every
pair v, v′ of its vertices, if v′ appears strictly before v
on R, then µ(v′) < µ(v); and (ii) For every integer
0 < t ≤ |V (Ĝ)|, graph Ĝ\St contains no path connecting
a vertex of Yt to a vertex of Zt.

We apply Lemma 4.1 to graph Ĝ and the sets Â and
B̂ of its vertices, obtaining a bijection µ : V (Ĝ) →{

1, . . . , |V (Ĝ)|
}

.

Consider now an integer 1 ≤ t ≤ |V (Ĝ)|, and the
corresponding set St of vertices, that we refer to as

separator. This separator contains exactly N̂ vertices
– one vertex from each path R ∈ R̂. Recall that Ĝ \ St
contains no path connecting Yt = {v : µ(v) < t} and
Zt = {v : µ(v) ≥ t}.
We denote byQ0(St) ⊆ Q̂ the subset of all paths Q ∈ Q̂,
such that Q ∩ St 6= ∅, so |Q0(St)| ≤ N̂ . Let R ∈ R̂ be
some path with endpoints a ∈ Â, b ∈ B̂, and let v
be the unique vertex of R that belongs to St. Then
v defines two sub-paths of R, as follows: R1(St) is the
sub-path of R from a to v (including these two vertices),
and R2(St) is similarly defined as the sub-path of R
from v to b. If St contains b, then R1(St) = R and
R2(St) = (b). Let Q1(St) ⊆ Q̂ \ Q0(St) be the set of
all paths Q ∈ Q̂, such that Q intersects some path in{
R1(St) | R ∈ R̂

}
, and let Q2(St) be defined similarly

for
{
R2(St) | R ∈ R̂

}
. Notice that equivalently, Q1(St)

contains all paths Q ∈ Q̂, such that Q ∩ Yt 6= ∅ and
Q ∩ St = ∅. Similarly, Q2(St) contains all paths Q ∈ Q̂
with Q ∩ Zt 6= ∅ and Q ∩ St = ∅. It is easy to verify
that the paths in Q1(St) are disjoint from Zt, and in
particular Q1(St) ∩ Q2(St) = ∅: otherwise, there is
some path Q ∈ Q̂, that contains a vertex of Yt and
a vertex of Zt, such that Q ∩ St = ∅, contradicting the
fact that Yt and Zt are separated in Ĝ\St. Notice that,
since every path of Q̂ intersects at least one path of R̂,
(Q0(St),Q1(St),Q2(St)) define a partition of Q̂.

The following observation will be useful in order to
construct the M̂ -slicing. The proof is deferred to the
full version of the paper.

Observation 4.4. The sets {Q1(St)}t≥1 of paths sat-
isfy the following properties:

1. Q1(S1) = ∅, and Q1(S|V (Ĝ)|) contains all but at

most |R̂| paths of Q̂ – the paths that intersect the
vertices of B̂;

2. For all 1 ≤ t < t′ ≤ |V (Ĝ)|, Q1(St) ⊆ Q1(St′); and

3. For all 1 ≤ t < |V (Ĝ)|, |Q1(St+1) \ Q1(St)| ≤ 1.

We now provide an algorithm to compute the M̂ -slicing.
The algorithm performs M̂ − 1 iterations, where at the
end of iteration i we produce an integer 1 ≤ ti ≤ |V (Ĝ)|,
and an (i + 1)-slicing {Λ(R)}R∈R̂ of R̂, such that the

width of the slicing with respect to Q̂ is at least ŵ, and
the following additional properties hold: (i) |Q̂i+1| ≥
|Q̂| − (i + 2)N̂ − iŵ; and (ii) for each path R ∈ R, the
vertex vi(R) ∈ Λ(R) is the unique vertex of Sti ∩R.
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Notice that the above properties ensure that Q̂i+1

contains all paths of Q2(Sti), except for at most N̂
paths, that contain the last endpoints of the paths in
R̂.

Since we assumed that |Q̂| ≥ M̂ŵ + (M̂ + 1)N̂ , after
(M̂ − 1) iterations we obtain a valid M̂ -slicing of R̂ of
width at least ŵ.

In order to execute the first iteration, we let t1 > 0
be an integer, for which |Q1(St1)| = ŵ + N̂ . Such
an integer must exist from Observation 4.4. For all
R ∈ R̂, we let v1(R) be the unique vertex of R lying
in S(t1), and v0(R), v2(R) the endpoints of R lying in
Â and B̂, respectively. This immediately defines a 2-
slicing of the paths in R̂. Recall that for each path
R ∈ R̂, we obtain two segments: σ1(R), that is obtained
from R1(St1) by removing its two endpoints, and σ2(R),
obtained similarly from R2(St1). It is immediate to
verify that set Q̂1 of paths associated with this slicing
contains every path Q ∈ Q1(St1), except for those
paths that contain the first endpoints of the paths in
R̂. Therefore, |Q̂1| ≥ |Q1(St1)| − N̂ ≥ ŵ. Similarly,
set Q̂2 of paths associated with this slicing contains
every path Q ∈ Q2(St1), except for those paths that
contain the last endpoints of the paths in R̂. Therefore,
|Q̂2| ≥ |Q̂|−|Q0(St1)|− |Q1(St1)|− |R̂| ≥ |Q̂|−3N̂− ŵ,
as required.

We now fix some 1 ≤ i < M̂ − 1, and describe the
(i + 1)th iteration. We assume that we are given an

(i + 1)-slicing of R̂, with
{
vi(R) | R ∈ R̂

}
= Sti , and

|Q̂i+1| ≥ |Q̂| − (i+ 2)N̂ − iŵ ≥ N̂ + 2ŵ.

Let ti+1 be the integer, for which |Q1(Sti+1
)∩Q̂i+1| = ŵ.

Such an integer must exist from Observation 4.4, since
|Q̂i+1| ≥ 2ŵ + N̂ . Moreover, we are guaranteed that
ti+1 > ti, since Q̂i+1 ⊆ Q2(Sti).

For convenience, we denote Q0(Sti),Q1(Sti) and
Q2(Sti) by Q0,Q1 and Q2, respectively.

For every path R ∈ R̂, vertices v0(R), . . . , vi(R) remain
the same as before. We let vi+1(R) be the unique
vertex of R ∩ St+1, and we let vi+2(R) be the endpoint
of R lying in B̂. We now obtain a new (i + 2)-
slicing Λ′ = {Λ′(R)}R∈R̂, where for each path R ∈ R̂,
Λ′(R) = (v0(R), . . . , vi+1(R)). For convenience, let
Q̂′i+1 denote the original set Q̂i+1, and let Q̂i+1 denote
the new set, defined with respect to the new slicing.
Then Q̂i+1 contains all paths of Q1 ∩ Q̂′i+1, and so,

from the definition of ti+1, |Q̂i+1| = ŵ. Set Q̂i+2

contains all paths of Q̂′i+1 \ Q̂i+1, except for the paths

containing the vertices of Q0 – there are at most N̂
of them. Therefore, |Q̂i+2| ≥ |Q̂′i+1| − |Q̂i+1| − N̂ ≥

|Q̂|− (i+ 2)N̂ − iŵ− ŵ− N̂ ≥ |Q̂|− (i+ 3)N̂ − (i+ 1)ŵ,
as required. �

Let M1 = 128g3 log g. From Theorem 4.2, we can obtain
an M1-slicing Λ = {Λ(R)}R∈R ofR, of width w = 211g6

with respect to Q′′, since N ≤ g2D = 64g6, and so
|Q′′| ≥ κ/8 ≥ 219g9 log g ≥ M1(2N + w). For every
1 ≤ i ≤ M1, we denote by Σi = {σi(R) | R ∈ R}. We
denote the subset Q̂i ⊆ Q′′ of paths corresponding to
Σi by Qi. We call (Σi,Qi) the ith slice of Λ.

4.3 Step 3: Intersecting Path Sets. We start by
defining (ŵ, D̂)-intersecting pairs of path sets.

Definition 4.4. Let R̂, Q̂ be two sets of node-disjoint
paths in a graph Ĝ. Given integers ŵ, D̂ > 0, we say
that (R̂, Q̂) is a (ŵ, D̂)-intersecting pair of path sets iff
each path R ∈ R̂ intersects at least ŵ distinct paths of
Q̂, and each path Q ∈ Q̂ intersects at least D̂ distinct
paths of R̂.

Lemma 4.2. Let R̂, Q̂ be two sets of node-disjoint paths
in a graph Ĝ, and let ŵ, D̂ > 0 be integers. Assume that
each path Q ∈ Q̂ intersects at least 2D̂ distinct paths of
R̂, and that |Q̂| ≥ 2|R̂|ŵ/D̂. Then there is a partition
(R̂′, R̂′′) of R̂, and a subset Q̂′ ⊆ Q̂ of paths, such
that (R̂′, Q̂′) is a (ŵ, D̂)-intersecting pair of path sets;
|Q̂′| ≥ |Q̂|/2; and every path in R̂′′ intersects at most
ŵ paths of Q̂′.

Proof. We start with R̂′ = R̂ and Q̂′ = Q̂, and
then iterate, by performing one of the following two
operations as long as possible:

• If there is a path R ∈ R̂′ intersecting fewer than ŵ
distinct paths of Q̂′, delete R from R̂′.

• If there is a path Q ∈ Q̂′ intersecting fewer than D̂
distinct paths of R̂′, delete Q from Q̂′.

Clearly, when the algorithm terminates, (R̂′, Q̂′) are a
(ŵ, D̂)-intersecting pair of path sets, and each path in
R̂′′ = R̂ \ R̂′ intersects at most ŵ paths of Q̂′. It now
remains to prove that |Q̂′| ≥ |Q̂|/2.

Let Π ⊆ R̂ × Q̂ be the set of all pairs (R,Q) of paths,
such that R ∩ Q 6= ∅. We call each pair (R,Q) ∈ Π
an intersection. When a path R is deleted from R̂′, it
participates in at most ŵ intersections. We say that
R is responsible for these intersections, and that these
intersections are deleted due to R. Overall, all paths of
R̂\R̂′ may be responsible for at most |R̂|ŵ intersections.
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Consider now some path Q ∈ Q̂ \ Q̂′. Originally, Q
intersected at least 2D̂ paths of R̂, but at the time it was
removed from Q̂′ it intersected at most D̂ such paths.
Therefore, at least D̂ of its intersections were removed,
and these intersections must have been removed due to
paths in R̂ \ R̂′. Therefore, |Q̂ \ Q̂′| ≤ |R̂|ŵ/D̂ ≤ Q̂/2.

�

For each 1 ≤ i ≤ M1, We apply Lemma 4.2 to
sets (Σi,Qi) of paths, with parameters ŵ = 4g2 and
D̂ = D/2. Notice that |Σi| ≤ |R| = N ≤ Dg2,
while |Qi| ≥ 211g6. It is then easy to verify that
|Qi| ≥ 2|Σi|ŵ/D̂ = 16|Σi|g2/D. Recall that each path
Q ∈ Qi intersects at least D paths of Σi. Therefore, we
obtain a partition (Σ′i,Σ

′′
i ) of Σi, and a subset, Q′i ⊆ Qi

of paths, such that (Σ′i,Q′i) is a (4g2, D/2)-intersecting
pair of path sets, |Q′i| ≥ 210g6, and each path of Σ′′i
intersects at most 4g2 paths of Q′i.
We now distinguish between two cases. For 1 ≤ i < M1,
we say that slice (Σi,Qi) is of type 1 iff |Σ′i| ≥ N/g, and
we say that it is of type 2 otherwise. We say that Case 1
happens if at least half the slices are of type 1; otherwise,
we say that Case 2 happens.

If Case 1 happens, then we proceed directly to Step 4.
Assume now that Case 2 happens, and consider some
type-2 slice (Σi,Qi). Intuitively, we are interested in
either obtaining a large number of slices, or in obtaining
a large number of paths in the sets Σ′i of each such slice.
Type-1 slices achieve the latter. But in type-2 slices, the
cardinalities of sets Σ′i are too small for us. Fortunately,
we can exploit this fact in order to increase the number
of slices.

Theorem 4.3. Assume that Case 2 happens, and that
H does not contain an (A,B,X)-crossbar of width g2.
Then there is an M2-slicing of R, of width at least N/g
with respect to Q′′, where M2 = 8g4 log g.

Proof. The proof directly follows from the following
lemma.

Lemma 4.3. Assume that H does not contain an
(A,B,X)-crossbar of width g2. Let 1 ≤ i ≤ M1 be an
index, such that (Σi,Qi) is a type-2 slice of the original
slicing Λ. Then there is an M̂ -slicing Λi of Σi of width
at least N/g with respect to Qi, where M̂ = g.

Recall that M1 = 128g3 log g, and so at least 64g3 log g
of the slices of Λ are type-2 slice. Each such slice
(Σi,Qi) is in turn sliced into g slices. Therefore, by
combining the slicing Λ together with the individual

slicings Λi for all type-2 slices (Σi,Qi), we obtain a
slicing of R, where the number of slices is at least
(64g3 log g) · g > 8g4 log g = M2. The width of the
new slicing with respect to Q′′ is at least N/g. From
now on we focus on the proof of Lemma 4.3. Let
1 ≤ i ≤ M1 be an index, such that (Σi,Qi) is a
type-2 slice of the original slicing Λ. Our goal is to
produce an M̂ -slicing Λi of Σi of width at least N/g
with respect to Qi, where M̂ = g. The idea is that we
will discard all paths in Qi \Q′i; ignore the paths in Σ′′i
(for each such path σ ∈ Σ′′i we will eventually produce a
trivial slicing, where v0(σ) is the first endpoint of σ, and
v1(σ) = v2(σ) = · · · = vM̂ (σ) is its last endpoint), and
will focus on slicing the paths of Σ′i, trying to achieve a
slicing whose width is at least N/g with respect to Q′i.
Unfortunately, some of the paths in Q′i may intersect
the paths of Σ′′i , so our first step is to get rid of all
such intersections. We do so using the following claim.
Recall that |Q′i| ≥ 210g6.

Claim 4.1. Assume that H does not contain an
(A,B,X)-crossbar of width g2, and let (Σi,Qi) be a slice
of type 2. Then at least 29g6 paths in the set Q′i are dis-
joint from the paths in Σ′′i .

Proof. Assume otherwise. Let B ⊆ Q′i be the set of
all paths that have non-empty intersection with paths
in Σ′′i , so |B| ≥ 29g6. We further partition the set B
into two subsets: set B1 contains all paths Q ∈ B that
intersect at least 8g2 paths of Σ′′i , and B2 = B \ B1.

We first show that |B1| ≤ 32g6. Recall that |Σ′′i | ≤ N ≤
64g6, and each path σ ∈ Σ′′i intersects at most 4g2 paths
of Q′i. Therefore, there are at most 256g8 pairs (σ,Q)
of paths, with σ ∈ Σ′′i and Q ∈ B, such that σ ∩Q 6= ∅.
As each path of B1 intersects at least 8g2 paths of Σ′′i ,
we get that |B1| ≤ 256g8/8g2 ≤ 32g6.

We conclude that |B2| ≥ 28g6. We exploit this fact
to construct a (A,B,X)-crossbar of width g2 in H.
In order to do so, we perform g2 iterations, where
in each iteration we add some path P connecting a
vertex of A to a vertex of B to the crossbar, and its
corresponding path QP , thus iteratively constructing
the crossbar (P∗,Q∗). In every iteration, we will delete
some paths from Σ′′i and from B2. The path P that we
add to P∗ is a path from R, that contains some segment
of Σ′′i , and its corresponding path QP is a sub-path of a
path in B2. We start with P∗,Q∗ = ∅, and we maintain
the following invariants:

• All paths in the current sets P∗,Q∗ are disjoint
from all paths in Σ′′i ,B2; Moreover, each path
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R ∈ R that contains a segment σ ∈ Σ′′i is disjoint
from all paths in P∗ ∪Q∗; and

• Each remaining path in B2 intersects some path in
the remaining set Σ′′i .

At the beginning, P∗,Q∗ = ∅, and the invariants hold.
Assume now that the invariants hold at the beginning
of iteration j. The jth iteration is executed as follows.
We let Q ∈ B2 be any path, and we let σ ∈ Σ′′i be any
path intersecting Q. We add the unique path P ∈ R
that contains σ to P∗, and we add a sub-path of Q,
connecting a vertex of P to a vertex of X to Q∗, as
QP . Let Sj be the collection of all paths of the current
set Σ′′i that intersect Q, so |Sj | < 8g2. Let Yj ⊆ B2

be the set of all paths that intersect the paths of Sj ,
so |Yj | ≤ |Sj | · 4g2 ≤ 32g4. We delete the paths of
Sj from Σ′′i , and we delete from B2 all paths of Yj . It
is easy to verify that the invariants continue to hold
after this iteration (for the second invariant, recall that
each path of the original set B2 intersected some path
of Σ′′i ; whenever a path σ is deleted from Σ′′i , we delete
all paths that intersect it from B2. Therefore, each
path that remains in B2 must intersect some path that
remains in Σ′′i ). In every iteration, at most 32g4 paths
are deleted from B2, while at the beginning |B2| ≥ 28g6.
Therefore, we can carry this process for g2 iterations,
after which we obtain an (A,B,X)-crossbar of width
g2. �

We let Q̃i ⊆ Q′i be the set of at least 512g6 paths of Q′i
that are disjoint from the paths of Σ′′i .

Let Ai be the set of vertices that serve as the first
endpoint of the paths in Σi, and let A′i ⊆ Ai be defined
similarly for Σ′i. Similarly, let Bi be the set of vertices
that serve as the last endpoint of the paths in Σi, and
let B′i ⊆ Bi be defined similarly for Σ′i. We let Hi be
the graph obtained from the union of the paths in Σi
and Qi, and we let H ′i be the graph obtained from the
union of the paths in Σ′i and Q̃i. The proof of the next
observation is deferred to the full version of the paper.

Observation 4.5. Graph H ′i has the perfect unique
linkage property with respect to (A′i, B

′
i), with the unique

linkage being Σ′i.

Recall that |Σ′i| ≤ N/g, and |Q̃i| ≥ 512g6. We now

invoke Theorem 4.2 with R̂ = Σ′i, Q̂ = Q̃i, N̂ = |Σ′i| ≤
N/g; M̂ = g and ŵ = N/g, to obtain an M̂ -slicing of
Σ′i of width N/g with respect to Q̃i. In order to do

so, we need to verify that |Q̃i| ≥ M̂ŵ + (M̂ + 1)|Σ′i|.
But M̂ŵ + (M̂ + 1)|Σ′i| ≤ (2M̂ + 1)N/g ≤ 6N , while

|Q̃i| ≥ 512g6 ≥ 6N , as N ≤ Dg2 = 64g6. We conclude
that there exists an M̂ slicing Λi of Σ′i, whose width
with respect to Q̃i is N/g. We extend this slicing to
an M̂ -slicing of Σi in a trivial way: for every path
σ ∈ Σ′′i , we let v0(σ) be its first endpoint, and we let
v1(σ) = v2(σ) = · · · = vM̂ (σ) be its last endpoint. Since

the paths of Q̃i are disjoint from the paths of Σ′′i , this

defines an M̂ -slicing of Σi of width N/g with respect to
Q̃i, and hence with respect to Qi as well. �

If Theorem 4.3 returns an (A,B,X)-crossbar of width
g2, then we output this crossbar and terminate the
algorithm. Therefore, we assume from now on that
the theorem returns an M2-slicing of R, whose width
with respect to Q′′ is at least N/g. We will ignore
the original slicing for Case 2, and will denote this new
slicing by Λ. Abusing the notation, we denote, for each
1 ≤ i ≤M2, the ith slice of this new slicing by (Σi,Qi),
where Qi ⊆ Q′′ and Σi contains the ith segment of each
path R ∈ R.

As in Case 1, for each 1 ≤ i ≤ M2, we employ
Lemma 4.2 in order to partition the set Σi into two
subsets, Σ′i,Σ

′′
i , and compute a subset Q′i ⊆ Qi of

paths, such that (Σ′i,Q′i) are (4g2, D/2)-intersecting
path sets. In order to do so, we need to verify that
|Qi| ≥ 2|Σi| · 4g2/(D/2) = 16|Σi|g2/D. Recall that
|Qi| ≥ N/g, while |Σi| ≤ N , and D = 64g4, so the
inequality indeed holds. As before, every path of Qi
intersects at least D paths of Σi, and so the conditions
of Lemma 4.2 are satisfied, with ŵ = 4g2 and D̂ = D/2.

Summary of Step 3. In Case 1, at the end of Step 3
we obtain an M1-slicing of R, with M1 = 128g3 log g,
whose width with respect to Q′′ is w1 = 211g6. In Case
2, we obtain an M2-slicing of R, with M2 = 8g4 log g,
whose width with respect to Q′′ is w2 = N/g. In
either case, for each slice (Σi,Qi), we also computed
a partition (Σ′i,Σ

′′
i ) of Σi, and a subset Q′i ⊆ Qi of

paths, such that Q′i 6= ∅, and (Σ′i,Q′i) are (4g2, D/2)-
intersecting. Since Q′i 6= ∅, we are guaranteed that
|Σ′i| ≥ D/2. Moreover, in Case 1, for at least half the
indices i, (Σi,Qi) is a type-1 slice, that is, |Σ′i| ≥ N/g.
If Case 1 happens, we will ignore all type-2 slices, so
we can assume that in Case 1 the number of slices is
64g3 log g, that we denote, abusing the notation, by M1,
and that in every slice (Σi,Qi), |Σ′i| ≥ N/g.

4.4 Step 4: Well-Linked Decomposition. In this
step, we need to use a slightly weakened definition
of edge-well-linkedness, that was also used in previous
work.
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Definition 4.5. Let Ĝ be a graph, T a subset of its
vertices, and ŵ > 0 an integer. We say that T is ŵ-
weakly well-linked in Ĝ, iff for any two disjoint subsets
T ′, T ′′ of T , there is a set of min {|T ′|, |T ′′|, ŵ} edge-
disjoint paths in Ĝ, connecting vertices of T ′ to vertices
of T ′′.

The following observation is immediate.

Observation 4.6. Let Ĝ be a graph, T a subset of its
vertices, and ŵ > 0 an integer, such that |T | ≤ 2ŵ.
Assume further that T is ŵ-weakly-well-linked in Ĝ.
Then T is edge-well-linked in Ĝ.

We will repeatedly use the following simple observation,
whose proof is deferred to the full version.

Observation 4.7. Let Ĝ be a graph, T a subset of
its vertices, and ŵ > 0 an integer. Assume that
T is not ŵ-weakly well-linked in Ĝ. Then there is
a partition (X,Y ) of V (Ĝ), such that |E(X,Y )| <
min {ŵ, |T ∩X|, |T ∩ Y |}.

Let Ĝ be a graph, and let Σ̂ be a set of node-disjoint
paths in Ĝ. Given a sub-graph C ⊆ Ĝ, we denote by
Σ̂(C) the set of all paths σ ∈ Σ̂, such that σ ⊆ C, and
we denote by Γ(C) the set of endpoints of all paths in
Σ̂(C). We sometimes refer to sub-graphs C ⊆ Ĝ as
clusters.

Given two parameters, ŵ and D̂, we say that cluster C is
good iff Γ(C) is ŵ-weakly well-linked in C. We say that
it is happy, if it is good, and additionally, |Σ̂(C)| ≥ D̂.
Following is the main theorem of this step.

Theorem 4.4. Let Ĝ be a graph, and let Σ̂ and Q̂ be
two sets of node-disjoint paths in Ĝ (but a path in Σ̂ and
a path in Q̂ may intersect). Let ŵ, D̂ > 0 be integers,
such that (Σ̂, Q̂) are (4ŵ, 2D̂)-intersecting, and D̂ ≥ 8ŵ.
Then there is a collection C of disjoint sub-graphs of Ĝ,
and a subset Σ̂′ ⊆ Σ̂, such that: (i) Each cluster C ∈ C
is happy (that is, |Σ̂(C)| ≥ D̂ and Γ(C) is ŵ-weakly
well-linked in C); (ii) |Σ̂′| ≥ |Σ̂|/4; and (iii) every path
σ ∈ Σ̂′ belongs to some set Σ̂(C) for some C ∈ C.

Proof. Throughout the algorithm, we maintain a set C
of disjoint clusters of Ĝ. Recall that Σ̂(C) contains all
paths σ ∈ Σ̂, such that σ ⊆ C. At the beginning, C
contains a single cluster Ĝ, and Σ̂(Ĝ) = Σ̂. We also
maintain a set E′ of edges that we have deleted, that
is initialized to ∅. The algorithm is executed as long
as there is some cluster C ∈ C, such that Γ(C) is not
ŵ-weakly well-linked in C.

Let C ∈ C be any such cluster. For convenience,
denote T = Γ(C). From Observation 4.7, there is
a partition (X,Y ) of V (C), such that |E(X,Y )| <
min {ŵ, |T ∩X|, |T ∩ Y |}. Notice that in this case, each
of Ĝ[X] and Ĝ[Y ] must contain at least one path of
Σ̂(C). Indeed, assume for contradiction that no path
of Σ̂(C) is contained in Ĝ[X]. Then for every vertex
v ∈ T∩X, path σ ∈ Σ̂(C) that contains v as an endpoint
must contribute at least one edge to E′. Moreover, if
both endpoints of σ belong to X, then at least two edges
of σ lie in E′. Therefore, |E′| ≥ |T ∩X|, a contradiction.

We add the edges of E(X,Y ) to E′. Let J ⊆ Σ̂(C) be
the set of all paths that contain edges of E(X,Y ). Each
path of Σ̂(C) \ J is now either contained in Ĝ[X] or in
Ĝ[Y ]. We remove C from C and replace it with Ĝ[X] and
Ĝ[Y ]. This finishes the description of an iteration. Let
C be the final set of clusters at the end of the algorithm,
and let |C| = r. Then our algorithm has executed r − 1
iterations. Observe that in each iteration at most ŵ
edges are added to E′, so at the end of the algorithm,
|E′| ≤ (r − 1)ŵ. For every cluster C ∈ C, let out(C) be
the set of all edges of E′ that are incident to C.

We partition all clusters in C into two subsets: C1 ⊆
C contains all clusters with | out(C)| < 4ŵ, and C2
contains all remaining clusters of C. The proofs of
the following two observations are deferred to the full
version of the paper.

Observation 4.8. |C1| ≥ r/2.

Observation 4.9. Every cluster C ∈ C1 is happy.

Corollary 4.1. r ≤ 2|Σ̂|/D̂.

Proof. Note that from Observations 4.8 and 4.9,∑
C∈C1 |Σ̂(C)| ≥ rD̂/2. On the other hand,∑
C∈C1 |Σ̂(C)| ≤ |Σ̂|. The corollary now follows.

�

We say that a path σ ∈ Σ̂ is destroyed if at least one
of its edges belongs to E′; otherwise, we say that it
survives. From the above corollary, the number of paths
that are destroyed is bounded by rŵ ≤ 2ŵ|Σ̂|/D̂ ≤
|Σ̂|/2, since we have assumed that D̂ ≥ 8ŵ. Each of the
surviving paths belongs to some set Σ̂(C) for C ∈ C.
At least half the clusters in C are happy. For a happy
cluster C, |Σ̂(C)| ≥ D̂, and for an unhappy cluster C,
|Σ̂(C)| < D̂. We denote by Σ̂′ ⊆ Σ̂ the set of all paths
σ, such that σ ∈ Σ̂(C) for a happy cluster C. Then
Σ̂′ contains at least half of the surviving paths, and
altogether, |Σ̂′| ≥ |Σ̂|/4. �
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Assume first that Case 2 happened, so we have M2 =
8g4 log g slices {(Σi,Qi)}1≤i≤M2

. Recall that for each
1 ≤ i ≤ M2, we have computed subsets Σ′i ⊆ Σi and
Q′i ⊆ Qi, such that (Σ′i,Q′i) are (4g2, D/2)-intersecting.
Let H ′i be a graph obtained from the union of the paths

in Σi and Qi. Denote D̂ = D/4 and ŵ = g2, so that
(Σ′i,Q′i) are (4ŵ, 2D̂)-intersecting. Note that D̂ ≥ 8ŵ,
since D = 64g4. We apply Theorem 4.4 to graph H ′i,
with Σ̂ = Σ′i, Q̂ = Q′i, and parameters D̂, ŵ. Let
Ci be the resulting collection of happy clusters, and let
Ci ∈ Ci be any such cluster. We denote by Σ̃i = Σ̂(Ci).
Recall that |Σ̃i| ≥ D/4, and the endpoints of the paths
in Σ̃i are g2-weakly well-linked in Ci. Finally, we let
C̃ = {C1, . . . , CM2

}. To summarize, we have obtained
a collection of M2 clusters, one cluster per slice. Each
cluster Ci contains a set Σ̃i of at least D/4 segments,
whose endpoints are g2-weakly well-linked in Ci.

Assume now that Case 1 happened, so we have M1 =
64g3 log g slices {(Σi,Qi)}1≤i≤M1 . As before, for each
1 ≤ i ≤ M1, we have computed subsets Σ′i ⊆ Σi and
Q′i ⊆ Qi, such that (Σ′i,Q′i) are (4g2, D/2)-intersecting.
But now we are guaranteed that |Σ′i| ≥ N/g. As before,
let H ′i be a graph obtained from the union of the paths

in Σi and Qi. As before, we denote D̂ = D/4 and
ŵ = g2, so that (Σ′i,Q′i) are (4ŵ, 2D̂)-intersecting, and

D̂ ≥ 8ŵ.

As before, for each 1 ≤ i ≤ M1, we apply Theorem 4.4
to graph H ′i, with Σ̂ = Σ′i, Q̂ = Q′i, and parameters D̂,
ŵ. Let Ci be the resulting collection of happy clusters.
For each such cluster C ∈ Ci, we denote Σ̃(C) = Σ̂(C).
As before, the endpoints of the paths of Σ̃(C) are g2-
weakly well-linked in C, and |Σ̃(C)| ≥ D/4. We denote
Σ̃i =

⋃
C∈Ci Σ̃(Ci). Notice that Theorem 4.4 guarantees

that |Σ̃i| ≥ |Σ′i|/4 ≥ N/(4g). Let C =
⋃M1

i=1 Ci, and let

Σ̃ =
⋃M1

i=1 Σ̃i, so |Σ̃| ≥M1N/4g.

Intuitively, for some of the clusters C ∈ C, |Σ̃(C)| may
be very large, and then it is sufficient for us to have a
small number of such clusters. But it is possible that for
most clusters in C, |Σ̃(C)| is relatively small – possibly
as small as D/4. In this case, it would be helpful for us
to argue that the number of such clusters is large. In
other words, we would like to obtain a tradeoff between
the number of clusters C and the cardinality of their
corresponding path sets |Σ̃(C)|.
In order to do so, we group the clusters geometrically.
Recall that for each C ∈ C, D/4 ≤ |Σ̃(C)| ≤ N ≤ g2D.
For 0 ≤ j < 2 log g + 2, we say that cluster C belongs
to class Sj iff D · 2j/4 ≤ |Σ̃(C)| < D · 2j+1/4. If

C ∈ Sj , then we say that all paths in Σ̃(C) belong to
class j. Then there must be an index j, such that the

number of paths in Σ̃ that belong to class j is at least
|Σ̃|

2 log g+2 ≥ M1N
16g log g . We let C̃′ = Sj , and we let Σ̃′ ⊆ Σ̃

be the set of all paths that belong to class j. Note that

|C̃′| ≥ |Σ̃′|
D·2j+1/4 ≥ M1N

4D·2j+1g log g = 64g3N log g
8D·2jg log g = 8Ng2

D·2j ,

while for each C ∈ C, |Σ̃(C)| ≥ D · 2j/4.

To summarize, in Case 1, we have obtained a collection

of at least 8Ng2

D·2j clusters, that we denote, abusing the

notation, by C̃. For each slice i, we may have a number
of clusters of C̃ that belong to that slice. We denote
the set of all such clusters by C̃i. Notice however that,
if C,C ′ ∈ C̃i and C 6= C ′, then Σ̃(C) ∩ Σ̃(C ′) = ∅.
Moreover, if R′ ⊆ R is the set of all paths containing
the segments of Σ̃(C), and R′′ is defined similarly for
C ′, then R′ ∩R′′ = ∅. We are guaranteed that for each
cluster C ∈ C̃, |Σ̃(C)| ≥ D · 2j/4, and the endpoints of
the paths of Σ̃(C) are g2-weakly well-linked in C.

4.5 Step 5: Constructing a Weak Path-of-Sets
System In this section we construct a weak Path-of-
Sets System of width g2 and length g2 in graph H ′′.
Recall that H ′′ is a minor of the graph H, and it is
the union of the paths in R and Q′′. In particular, the
maximum vertex degree in H ′′ is at most 4. We will use
this fact in the last step, in order to turn the Path-of-
Sets System into a strong one. For an integer N̂ > 0,

we denote [N̂ ] =
{

1, . . . , N̂
}

. Let π : R → [N ] be

an arbitrary bijection, mapping every path in R to a
distinct integer of [N ] (recall that |R| = N). Following
is the main theorem for this step.

Theorem 4.5. Let D̂, N̂ , M̂ , ŵ be non-negative inte-
gers, such that (i) N̂ ≥ 3ŵ; (ii) D̂2 ≥ 4N̂ŵ; and (iii)
M̂D̂ ≥ 2N̂ŵ hold, and let S1, · · · , SM̂ be subsets of [N̂ ],

where for each 1 ≤ i ≤ M̂ , |Si| ≥ D̂. Then there are ŵ
indices 1 ≤ i1 < i2 < · · · < iŵ ≤ M̂ , such that for all
1 ≤ j < ŵ, |Sij ∩ Sij+1

| ≥ ŵ.

We prove this theorem below, after we show how to
construct a weak Path-of-Sets System of length and
width g2 in H ′′ using it. Assume first that Case 2
happens. We then denote M̂ = M2 = 8g4 log g,
D̂ = D/4, N̂ = N , and ŵ = g2. Recall that we are given
a set C =

{
C1, C2, . . . , CM̂

}
of clusters, where cluster

Ci corresponds to slice i. Recall also that for each i,
|Σ̃(Ci)| ≥ D/4. We now build the subsets S1, . . . , SM̂
of [N̂ ] as follows. Fix some 1 ≤ i ≤ M̂ . For every
path R ∈ R, such that σi(R) ∈ Σ̃(Ci), we add π(R)
to Si. Notice that for all i, |Si| ≥ D/4 = D̂. We
now verify that the conditions of Theorem 4.5 hold for
the chosen parameters. The first condition, N̂ ≥ 3ŵ,
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is immediate from the fact that N ≥ D = 64g4.
The second condition, D̂2 ≥ 4N̂ŵ, is equivalent to:
D2/16 ≥ 4Ng2. Since N ≤ Dg2, it is enough to
show that D ≥ 64g4, which holds from the definition
of D. The third condition, D̂M̂ ≥ 2N̂ŵ is equivalent
to: DM2 ≥ 8Ng2. Using the fact that N ≤ Dg2, and
that M2 ≥ 8g4, the inequality clearly holds.

Therefore, we can now apply Theorem 4.5 to conclude
that there are indices 1 ≤ i1 < i2 < · · · < ig2 ≤ M̂ ,
such that for all 1 ≤ j < g2, |Sij ∩ Sij+1 | ≥ g2.

Next, we define, for all 1 ≤ j ≤ g2, subsets Tj ⊆ Sij of
g2 indices, as follows. Set T1 is an arbitrary subset of g2

indices of Si1 . For each 1 < j ≤ g2, set Tj is an arbitrary
subset of g2 indices in Sij−1 ∩ Sij . For convenience, we
also define a set Tg2+1 = Tg2 .

The clusters C ′1, . . . , C
′
g2 of the Path-of-Sets system are

defined as follows. For 1 ≤ j ≤ g2, cluster C ′j = Cij .

Observe that for all 1 ≤ j ≤ g2 + 1, set Tj of indices

defines a subset R̃j ⊆ R of paths: these are all paths
R ∈ R with π(R) ∈ Tj . Therefore, |R̃j | = g2, and

for each path R ∈ R̃j , its segment σij (R) ∈ Σ̃(Cij ).

Moreover, if j > 1, then for every path R ∈ R̃j ,
σij−1(R) ∈ Σ̃(Cij−1).

Consider now some index 1 ≤ j ≤ g2. Let ΣAij ⊆ Σ̃ij
denote all segments σij (R) of paths R ∈ R̃j , and let
Aj be the set of vertices containing the first endpoint of

each such segment. Let ΣBij ⊆ Σ̃ij denote all segments

σij (R) of paths R ∈ R̃j+1, and let Bj be the set
of vertices containing the last endpoint of each such
segment. Then from Theorem 4.4, the endpoints of the
paths in ΣAij ∪ ΣBij are g2-weakly well-linked in C ′j =

Cij . Therefore, Aj ∪ Bj is g2-weakly well-linked in C ′j .
Moreover, since |Aj | = |Bj | = g2, from Observation 4.6,
Aj ∪Bj is edge-well-linked in C ′j .

It now remains to construct, for each 1 ≤ j < g2,
the set Pj of disjoint paths, connecting every vertex
of Bj to a distinct vertex of Aj+1. Recall that |Bj | =

|Aj+1| = |R̃j+1|, and every path R ∈ R̃j+1 contains a
single vertex bR of Bj and a single vertex aR of Aj+1.

For each path R ∈ R̃j+1, we add the sub-paths of R
between bR and aR to Pj . It is easy to verify that all
paths in set

⋃
j Pj are disjoint from each other and are

internally disjoint from the clusters C ′j . This is because

for each 1 ≤ j < g2, for each path P ∈ Pj , P is a

sub-path of some path R ∈ R̃j+1 spanning its segments
σij+1(R), . . . , σij+1−1(R), and two additional edges, one
immediately preceding σij+1(R), and one immediately
following σij+1−1(R). Since i1 < i2 < · · · < ig2 , the
paths in

⋃
j Pj are disjoint from each other, and are

internally disjoint from
⋃
j′ C

′
j′ .

Assume now that Case 1 happens. We denote M̂ =

|C̃| ≥ 8Ng2

D·2j , ŵ = g2, N̂ = N , and D̂ = D·2j

4 . Recall

that for each C ∈ C̃, |Σ̃(C)| ≥ D̂. Again, we need
to verify that the conditions of Theorem 4.5 hold for
this choice of parameters. The first condition is that
N̂ ≥ 3ŵ. Since we use the same parameters N̂ and ŵ
as before, this condition continues to hold. The second
condition is D̂2 ≥ 4N̂ŵ. Recall that this condition held
for Case 2, where the values of N̂ and ŵ were the same,
and D̂ = D/4 was smaller than the current value of D̂,
so this condition continues to hold. The third condition
is that D̂M̂ ≥ 2N̂ŵ. This condition is easy to verify by
substituting the values of the relevant parameters.

Recall that set C may contains clusters from the same
slice. We order the clusters in C as follows: first, we
order the clusters in the increasing order of their slices;
the clusters inside the same slice are ordered arbitrarily.
Let C1, . . . , CM̂ be the resulting ordering of the clusters.
We define the sets S1, . . . , SM̂ exactly as before. An
important observation is that, if Ci, Cj belong to the
same slice, then Si ∩ Sj = ∅. We now use Theorem 4.5

to obtain a sequence 1 ≤ i1 < i2 < · · · < ig2 ≤ M̂ of
indices, such that for all 1 ≤ j < g2, |Sij ∩ Sij+1

| ≥
g2. Notice that each resulting cluster Ci1 , Ci2 , . . . , Cig2
must belong to a different slice. The remainder of the
construction of the Path-of-Sets system is done exactly
as in Case 2.

In order to complete the proof of Theorem 3.1, it is now
enough to prove Theorem 4.5.

Proof of Theorem 4.5. The proof consists of three
steps. First, we use the sets S1, . . . , SM̂ of indices to
define a directed acyclic graph. Then we show that
the size of the maximum independent set in this graph
is small. We use this fact to conclude that the graph
must contain a long directed path, which is then used
to construct the desires sequence i1, . . . , iw of indices.

We start by defining a directed graph Ĝ = (V̂ , Ê), where
V̂ = {1, 2, · · · , M̂}, and for every pair 1 ≤ i < j ≤ M̂ of
its vertices, we add a directed edge (i, j) to Ê if and only
if |Si ∩ Sj | ≥ ŵ. It is easy to verify that Ĝ is indeed
a directed acyclic graph. We use the following claim,
whose proof is deferred to the full version of the paper.

Claim 4.2. Let S ⊆
{
S1, . . . , SM̂

}
be any collection of

r = d2N̂/D̂e sets. Then there are two distinct sets
Si, Sj ∈ S with |Si ∩ Sj | ≥ ŵ.

The claim immediately implies the following corollary.
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Corollary 4.2. Let V ′ ⊆ V̂ be any subset of vertices
of Ĝ, such that no two vertices in V ′ are connected by
an edge. Then |V ′| < 2N̂/D̂.

Next, we show that graph Ĝ contains a long directed
path. We say that a subset V ′ of vertices of a directed
graph is an independent set iff no pair of vertices in V ′

is connected by an edge. The proof of the next claim is
deferred to the full version of the paper.

Claim 4.3. Let G = (V,E) be any directed acyclic
graph on M̂ vertices. Let `(G) be the length of the
longest directed path in G, and let α(G) be the car-
dinality of the largest independent set in G. Then
`(G) ≥ M̂/α(G).

We conclude that graph Ĝ has a directed path of length
at least M̂D̂/2N̂ ≥ ŵ (we have used the assumption
that M̂D̂ ≥ 2N̂ŵ from the statement of Theorem 4.5).
This directed path immediately defines the desired
sequence i1, . . . , iŵ of indices, completing the proof of
Theorem 4.5. �

4.6 Step 6: a Strong Path-of-Sets System Re-
call that in Step 5, we have constructed a weak Path-
of-Sets System of length g2 and width g2, that we de-

note by P = (C, {Pi}g
2−1
i=1 , A1, Bg2), in a minor H ′′ of

H, whose maximum vertex degree is bounded by 4.
Let ` = w = g2. Abusing the notation, we denote
C = (C1, . . . , C`). In this step we complete the proof
of Theorem 3.1, by converting P into a strong Path-of-
Sets System. The length of the new Path-of-Sets System
will remain `, and the set C of clusters will remain the
same. The width will decrease by a constant factor.

This step uses standard techniques, and is mostly
identical to similar steps in previous proofs of the
Excluded Grid Theorem of [CC16, Chu15, Chu16]. In
particular, we will use the Boosting Theorems of [CC16]
in order to select large subsets P ′i ⊆ Pi of paths, such
that their endpoints are sufficiently well-linked in their
corresponding clusters. Chekuri and Chuzhoy [CC16]
employed the following definition of well-linkedness:

Definition 4.6. We say that a set T of vertices is α-
well-linked in a graph G, if for every partition (A,B)
of the vertices of G into two subsets, |E(A,B)| ≥
α ·min {|A ∩ T |, |B ∩ T |}.

The next observation follows immediately from
Menger’s theorem.

Observation 4.10. If a set T of vertices is edge-well-
linked in a graph G, then T is 1-well-linked in G.

Next, we state the Boosting Theorems of [CC16].

Theorem 4.6. (Theorem 2.14 in [CC16]) Suppose
we are given a connected graph G = (V,E) with
maximum vertex degree at most ∆ ≥ 3 and a set T ⊆ V
of κ̂ vertices, such that T is α-well-linked in G, for
some 0 < α ≤ 1. Then there is a subset T ′ ⊆ T of
d 3ακ̂

10∆e vertices, such that T ′ is node-well-linked in G.

Theorem 4.7. (Theorem 2.9 in [CC16]) Suppose
we are given a graph G with maximum vertex degree at
most ∆, and two disjoint subsets T1, T2 of vertices of
G, with |T1|, |T2| ≥ κ̂, such that T1 ∪ T2 is α-well-linked
in G, for some 0 < α ≤ 1, and each one of the sets
T1, T2 is node-well-linked in G. Let T ′1 ⊆ T1, T ′2 ⊆ T2,
be any pair of subsets with |T ′1| = |T ′2| ≤ ακ̂

2∆ . Then
(T ′1, T

′
2) are linked in G.

Recall that we are given a weak Path-of-Sets System
P = (C, {Pi}`−1

i=1 , A1, B`) of length ` = g2 and width
w = g2, with C = (C1, . . . , C`), in a minor H ′′ of
H, whose maximum vertex degree is bounded by 4.
Consider some index 1 ≤ i < `, and recall that Bi ⊆ Ci
and Ai+1 ⊆ Ci+1 are the sets of endpoints of the paths
of Pi lying in Ci and Ci+1, respectively. Applying
Theorem 4.6 to graph Ci with T = Bi, we obtain
a subset B̃i ⊆ Bi of at least w′ = 3w/40 vertices,
such that B̃i is node-well-linked in Ci. Let P̃i ⊆ Pi
be the set of paths originating at the vertices of B̃i,
and let Ãi+1 ⊆ Ai+1 be the set of their endpoints,
lying in Ci+1. We then apply Theorem 4.6 to graph
Ci+1, with the set T = Ãi+1 of vertices, to obtain a
collection Ã′i+1 ⊆ Ãi+1 of at least w′′ = 3w′/40 = Ω(w)

vertices, such that Ã′i+1 is node-well-linked in Ci+1. Let

P̃ ′i ⊆ P̃i be the set of paths terminating at the vertices
of Ã′i+1. Finally, we select an arbitrary subset P ′i ⊆ P̃ ′i
of w̃ = bw′′/8c = Ω(w) paths, and we let B′i ⊆ B̃i and
A′i+1 ⊆ Ã′i+1 be the sets of vertices where the paths of
P ′i originate and terminate, respectively.

As our last step, we apply Theorem 4.6 to graph C1 and
a set T = A1 of vertices, to obtain a subset Ã1 ⊆ A1

of w′ vertices that are node-well-linked in C1, and we
select an arbitrary subset A′1 ⊆ Ã1 of w̃ vertices of A1.
We select a subset B′` ⊆ B` of w̃ vertices similarly.

For each 1 ≤ i ≤ `, we are now guaranteed that each
of the sets A′i, B

′
i is node-well-linked in Ci, and, from

Theorem 4.7, (A′i, B
′
i) are linked in Ci. The final strong

Path-of-Sets System is: P′ = (C, {P ′i}`−1
i=1 , A

′
1, B

′
`); its

length is ` = g2, and its width is w̃ = Ω(g2).
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A Proof of Theorem 2.2

Our starting point is the following two theorems, that
were proved in [CC15] and [CC16], respectively.

Theorem A.1. (Theorem 1.1 in [CC15]) Let G be
a graph of treewidth k. Then there is a subgraph G′

of G, whose maximum vertex degree is 3, and tw(G′) =
Ω(k/ poly log k).

Theorem A.2. (Theorem 3.4 in [CC16]) There are
constants ĉ, ĉ′ > 0, such that for all integers `, w, k > 1

with k/ logĉ
′
k > ĉw`48, every graph G of treewidth at

least k contains a strong Path-of-Sets System of length
` and width w.

Let G be our input graph of treewidth at least k. We
use Theorem A.1 to obtain a subgraph G′ ⊆ G of
treewidth k′ = Ω(k/ poly log k) and maximum vertex
degree 3. Let `′ = 2` and let w′ = c∗ · w, for a large
enough constant c∗, that will be determined later. By
appropriately setting the values of the constants c and
c′ in the statement of Theorem 2.2, we can ensure that

k′/ logĉ
′
k′ > ĉw′(`′)48. From Theorem A.2, graph G′

contains a strong Path-of-Sets System of length `′ and
width w′. Our last step is to turn it into a hairy Path-of-
Sets System of length ` and width w, using the following
theorem, that was proved in [Chu16].

Theorem A.3. (Theorem 6.3 in [Chu16]) For ev-
ery integer ∆ > 0, there is an integer c∆ > 0 depend-
ing only on ∆, such that the following holds. Let G be
any graph of maximum vertex degree at most ∆, and
let A,B be two disjoint subsets of vertices of G, with
|A| = |B| = κ, such that A and B are each node-well-
linked in G, and (A,B) are node-linked in G. Then
there are two disjoint clusters C ′, S′ ⊆ V (G), a set Q
of at least κ/c∆ node-disjoint paths connecting vertices
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of C ′ to vertices of S′, so that the paths of Q are inter-
nally disjoint from C ′∪S′, and two subsets A′ ⊆ A∩C ′,
B′ ⊆ B ∩ C ′ of at least κ/c∆ vertices each such that, if
we denote by X ′ and Y ′ the endpoint of the paths of Q
lying in C ′ and S′ respectively, then:

• set Y ′ is node-well-linked in S′;

• each of the three sets A′, B′ and X ′ is node-well-
linked in C ′; and

• every pair of sets in {A′, B′, X ′} is node-linked in
C ′.

Using the above theorem, we show that any Path-of-
Sets System can be transformed into a hairy Path-of-
Sets System of roughly the same length and width, in
the following lemma.

Lemma A.1. Let G′ be a graph of maximum vertex
degree 3, and assume that for some `, w > 0, G contains
a strong Path-of-Sets System of length `′ and width
w′. Then G contains a hairy Path-of-Sets System with
length at least `′/2 and width at least w′/(3c∆), where
c∆ is the constant from Theorem A.3.

Setting the constant c∗ from the definition of w′ to be
3c∆, from the above lemma, graph G′ contains a hairy
Path-of-Sets System of length at least ` = `′/2 and
width at least w = w′/(3c∆), completing the proof of
Theorem 2.2. It now remains to prove Lemma A.1.

Proof of Lemma A.1. Let P = (S, {Pi}`
′−1
i=1 , A1, B`′)

be the given strong Path-of-Sets System in G′, of length
`′ and width w′. Recall that the maximum vertex degree
in G′ is 3. Let 1 ≤ i ≤ `′ be an odd integer. We
apply Theorem A.3 to graph Ci, with A = Ai and
B = Bi. We denote the resulting two clusters C ′ and S′

by C ′i and S′i, respectively, and we denote the resulting
subsets A′, B′, X ′, Y ′ of vertices by A′′i , B

′′
i , X

′′
i , and

Y ′′i , respectively (recall that the cardinality of each
such vertex set is at least w′/c∆). We also denote the
corresponding set Q′ of paths by Q′i. One difficulty is
that we are not guaranteed that X ′′i is disjoint from
A′′i ∪ B′′i . But it is easy to verify that we can select
subsetes A′i ⊆ A′′i , B

′
i ⊆ B′′i , X

′
i ⊆ X ′′i of cardinalities

dw′/(3c∆)e each, such that all three sets A′i, B
′
i, X

′
i are

disjoint. We let Qi ⊆ Q′i be the set of paths originating
at the vertices of X ′i, and we let Y ′i be the set of their
endpoints that belong to Si.

Notice that for each odd integer 1 ≤ i ≤ `, we have now
selected two subsets A′i ⊆ Ai and B′i ⊆ Bi of dw′/(3c∆)e
vertices. Using Claim 2.1, we can construct a new

Path-of-Sets System P′ = (C′, {P ′i}d`/2ei=1 , A′1, B
′
d`/2e) of

length d`/2e and width dw′/(3c∆)e, such that C′ =
(C1, C3, . . . , C2d`/2e−1), and for each 1 ≤ i < d`/2e, the
paths in P ′i connect the vertices of B′2i−1 to the vertices
of A′2i+1. Combining this new Path-of-Sets System with
the clusters Si and the sets {Qi} of paths, for all odd
indices 1 ≤ i ≤ `, we obtain a hairy Path-of-Sets System
of length `′/2 and width dw′/(3c∆)e. �
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