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Abstract—Graph Crossing Number is a fundamental and
extensively studied problem with wide ranging applications. In
this problem, the goal is to draw an input graph G in the plane
so as to minimize the number of crossings between the images
of its edges. The problem is notoriously difficult, and despite
extensive work, non-trivial approximation algorithms are only
known for bounded-degree graphs. Even for this special case,
the best current algorithm achieves a Õ(

√
n)-approximation,

while the best current negative results do not rule out constant-
factor approximation. All current approximation algorithms
for the problem build on the same paradigm, which is also
used in practice: compute a set E′ of edges (called a planarizing
set) such that G \ E′ is planar; compute a planar drawing of
G\E′; then add the drawings of the edges of E′ to the resulting
drawing. Unfortunately, there are examples of graphs G, in
which any implementation of this method must incur Ω(OPT2)
crossings, where OPT is the value of the optimal solution. This
barrier seems to doom the only currently known approach to
designing approximation algorithms for the problem, and to
prevent it from yielding a better than O(

√
n)-approximation.

In this paper we propose a new paradigm that allows us
to overcome this barrier. We show an algorithm, that, given a
bounded-degree graph G and a planarizing set E′ of its edges,
computes another planarizing edge set E′′ with E′ ⊆ E′′,
such that |E′′| is relatively small, and there exists a near-
optimal drawing of G in which no edges of G \E′′ participate
in crossings. This allows us to reduce the Crossing Number
problem to Crossing Number with Rotation System – a variant
of the Crossing Number problem, in which the ordering of
the edges incident to every vertex is fixed as part of input.
In our reduction, we obtain an instance G′ of this problem,
where |E(G′)| is roughly bounded by the crossing number
of the original graph G. We show a randomized algorithm
for this new problem, that allows us to obtain an O(n1/2−ε)-
approximation for Graph Crossing Number on bounded-degree
graphs, for some constant ε > 0.

Keywords-approximation algorithm; crossing number

I. INTRODUCTION

Given a graph G = (V,E), a drawing of G is an
embedding of the graph into the plane, that maps every
vertex to a point in the plane, and every edge to a continuous
curve connecting the images of its endpoints. We require that
the image of an edge may not contain images of vertices
of G other than its two endpoints, and no three curves
representing drawings of edges of G intersect at a single
point, unless that point is the image of their shared endpoint.
We say that two edges cross in a given drawing of G iff
their images share a point p other than the image of their

common endpoint; such a point p is called a crossing. In
the Minimum Crossing Number problem, the goal is to
compute a drawing of the input n-vertex graph G with
minimum number of crossings. We denote the value of the
optimal solution to this problem, also called the crossing
number of G, by OPTcr(G).

The Minimum Crossing Number problem naturally
arises in several areas of Computer Science and Math-
ematics. The problem was initially introduced by Turán
[Tur77], who considered the question of computing the
crossing number of complete bipartite graphs, and since then
it has been a subject of extensive studies (see, e.g., [Tur77],
[Chu11], [CMS11], [CH11], [CS13], [KS17], [KS19], and
also [RS09], [PT00], [Mat02], [Vrt] for surveys on this
topic). The problem is known to be NP-hard [GJ83], and
it remains NP-hard, and APX-hard, even on cubic graphs
[Hli06], [Cab13]. The Minimum Crossing Number prob-
lem appears to be notoriously difficult from the approxi-
mation perspective. All currently known algorithms achieve
approximation factors that depend polynomially on ∆ – the
maximum vertex degree of the input graph, and, to the best
of our knowlgedge, no non-trivial approximation algorithms
are known for graphs with arbitrary vertex degrees. We note
that the famous Crossing Number Inequality [ACNS82],
[Lei83] shows that, for every graph G with |E(G)| ≥ 4n,
the crossing number of G is Ω(|E(G)|3/n2). Since the
problem is most interesting when the crossing number of
the input graph is low, and since our understanding of the
problem is still extremely poor, it is reasonable to focus on
designing algorithms for low-degree graphs. Throughout, we
denote by ∆ the maximum vertex degree of the input graph.
While we do not make this assumption explicitly, it may be
convenient to think of ∆ as being bounded by a constant or
by poly log n.

The first non-trivial algorithm for Minimum Crossing
Number, due to Leighton and Rao [LR99], combined their
algorithm for balanced separators with the framework of
[BL84], to compute a drawing of input graph G with
O((n + OPTcr(G)) ·∆O(1) · log4 n) crossings. This bound
was later improved to O((n+OPTcr(G)) ·∆O(1) · log3 n) by
[EGS02], and then to O((n+OPTcr(G))·∆O(1) ·log2 n) as a
consequence of the improved algorithm of [ARV09] for Bal-
anced Cut. All these results provide an O(npoly(∆ log n))-
approximation for Minimum Crossing Number (but per-



form much better when OPTcr(G) is high). For a long time,
this remained the best approximation algorithm for Mini-
mum Crossing Number, while the best inapproximability
result, to this day, only rules out the existence of a PTAS,
unless P=NP [GJ83], [AMS07], [Cab13]. We note that it is
highly unusual that achieving an O(n)-approximation for an
unweighted graph optimization problem is so challenging.
However, unlike many other unweighted graph optimization
problems, the value of the optimal solution to Minimum
Crossing Number may be as large1 as Ω(n4).

A sequence of papers [CMS11], [Chu11] was the first
to break the barrier of Θ̃(n)-approximation, providing
a Õ

(
n9/10 ·∆O(1)

)
-approximation algorithm. Recently, a

breakthrough sequence of works [KS17], [KS19] has led to
an improved Õ

(√
n ·∆O(1)

)
-approximation for Minimum

Crossing Number. All the above-mentioned algorithms
exploit the same algorithmic paradigm, that builds on the
connection of Minimum Crossing Number to the Minimum
Planarization problem, that we discuss next.

Minimum Planarization. In the Minimum Planariza-
tion problem, the input is an n-vertex graph G = (V,E),
and the goal is to compute a minimum-cardinality sub-
set E∗ of its edges (called a planarizing set), such that
graph G \ E∗ is planar. This problem and its close
variant Minimum Vertex Planarization (where we need
to compute a minimum-cardinality subset V ′ of vertices
such that G \ V ′ is planar) are of independent interest
and have been studied extensively (see, e.g., [CMS11],
[KS17], [KS19]). It is immediate to see that, for every
graph G, OPTmvp(G) ≤ OPTmep(G) ≤ OPTcr(G), where
OPTmvp(G) and OPTmep(G) are the optimal solution values
of the Minimum Vertex Planarization and the Minimum
Planarization problems on G, respectively. A simple ap-
plication of the Planar Separator Theorem of [LT79] was
shown to give an O(

√
n log n · ∆)-approximation algo-

rithm for both problems [CMS11]. Further, [CS13] pro-
vided an O(k15 · poly(∆ log n)-approximation algorithm
for Minimum Planarization and Minimum Vertex Pla-
narization, where k is the value of the optimal solution.
The more recent breakthrough result of Kawarabayashi and
Sidiropoulus [KS17], [KS19] provides an O(∆3 · log3.5 n)-
approximation algorithm for Minimum Vertex Planariza-
tion, and an O(∆4 · log3.5 n)-approximation algorithm for
Minimum Planarization.

Returning to the Minimum Crossing Number problem,
all currently known approximation algorithms for the prob-
lem rely on the same paradigm, which is also used in heuris-
tics (see, e.g. [BCG+13]). For convenience of notation, we
call it Paradigm Π.

1This can be seen by applying the Crossing Number Inequality to the
complete n-vertex graph.

PARADIGM Π

1) compute a planarizing set E′ of edges for G;
2) compute a planar drawing of G \ E′;
3) add the images of the edges of E′ to the

resulting drawing.

We note that graph G \ E′ may not be 3-connected and
thus it may have several planar drawings; there are also
many ways in which the edges of E′ can be added to the
drawing. It is therefore important to understand the following
questions:

Can this paradigm be implemented in a way that
provides a near-optimal drawing of G? What is
the best approximation factor that can be achieved
when using paradigm Π?

These questions were partially answered in previous
work. Specifically, [CMS11] provided an efficient algo-
rithm, that, given an input graph G, and a planariz-
ing set E′ of k edges for G, draws the graph with
O
(
∆3 · k · (OPTcr(G) + k)

)
crossings. Later, Chimani and

Hliněnỳ [CH11] improved this bound via a different ef-
ficient algorithm to O

(
∆ · k · (OPTcr(G) + log k) + k2

)
.

Both works can be viewed as an implementation of
the above paradigm. Combining these results with the
O(poly(∆ log n))-approximation algorithm for Minimum
Planarization of [KS19] in order to compute the ini-
tial planarizing edge set E′ with |E′| ≤ O(OPTcr(G) ·
poly(∆ log n)), yields an implementation of Paradigm Π
that produces a drawing of the input graph G with
O
(
(OPTcr(G))2 · poly(∆ log n)

)
crossings. Lastly, com-

bining this with the O(npoly(∆ log n))-approximation al-
gorithm of [LR99], [BL84], [EGS02] leads to the best
currently known O(

√
n · poly(∆ log n))-approximation al-

gorithm of [KS19] for Minimum Crossing Number.
The bottleneck in using this approach in order to obtain

a better than O(
√
n)-approximation for Minimum Cross-

ing Number is the bounds of [CMS11] and [CH11],
whose algorithms produce a drawing of the graph G with
O
(
k · OPTcr(G) + k2

)
crossings when ∆ = O(1), where

k is the size of the given planarizing set. The quadratic
dependence of this bound on k and the linear dependence
on k · OPTcr(G) are unacceptable if our goal is to obtain
better approximation using this technique. A natural question
therefore is:

Can we obtain a stronger bound, that is near-
linear in (OPTcr(G) + |E′|), using Paradigm Π?

Unfortunately, Chuzhoy, Madan and Mahabadi [CMM16]
have answered the latter question in the negative, by showing
that the bounds of [CMS11] and [CH11] are almost tight;
see the full version of this paper for details. This seems
to doom the only currently known approach for designing
approximation algorithms for the problem.

In this paper, we propose a new paradigm towards over-
coming this barrier, and show that it leads to a better



approximation of Minimum Crossing Number. Specif-
ically, we show an efficient algorithm, that, given a
planarizing set E′ of edges, augments E′ in order to
obtain a new planarizing set E′′, whose cardinality is
O ((|E′|+ OPTcr(G)) poly(∆ log n)). Moreover, we show
that there exists a drawing ϕ of the graph G, with at most
O ((|E′|+ OPTcr(G)) poly(∆ log n)) crossings, where the
edges of G \ E′′ do not participate in any crossings. In
other words, the drawing ϕ of G can be obtained by first
computing a planar drawing of G \ E′′, and then inserting
the images of the edges of E′′ into this drawing. This new
paradigm can be summarized as follows:

PARADIGM Π′

1) compute a planarizing set E′ of edges for G;
2) compute an augmented planarizing edge set E′′

with E′ ⊆ E′′ that has some additional useful
properties;

3) compute a planar drawing of G \ E′′;
4) add the images of the edges in E′′ to the

resulting drawing.

Our result, combined with the O(poly(∆ log n))-
approximation algorithm for Minimum Planarization of
[KS19], provides an efficient implementation of Steps (1)
and (2) of Paradigm Π′, such that there exists an imple-
mentation of Steps (3) and (4), that produces a drawing of
G with O(OPTcr(G) · poly(∆ log n)) crossings. This still
leaves open the following question:

Can we implement Steps (3) and (4) of Paradigm
Π′ efficiently in near-optimal fashion?

One way to address this question is by designing algo-
rithms for the following problem: given a graph G and a pla-
narizing set E∗ of its edges, compute a drawing of G, such
that the induced drawing of G\E∗ is planar (in other words,
every crossing in the drawing involves an edge of E∗), while
minimizing the number of crossings in the resulting drawing.
This problem was considered by Chimani and Hliněnỳ
[CH11] who showed an efficient algorithm, that computes a
drawing of G with OPTE

∗

cr (G)+O(∆k log k+k2) crossings,
where k = |E∗|, and OPTE

∗

cr (G) is the optimal solution
value for this problem. Unfortunately, if our goal is to break
the Θ(

√
n) barrier on the approximation factor for Minimum

Crossing Number, the quadratic dependence of this bound
on k is prohibitive.

We propose a different approach in order to implement
Steps (3) and (4) of Paradigm Π′. We provide an efficient
algorithm that exploits our algorithm for Steps (1) and (2) in
order to reduce the Minimum Crossing Number problem
to another problem, called Minimum Crossing Number
with Rotation System (MCNwRS). In this problem, the
input is a multi-graph G with arbitrary vertex degrees.
Additionally, for every vertex v of G, we are given a
circular ordering Ov of the edges that are incident to v

in G. The goal is to compute a drawing of G in the
plane with minimum number of crossings, that respects
the orderings {Ov}v∈V (G) of the edges incident to each
vertex (but we may choose whether the ordering is clock-
wise or counter-clock-wise in the drawing). We denote
Σ = {Ov}v∈V , and we call Σ a rotation system for graph
G. Given an instance (G,Σ) of MCNwRS, we denote by
OPTcnwrs(G,Σ) the value of the optimal solution for this
instance. We show a reduction, that, given an instance G of
Minimum Crossing Number with maximum vertex degree
∆, produces an instance (G′,Σ) of MCNwRS, such that
|E(G′)| ≤ O (OPTcr(G) · poly(∆ log n)), and moreover,
OPTcnwrs(G

′,Σ) ≤ O (OPTcr(G) · poly(∆ log n)). In par-
ticular, our reduction shows that, in order to obtain an
O(α poly(∆ log n))-approximation for Minimum Crossing
Number, it is sufficient to obtain an α-approximation algo-
rithm for MCNwRS. We also show an efficient randomized
algorithm, that, given an instance (G,Σ) of MCNwRS, with
high probability computes a solution to the problem with
at most Õ

(
(OPTcnwrs(G,Σ) + |E(G)|)2−ε

)
crossings, for

ε = 1/20. Combining this result with our reduction, we
obtain an efficient algorithm that computes a drawing of
an input graph G with maximum vertex degree ∆ with at
most Õ((OPTcr(G))2−ε ·poly(∆ log n)) crossings. We note
that this algorithm can be viewed as implementing Steps (3)
and (4) of Paradigm Π′. The resulting algorithm, in turn,
leads to a Õ(n1/2−ε′ poly(∆))-approximation algorithm for
Minimum Crossing Number, for some fixed constant ε′ >
0. While this only provides a modest improvement in the
approximation factor, we view this as a proof of concept
that our new method can lead to improved approximation
algorithms, and in particular, this result breaks the barrier
that the previously known methods could not overcome.

Other related work. There has been a large body of
work on FPT algorithms for several variants and special
cases of the Minimum Crossing Number problem (see, e.g.
[Gro04], [KR07], [PSŠ07], [BE14], [HD15], [DLM19]). In
particular, Grohe [Gro04] obtained an algorithm for solving
the problem exactly, in time f(OPTcr(G)) · n2, where
function f is at least doubly exponential. In his paper,
he conjectures that there exists an FPT algorithm for the
problem with running time 2O(OPTcr(G)) ·n. The dependency
on n in the algorithm of [Gro04] was later improved by
[KR07] from n2 to n.

For cubic graphs (3-regular graphs), the MCNwRS prob-
lem is equivalent to the Minimum Crossing Number
problem. Hliněnỳ [Hli06] proved that Minimum Crossing
Number is NP-hard for cubic graphs, and Cabello [Cab13]
proved that Minimum Crossing Number is APX-hard for
cubic graphs. Therefore, the MCNwRS problem is also
APX-hard on cubic graphs. Pelsmajer et al. [PSŠ11] studied
a variant of the MCNwRS problem, where for each vertex,
the orientation of the ordering Ov (clockwise or counter-



clockwise) is also fixed. They showed that this variant is
also NP-hard, and provided approximation algorithms for
some special cases. Additionally, they provide an O(n4)-
approximation algorithm for this variant with running time
O(mn logm), where m is the number of edges in the graph2.
We now proceed to describe our results more formally.

A. Our Results

Our main technical result is summarized in the following
theorem.

Theorem 1 There is an efficient algorithm, that, given
an n-vertex graph G with maximum vertex degree ∆
and a planarizing set E′ of its edges, computes an-
other planarizing edge set E′′ for G, with E′ ⊆ E′′,
such that |E′′| ≤ O ((|E′|+ OPTcr(G)) · poly(∆ log n)),
and, moreover, there is a drawing ϕ of G with at most
O ((|E′|+ OPTcr(G)) · poly(∆ log n)) crossings, such that
the edges of G \ E′′ do not participate in any crossings in
ϕ.

Recall that Kawarabayashi and Sidiropoulos [KS19] pro-
vide an efficient O(poly(∆ log n))-approximation algorithm
for the Minimum Planarization problem. Since, for every
graph G, there is a planarizing set E∗ containing at most
OPTcr(G) edges, we can use their algorithm in order to
compute, for an input graph G, a planarizing edge set
of cardinality O(OPTcr(G) · poly(∆ log n)). Combining
this with Theorem 1, we obtain the following immediate
corollary.

Corollary 2 There is an efficient algorithm, that, given
an n-vertex graph G with maximum vertex degree ∆,
computes a planarizing set E′ ⊆ E(G) of O(OPTcr(G) ·
poly(∆ log n)) edges, such that there is a drawing ϕ of G
with O(OPTcr(G) ·poly(∆ log n)) crossings, and the edges
of E(G) \ E′ do not participate in any crossings in ϕ.

Next, we show a reduction from Minimum Crossing
Number to the MCNwRS problem.

Theorem 3 There is an efficient algorithm, that, given
an n-vertex graph G with maximum vertex degree ∆,
computes an instance (G′,Σ) of the MCNwRS prob-
lem, such that the number of edges in G′ is at most
O (OPTcr(G) · poly(∆ log n)), and OPTcnwrs(G

′,Σ) ≤
O (OPTcr(G) · poly(∆ log n)). Moreover, there is an effi-
cient algorithm that, given any solution to instance (G′,Σ)
of MCNwRS of value X , computes a drawing of G with at
most O ((X + OPTcr(G)) · poly(∆ log n)) crossings.

Notice that the above theorem shows that an α-
approximation algorithm for MCNwRS immediately gives
an O(α poly(∆ log n))-approximation algorithm for the

2Note that, since the input graph G in both MCNwRS and this variant
is allowed to be a multi-graph, it is possible that m� n2, and the optimal
solution value may be much higher than n4.

Minimum Crossing Number problem. In fact, even much
weaker guarantees for MCNwRS suffice: if there is an
algorithm that, given an instance (G,Σ) of MCNwRS,
computes a solution of value at most α(OPTcnwrs(G,Σ) +
|E(G)|), then there is an O(α poly(∆ log n))-approximation
algorithm for Minimum Crossing Number. Recall that
[LR99], [EGS02] provide an algorithm for the Minimum
Crossing Number problem that draws an input graph
G with Õ((n + OPTcr(G)) · ∆O(1)) crossings. While it
is conceivable that this algorithm can be adapted to the
MCNwRS problem, it only gives meaningful guarantees
when the maximum vertex degree in G is low, while in the
instances of MCNwRS produced by our reduction this may
not be the case, even if the initial instance of Minimum
Crossing Number had bounded vertex degrees. Our next
result provides an algorithm for the MCNwRS problem.

Theorem 4 There is an efficient randomized algorithm,
that, given an instance (G,Σ) of MCNwRS, with
high probability computes a solution of value at most
Õ
(

(OPTcnwrs(G,Σ) + |E(G)|)2−ε
)

for this instance, for
ε = 1/20.

By combining Theorem 3 with Theorem 4, we obtain the
following immediate corollary.

Corollary 5 There is an efficient randomized algorithm,
that, given any n-vertex graph G with maximum vertex
degree ∆, with high probability computes a drawing of G in
the plane with at most O

(
(OPTcr(G))2−ε · poly(∆ log n)

)
crossings, for ε = 1/20.

Lastly, by combining the algorithm from Corollary 5
with the algorithm of Even et al. [EGS02], we obtain the
following corollary, whose proof is deferred to the full
version of the paper.

Corollary 6 There is a randomized efficient O(n1/2−ε′ ·
poly(∆))-approximation algorithm for Minimum Crossing
Number, for some universal constant ε′.

B. Our Techniques

In this subsection, we provide a high-level intuitive
overview of the main technical result of our paper – the
proof of Theorem 1. As in much of previous work, we
focus on the special case of Minimum Crossing Number,
where the input graph G is 3-connected. This special case
seems to capture the main difficulty of the problem, and the
extension of our algorithm to the general case is somewhat
standard. We use the standard graph-theoretic notion of well-
linkedness: we say that a set Γ of vertices of an n-vertex
graph G is well-linked in G iff for every pair Γ′,Γ′′ of
disjoint equal-cardinality subsets of Γ, there is a collection
of |Γ′| paths in G, connecting every vertex of Γ′ to a distinct
vertex of Γ′′, such that every edge of G participates in
at most poly log n such paths. Given a sub-graph C of



G, we let Γ(C) be the set of its boundary vertices: all
vertices of C that are incident to edges of E(G) \ E(C).
The following observation can be shown to follow from
arguments in [Chu11]: Suppose we are given a collection
C = {C1, . . . , Cr} of disjoint sub-graphs of G, such that
each subgraph Ci has the following properties:

• 3-Connectivity: graph Ci is 3-connected;
• Well-Linkedness: the vertex set Γ(Ci) is well-linked

in Ci; and
• Strong Planarity: graph Ci is planar, and the vertices

of Γ(Ci) lie on the boundary of a single face in the
unique planar drawing of Ci.

Arguments from [Chu11] can then be used to show that
there is a near-optimal drawing of G, in which the edges of⋃r
i=1E(Ci) do not participate in any crossings. Therefore,

in order to prove Theorem 1, it is enough to show that there
is a small planarizing set E′′ of edges in G, with E′ ⊆ E′′,
such that every connected component C of G \ E′′ has the
above three properties. We note that the Well-Linkedness
property is easy to achieve: there are standard algorithms
(usually referred to as “well-linked decomposition”), that
allow us to compute a set E′′ of O(|E′|) edges with
E′ ⊆ E′′, such that every connected component of G \ E′′
has the Well-Linkedness property. Typically, such algorithms
start with E′′ = E′, and then iterate, as long as some
connected component C of the current graph G \ E′′ does
not have the Well-Linkedness property. The algorithm then
computes a cut (X,Y ) of C that is sparse with respect to
the set Γ(C) of vertices, adds the edges of E(X,Y ) to
the set E′′ and continues to the next iteration. One can
show, using standard arguments, that, once the algorithm
terminates, |E′′| ≤ O(|E′|) holds.

The remaining two properties, however, seem impossible
to achieve, if we insist that the set E′′ of edges is relatively
small. For example, consider a cylindrical grid C, that
consists of a large number N of disjoint cycles, and a
number of additional paths that intersect each cycle in a way
that forms a cylindrical grid (see Figure 1(a)). Consider two
additional graphs X and X ′. Let G be a graph obtained
from the union of C,X,X ′, by adding two sets of edges:
set E1, connecting some vertices of X to some vertices of
the innermost cycle of C (the set of endpoints of these edges
that lie in C is denoted by Γ1), and set E2, connecting some
vertices of X ′ to some vertices of the outermost cycle of C
(the set of endpoints of these edges that lie in C is denoted
by Γ2). Assume that the given planarizing set of edges for
G is E′ = E1 ∪ E2, so that Γ(C) = Γ1 ∪ Γ2. Then, in
order to achieve the strong planarity property for the graph
C, we are forced to add N edges to set E′′: one edge from
every cycle of the cylindrical grid, in order to ensure that
the vertices of Γ1 ∪ Γ2 lie on the boundary of a single face
(see Figure 1(b)).

In order to overcome this difficulty, we weaken the Strong

X

X’

(a) Bad example for the Strong Planarity property. The vertices
of Γ1 ∪ Γ2 and the edges of E1 ∪ E2 are shown in red.

X

X’

(b) Deleting the blue edges in this figure ensures that all vertices
of Γ1∪Γ2 lie on the boundary a single face. Note that this deletion
may cause C to violate the 3-connectivity property.

Figure 1. Obtaining the Strong Planarity property

Planarity requirement, as follows. Informally, given a graph
G and a sub-graph C of G, a bridge for C is a connected
component of G\C. If R is a bridge for C, then we let L(R)
be the set of legs of this bridge, that contains all vertices of
C that have a neighbor in R. We replace the Strong Planarity
requirement with the following weaker property:

• Bridge Property: for every bridge R for Ci, all vertices
of L(R) lie on the boundary of a single face in the
unique planar drawing of Ci.

We illustrate the intuition for why this weaker property
is sufficient on the example from Figure 1(a). Let G1 =
C ∪E1 ∪X , and let G2 = C ∪E2 ∪X ′. Notice that C has
the strong planarity property in both G1 and G2. Therefore,



from the results of [Chu11], there is a drawing ϕ1 of G1,
and a drawing ϕ2 of G2, such that the edges of C do not
participate in any crossings in either drawing. In particular,
the drawings of the graph C induced by ϕ1 and ϕ2 must be
identical to the unique planar drawing of C, and hence to
each other. Moreover, in drawing ϕ1 of G1, all edges and
vertices of X must be drawn inside a disc whose boundary
is the innermost cycle of C, and in the drawing ϕ2 of G2,
all edges and vertices of X ′ must be drawn outside of the
disc whose boundary is the outermost cycle of C. Therefore,
we can “glue” the drawings ϕ1 and ϕ2 to each other via the
drawing of C in order to obtain the final drawing ϕ of G,
such that the edges of C do not participate in crossings in
ϕ.

Assume now that the Bridge Property does not hold for
C (for example, assume that X and X ′ are connected by an
edge). Then we can show that in any drawing of G, at least
Ω(N) edges of C must participate in crossings. We can then
add N edges of C to E′′ – one edge per cycle, as shown in
Figure 1(b), in order to ensure that all vertices of Γ1∪Γ2 lie
on the boundary of a single face of the resulting drawing.
This increase in the cardinality of E′′ can be charged to the
crossings of the optimal drawing of G in which the edges
of C participate.

Intuitively, if our goal were to only ensure the Well-
Linkedness and the Bridge properties, we could start with
E′′ = E′, and then gradually add edges to E′′, until every
connected component of G \ E′′ has the bridge property,
using reasonings that are similar to the above. After that
we could employ the well-linked decomposition in order
to ensure the Well-Linkedness property of the resulting
clusters. One can show that, once the Bridge Property
is achieved, it continues to hold over the course of the
algorithm that computes the well-linked decomposition.

Unfortunately, it is also critical that we ensure the 3-
connectivity property. Assume that a connected component
C of G \ E′′ is 3-connected, let ψ be its unique planar
drawing, and let ϕ∗ be the optimal drawing of G. Then one
can show that drawing ψ of C is “close” to the drawing ϕ∗C
of C induced by ϕ∗. We measure the “closeness” between
two drawings using the notion of irregular vertices and
edges, that was introduced in [CMS11]. A vertex of C is
irregular, if the ordering of the edges incident to C, as they
enter C, is different in the drawings ψ and ϕ∗C (ignoring
the orientation). The notion of irregular edges is somewhat
more technical and since we do not need it, we will not
define it here. It was shown in [CMS11], that, if C is 3-
connected, then the total number of irregular vertices and
edges of C is roughly bounded by the number of crossings
in which the edges of C participate in ϕ∗. Therefore, if we
think of the number of crossings in ϕ∗ as being low, then the
two drawings ψ and ϕ∗C are close to each other. However,
if graph C is not 3-connected, and, for example, is only 2-
connected, then the number of irregular vertices in C may

be much higher. Let S2(C) denote the set of all vertices of
C that participate in 2-separators, that is, a vertex v belongs
to S2(C) iff there is another vertex v′ ∈ V (C), such that
graph C \ {v, v′} is not connected. It is easy to see that,
even if the drawing ϕ∗C is planar, it is possible that there
are as many as |S2(C)| irregular vertices in C. Since we do
not know what the optimal drawing ϕ∗ looks like, it seems
impossible to fix a planar drawing of C that is close to ϕ∗C .

Ensuring the 3-connectivity property for the connected
components of G \ E′′, however, seems a daunting task.
As edges are added to E′′, some components C may no
longer be 3-connected. Even if we somehow manage to
decompose them into 3-connected subgraphs, while only
adding few edges to E′′, the addition of these new edges may
cause the well-linkedness property to be violated. Then we
need to perform the well-linked decomposition from scratch,
which in turn can lead to the violation of the 3-connectivity
property, and it is not clear that this process will terminate
while |E′′| is still sufficiently small.

In order to get around this problem, we slightly weaken
the 3-connectivity property. We first observe, that, even if
graph C is not 3-connected, and is instead 2-connected,
but the number of vertices participating in 2-separators
(vertices in set S2(C)) is low, then this is sufficient for us.
Intuitively, the reason is that, the results of [CMS11] show
that the number of irregular vertices in such a graph C is
roughly bounded by |S2(C)| plus the number of crossings
in ϕ∗ in which the edges of C participate. Another intuitive
explanation is that, when |S2(C)| is low, there are fewer
possible planar drawings of C, so we may think of all
of them as being “close” to ϕ∗C . Unfortunately, even this
weaker property is challenging to achieve, since we need to
ensure that it holds simultaneously with the Well-Linkedness
and the Bridge properties, for all connected components
of G \ E′′. In order to overcome this obstacle, we allow
ourselves to add a small set A of “fake” edges to the
graph G, whose addition ensures that each component of
(G \E′′)∪A is a 2-connected graph with few 2-separators,
for which the Well-Linkedness and the Bridge properties
hold. Intuitively, we show that the fake edges of A can
be embedded into the graph G, so that, in a sense, we
can augment the optimal drawing ϕ∗ of G by adding the
images of the edges of A to it, without increasing the
number of crossings (though we note that this is an over-
simplification that is only intended to provide intuition). The
proof of Theorem 1 can then be thought of as consisting
of two parts. In the first part, we present an efficient
algorithm that computes the set E′′ of edges of G with
E′ ⊆ E′′, and the collection A of fake edges, such that,
for every connected component C of graph (G \ E′′) ∪ A,
one of the following holds: either |Γ(C)| ≤ poly(∆ log n),
or C has the Well-Linkedness and the Bridge properties,
together with the weakened 3-Connectivity property. We also
compute an embedding of the fake edges in A into G in this



part. In the second part, we show that there exists a near-
optimal drawing of G in which the edges of G \ E′′ do
not participate in crossings. The latter part formalizes and
greatly generalizes ideas presented in [Chu11].

Organization: We start with Preliminaries in Section II,
and then provide a high-level overview of the main technical
result of our paper – the proof of Theorem 1 – in Section
III. The detailed proof of the theorem, as well as proofs of
Theorem 3, Theorem 4 and Corollary 6 are deferred to the
full version of the paper, due to lack of space.

II. PRELIMINARIES

By default, all logarithms are to the base of 2. All graphs
are finite, simple and undirected. Graphs with parallel edges
are explicitly referred to as multi-graphs.

We follow standard graph-theoretic notation. Assume that
we are given a graph G = (V,E). For a vertex v ∈ V , we
denote by δG(v) the set of all edges of G that are incident to
v. For two disjoint subsets A,B of vertices of G, we denote
by EG(A,B) the set of all edges with one endpoint in A and
another in B. For a subset S ⊆ V of vertices, we denote by
EG(S) the set of all edges with both endpoints in S, and we
denote by outG(S) the subset of edges of E with exactly one
endpoint in S, namely outG(S) = EG(S, V \S). We denote
by G[S] the subgraph of G induced by S. We sometimes
omit the subscript G if it is clear from the context. We say
that a graph G is `-connected for some integer ` > 0, if there
are ` vertex-disjoint paths between every pair of vertices in
G.

Given a graph G = (V,E), a drawing ϕ of G is an
embedding of the graph into the plane, that maps every
vertex to a point and every edge to a continuous curve that
connects the images of its endpoints. We require that the
interiors of the curves representing the edges do not contain
images of any of the vertices. We say that two edges cross
at a point p, if the images of both edges contain p, and p is
not the image of a shared endpoint of these edges; we call
such a point p a crossing. We require that no three edges
cross at the same point in a drawing of ϕ. We say that ϕ is
a planar drawing of G iff no pair of edges of G cross in ϕ.
For a vertex v ∈ V (G), we denote by ϕ(v) the image of v,
and for an edge e ∈ E(G), we denote by ϕ(e) the image of
e in ϕ. For any subgraph C of G, we denote by ϕ(C) the
union of images of all vertices and edges of C in ϕ. For a
path P ⊆ G, we sometimes refer to ϕ(P ) as the image of P
in ϕ. Note that a drawing of G in the plane naturally defines
a drawing of G on the sphere and vice versa; we use both
types of drawings. Given a graph G and a drawing ϕ of G
in the plane, we use cr(ϕ) to denote the number of crossings
in ϕ. Let ϕ′ be the drawing of G that is a mirror image of ϕ.
We say that ϕ and ϕ′ are identical drawings of G, and that
their orientations are different. We sometime say that ϕ′ is
obtained by flipping the drawing ϕ. If γ is a simple closed
curve in ϕ that intersects G at vertices only, and S is the set

of vertices of G whose images lie on γ, with |S| ≥ 3, then
we say that the circular orderings of the vertices of S along
γ in ϕ and ϕ′ are identical, but the orientations of the two
orderings are different, or opposite.

Whitney [Whi92] proved that every 3-connected planar
graph has a unique planar drawing. Throughout, for a 3-
connected planar graph G, we denote by ρG the unique
planar drawing of G.

Problem Definitions. The goal of the Minimum Cross-
ing Number problem is to compute a drawing of the input
graph G in the plane with smallest number of crossings.
The value of the optimal solution, also called the crossing
number of G, is denoted by OPTcr(G).

We also consider a closely related problem called Cross-
ing Number with Rotation System (MCNwRS). In this
problem, we are given a multi-graph G, and, for every vertex
v ∈ V (G), a circular ordering Ov of its incident edges. We
denote Σ = {Ov}v∈V (G), and we refer to Σ as a rotation
system for G. We say that a drawing ϕ of G respects the
rotation system Σ if the following holds. For every vertex
v ∈ V (G), let η(v) be an arbitrarily small disc around v in ϕ.
Then the images of the edges of δG(v) in ϕ must intersect
the boundary of η(v) in a circular order that is identical
to Ov (but we can choose the orientation of this ordering,
that may be either clock-wise or counter-clock-wise). In the
MCNwRS problem, the input is a multi-graph G with a
rotation system Σ, and the goal is to compute a drawing of
G in the plane that respects Σ and minimizes the number
of crossings.

Faces and Face Boundaries. Suppose we are given a
planar graph G and a drawing ϕ of G in the plane. The set of
faces of ϕ is the set of all connected regions of R2\ϕ(G). We
designate a single face of ϕ as the “outer”, or the “infinite”
face. The boundary δ(F ) of a face F is a sub-graph of G
consisting of all vertices and edges of G whose image is
incident to F . Notice that, if graph G is not connected, then
boundary of a face may also be not connected.

Bridges. Let G be a graph, and let C ⊆ G be a sub-
graph of G. A bridge for C in graph G is either (i) an edge
e = (u, v) ∈ E(G) with u, v ∈ V (C) and e 6∈ E(C); or (ii)
a connected component of G\V (C). We denote by RG(C)
the set of all bridges for C in graph G. For each bridge
R ∈ RG(C), we define the set of vertices L(R) ⊆ V (C),
called the legs of R, as follows. If R consists of a single
edge e, then L(R) contains the endpoints of e. Otherwise,
L(R) contains all vertices v ∈ V (C), such that v has a
neighbor that belongs to R.

Sparsest Cut and Well-Linkedness. Suppose we are
given a graph G = (V,E), and a subset Γ ⊆ V of its
vertices. We say that a cut (X,Y ) in G is a valid Γ-
cut iff X ∩ Γ, Y ∩ Γ 6= ∅. The sparsity of a valid Γ-cut
(X,Y ) is |E(X,Y )|

min{|X∩Γ|,|Y ∩Γ|} . In the Sparsest Cut problem,
given a graph G and a subset Γ of its vertices, the goal
is to compute a valid Γ-cut of minimum sparsity. Arora,



Rao and Vazirani [ARV09] have shown an O(
√

log n)-
approximation algorithm for the sparsest cut problem. We
denote this algorithm by AARV, and its approximation factor
by βARV(n) = O(

√
log n).

We say that a set Γ of vertices of G is α-well-linked in
G, iff the value of the sparsest cut in G with respect to Γ
is at least α.

III. HIGH-LEVEL OVERVIEW

In this subsection we provide a high-level overview of the
main technical result of our paper – the proof of Theorem
1. The detailed proof of the theorem, as well as proofs
of Theorem 3, Theorem 4 and Corollary 6 appear in the
full version of the paper. As in previous work, we start by
considering a special case of the Minimum Crossing Num-
ber problem, where the input graph G is 3-connected. This
special case seems to capture the main technical challenges
of the whole problem, and the extension to non-3-connected
graphs is relatively easy and follows the same framework
as in previous work [CMS11]. We start by defining several
central notions that our proof uses.

A. Acceptable Clusters and Decomposition into Acceptable
Clusters

In this subsection we define acceptable clusters and de-
composition into acceptable clusters. These definitions are
central to all our results. Let G be an input graph on n
vertices of maximum degree at most ∆; we assume that G
is 3-connected. Let Ê be any planarizing set of edges for G,
and let H = G \ Ê. Let Γ ⊆ V (G) be the set of all vertices
that serve as endpoints of edges in Ê; we call the vertices of
Γ terminals. We will define a set A of fake edges; for every
fake edge e ∈ A, both endpoints of e must lie in Γ. We
emphasize that the edges of A do not necessarily lie in H
or in G; in fact we will use these edges in order to augment
the graph H .

We denote by C the set of all connected components of
graph H ∪A, and we call elements of C clusters. For every
cluster C ∈ C, we denote by Γ(C) = Γ ∩ V (C) the set of
all terminals that lie in C. We also denote by AC = A ∩C
the set of all fake edges that lie in C.

Definition. We say that a cluster C ∈ C is a type-1
acceptable cluster iff:
• AC = ∅; and
• |Γ(C)| ≤ µ for µ = 512∆βARV(n) log3/2 n =

O(∆ log1.5 n).

Consider now some cluster C ∈ C, and assume that it is
2-connected. For a pair (u, v) of vertices of C, we say that
(u, v) is a 2-separator for C iff the graph C \ {u, v} is not
connected. We denote by S2(C) the set of all vertices of
C that participate in 2-separators, that is, a vertex v ∈ C
belongs to S2(C) iff there is another vertex u ∈ C such

that (v, u) is a 2-separator for C. Next, we define type-2
acceptable clusters.

Definition. We say that a cluster C ∈ C is a type-2
acceptable cluster with respect to its drawing ψ′C on the
sphere if the following conditions hold:

• (Connectivity): C is a simple 2-connected graph, and
|S2(C)| ≤ O(∆|Γ(C)|). Additionally, graph C \AC is
a 2-connected graph.

• (Planarity): C is a planar graph, and the drawing ψ′C
is planar. We denote by ψC\AC

the drawing of C \AC
is induced by ψ′C .

• (Bridge Consistency Property): for every bridge R ∈
RG(C \AC), there is a face F in the drawing ψC\AC

of C \ AC , such that all vertices of L(R) lie on the
boundary of F ; and

• (Well-Linkedness of Terminals): the set Γ(C) of
terminals is α-well-linked in C \ AC , for α =

1
128∆βARV(n) log3/2 n

= Θ
(

1
∆ log1.5 n

)
.

Let C1 ⊆ C denote the set of all type-1 acceptable clusters.
For a fake edge e = (x, y) ∈ A, an embedding of e is
a path P (e) ⊆ G connecting x to y. We will ensure that
there exists an embedding of all fake edges in A that has
additional useful properties summarized below.

Definition. A legal embedding of the set A of fake edges
is a collection P(A) = {P (e) | e ∈ A} of paths in G, such
that the following hold:

• for every edge e = (x, y) ∈ A, path P (e) has endpoints
x and y, and moreover, there is a type-1 acceptable
cluster C(e) ∈ C1 such that P (e) \ {x, y} is contained
in C(e); and

• for any pair e, e′ ∈ A of distinct edges, C(e) 6= C(e′).

Note that from the definition of the legal embedding, all
paths in P(A) must be mutually internally disjoint. Finally,
we define a decomposition of a graph G into acceptable
clusters; this definition is central for the proof of our main
result.

Definition. A decomposition of a graph G into acceptable
clusters consists of:

• a planarizing set Ê ⊆ E(G) of edges of G;
• a set A of fake edges (where the endpoints of each fake

edge are terminals with respect to Ê);
• a partition (C1, C2) of all connected components (called

clusters) of the resulting graph (G \ Ê) ∪ A into two
subsets, such that every cluster C ∈ C1 is a type-1
acceptable cluster;

• for every cluster C ∈ C2, a planar drawing ψ′C of C on
the sphere, such that C is a type-2 acceptable cluster
with respect to ψ′C; and

• a legal embedding P(A) of all fake edges.

We denote such a decomposition by K =



(
Ê, A, C1, C2, {ψ′C}C∈C2 ,P(A)

)
.

Our first result is the following theorem, whose proof
is deferred to the full version of the paper, that allows
us to compute a decomposition of the input graph G into
acceptable clusters. This result is one of the main technical
contributions of our work.

Theorem 7 There is an efficient algorithm, that, given a 3-
connected n-vertex graph G with maximum vertex degree at
most ∆ and a planarizing set E′ of edges for G, computes
a decomposition K =

(
E′′, A, C1, C2, {ψ′C}C∈C2 ,P(A)

)
of

G into acceptable clusters, such that E′ ⊆ E′′ and |E′′| ≤
O((|E′|+ OPTcr(G)) · poly(∆ log n)).

B. Canonical Drawings

In this subsection, we assume that we are given
a 3-connected n-vertex graph G with maximum ver-
tex degree at most ∆, and a decomposition K =(
E′′, A, C1, C2, {ψ′C}C∈C2 ,P(A)

)
of G into acceptable

clusters. Next, we define drawings of G that are “canonical”
with respect to the clusters in the decomposition. For brevity
of notation, we refer to type-1 and type-2 acceptable clusters
as type-1 and type-2 clusters, respectively.

Intuitively, in each such canonical drawing, we require
that, for every type-2 cluster C ∈ C2, the edges of C \ AC
do not participate in any crossings, and for every type-1
acceptable cluster C ∈ C1, the edges of C only participate
in a small number of crossings (more specifically, we will
define a subset E∗(C) of edges for each cluster C ∈ C1 that
are allowed to participate in crossings). We then show that
any drawing of G can be transformed into a drawing that is
canonical with respect to all clusters in C1 ∪ C2, while only
slightly increasing the number of crossings. This is sufficient
in order to complete the proof of Theorem 1, by adding to
E′′ the set

⋃
C∈C1 E

∗(C) of edges. However, in order to
be able to reduce the problem to the MCNwRS problem,
as required in Theorem 3, we need stronger properties. We
will define, for every type-1 cluster C ∈ C1, a fixed drawing
ψC , and we will require that, in the final drawing of G, the
induced drawing of each such cluster C is precisely ψC .
For every type-2 cluster C ∈ C2, we have already defined a
drawing ψC\AC

of C \AC – the drawing of C \AC that is
induced by the drawing ψ′C of C. We will require that the
drawing of C \AC that is induced by the final drawing of G
is precisely ψC\AC

. Additionally, for each cluster C ∈ C1,
and for each bridge R ∈ RG(C), we will define a disc D(R)
in the drawing ψC of C, and we will require that all vertices
and edges of R are drawn inside D(R) in the final drawing
of G. Similarly, for each type-2 acceptable cluster C ∈ C2,
for every bridge R ∈ RG(C \AC), we define a disc D(R)
in the drawing ψC\AC

of C \AC , and we will require that
all vertices and edges of R are drawn inside D(R) in the
final drawing of G. This will allow us to fix the locations of

the components of C1 ∪ C2 with respect to each other (that
is, for each pair C,C ′ ∈ C1∪C2 of clusters, we will identify
a face F in the drawing ψC\AC

of C \ AC , and a face F ′

in the drawing ψC′\AC′
of C ′ \AC′ , such that, in the final

drawing ϕ of the graph G, graph C ′ \ AC′ is drawn inside
the face F (of the drawing of C \A induced by ϕ, which is
identical to ψC\AC

)), and similarly graph C \AC is drawn
inside the face F ′).

Before we continue, it would be convenient for us to
ensure that, for every type-1 cluster C ∈ C1, the vertices
of Γ(C) have degree 1 in C, and degree 2 in G; it would
also be convenient for us to ensure that no edge of E′′

connects two vertices that lie in the same cluster. In order
to ensure these properties, we subdivide some edges of G.
Specifically, if e = (u, v) ∈ E′′ is an edge with u, v ∈ C, for
some cluster C ∈ C1∪C2, then we subdivide the edge (u, v)
with two vertices, replacing it with a path (u, u′, v′, v). The
edges (u, u′) and (v′, v) are then added to set E′′ instead
of the edge (u, v), and we add a new cluster to C1, that
consists of the vertices u′, v′, and the edge (u′, v′). This
transformation ensures that no edge of E′′ connects two
vertices that lie in the same cluster. Consider now any type-
1 cluster C ∈ C1. For every edge e = (u, v) ∈ E′′ with
u ∈ V (C) and v 6∈ V (C), we subdivide the edge with a new
vertex u′, thereby replacing the edge with the path (u, u′, v).
Vertex u′ and edge (u, u′) are added to the cluster C, while
edge (u′, v) replaces the edge (u, v) in set E′′. Note that
u′ now becomes a terminal, and, once all edges of E′′ that
are incident to the vertices of C are processed, u will no
longer be a terminal. Abusing the notation, the final cluster
that is obtained after processing all edges of E′′ incident to
V (C) is still denoted by C. Notice that now the number of
terminals that lie in C may have grown by at most a factor
∆, and so |Γ(C)| ≤ µ∆ must hold. Abusing the notation,
we will still refer to C as a type-1 acceptable cluster, and we
will continue to denote by C1 the set of all such clusters in
the decomposition. Observe that this transformation ensures
that every vertex of Γ(C) has degree 1 in C and degree 2 in
G. Once every cluster C ∈ C1 is processed in this manner,
we obtain the final graph G′. Observe that |E′′| may have
increased by at most a constant factor. Notice also that any
drawing of G′ on the sphere immediately gives a drawing of
G with the same number of crossings. Therefore, to simplify
the notation, we will denote the graph G′ by G, and we
will assume that the decomposition K of G into acceptable
clusters has the following two additional properties:

P1) For every edge e ∈ E′′, the endpoints of e lie in
different clusters of C1 ∪ C2; and

P2) For every type-1 cluster C ∈ C1, for every terminal
t ∈ Γ(C), the degree of t in C is 1, and its degree in
G is 2.

We now proceed to define canonical drawings of the graph
G with respect to the clusters of C1 ∪ C2.



1) Canonical Drawings for Type-2 Acceptable Clusters:
Consider any type-2 cluster C ∈ C2. Recall that the decom-
position K into acceptable clusters defines a planar drawing
ψ′C of C on the sphere, that induces a planar drawing ψC\AC

of C \AC on the sphere. Recall that the Bridge Consistency
Property of type-2 acceptable clusters ensures that, for every
bridge R ∈ RG(C \ AC), there is a face F of the drawing
ψC\AC

, such that the vertices of L(R) lie on the boundary of
F (we note that face F is not uniquely defined; we break ties
arbitrarily). Since graph C\AC is 2-connected, the boundary
of face F is a simple cycle, whose image is a simple closed
curve. We denote by D(R) the disc corresponding to the
face F , so the boundary of D(R) is the simple closed curve
that serves as the boundary of the face F . Notice that the
resulting set {D(R)}R∈RG(C\AC) of discs has the following
properties:
D1) If R 6= R′ are two distinct bridges in RG(C \ AC),

then either D(R) = D(R′), or D(R) ∩ D(R′) only
contains points on the boundaries of the two discs; and

D2) For every bridge R ∈ RG(C \ AC), the vertices of
L(R) lie on the boundary of D(R) in the drawing
ψC\AC

.
We are now ready to define canonical drawings with

respect to type-2 clusters.

Definition. Let ϕ be any drawing of the graph G on the
sphere. We say that the drawing ϕ is canonical with respect
to a type-2 cluster C ∈ C2 iff:
• the drawing of C \ AC induced by ϕ is identical to
ψC\AC

(but its orientation may be different);
• the edges of C \AC do not participate in any crossings

in ϕ; and
• for every bridge R ∈ RG(C \ AC), all vertices and

edges of R are drawn in the interior of the disc D(R)
(that is defined with respect to the drawing ψC\AC

of
C \AC).

2) Canonical Drawings for Type-1 Acceptable Clusters:
For convenience, we denote C1 = {C1, . . . , Cq}. We fix
an arbitrary optimal drawing ϕ∗ of the graph G. For each
1 ≤ i ≤ q, we denote by χi the set of all crossings (e, e′)
such that either e or e′ (or both) are edges of E(Ci). The
following observation is immediate.

Observation 8
∑q
i=1 |χi| ≤ 2 · cr(ϕ∗) = 2 · OPTcr(G).

We use the following theorem in order to fix a drawing
of each type-1 acceptable cluster Ci; the proof is deferred
to the full version of the paper.

Theorem 9 There is an efficient algorithm that, given a
type-1 cluster Ci ∈ C1, computes a drawing ψCi

of Ci on
the sphere with O((|χi|+ |Γ(Ci)|) · poly(∆ log n)) cross-
ings. Additionally, the algorithm computes, for every bridge
R ∈ RG(Ci), a closed disc D(R), such that:
• the vertices of L(R) are drawn on the boundary of

D(R) in ψCi
, and all other vertices of Ci are drawn

outside of D(R);
• the image of every edge of Ci is disjoint from D(R)

in ψCi
, except possibly for an endpoint that belongs to

L(R) that is drawn on the boundary of D(R); and
• the discs in {D(R)}R∈RG(Ci)

are mutually disjoint.

Note that in particular, Properties (D1) and (D2) also hold
for the discs in {D(R)}R∈RG(C).

For each type-1 cluster Ci ∈ C1, let E∗(Ci) ⊆ E(Ci)
be the set of all edges of Ci that participate in crossings
in ψCi

. Clearly, |E∗(Ci)| ≤ O(cr(ψCi
)) ≤ O((|χi| +

|Γ(Ci)|) poly(∆ log n)). Let E∗ =
⋃
Ci∈C1 E

∗(Ci). Then,
from Observation 8 and Theorem 7:

|E∗| ≤
∑
Ci∈C1

O((|χi|+ |Γ(Ci)|) · poly(∆ log n))

≤ O ((OPTcr(G) + |E′′|) poly(∆ log n))

≤ O ((OPTcr(G) + |E′|) poly(∆ log n)) .

We now define canonical drawings with respect to type-1
clusters.

Definition. Let ϕ be any drawing of the graph G on the
sphere, and let Ci ∈ C1 be a type-1 cluster. We say that ϕ
is a canonical drawing with respect to Ci, iff:

• the drawing of Ci induced by ϕ is identical to ψCi

(but orientation of the two drawings may be different).
In particular, the only edges of Ci that participate in
crossings of ϕ are the edges of E∗(Ci); and

• for every bridge R ∈ RG(Ci), all vertices and edges
of R are drawn in the interior of the disc D(R) (that
is defined with respect to the drawing ψCi

of Ci).

3) Obtaining a Canonical Drawing: Our next result
shows that there exists a near-optimal drawing of the graph
G that is canonical with respect to all clusters. The proof of
the following theorem is deferred to the full version of the
paper.

Theorem 10 There is an efficient algorithm, that, given
an n-vertex graph G of maximum vertex degree at most
∆, an arbitrary drawing ϕ of G, and a decomposition
K =

(
E′′, A, C1, C2, {ψC}C∈C2 ,P(A)

)
of G into accept-

able clusters for which Properties (P1) and (P2) hold,
together with a drawing ψCi

of each cluster Ci ∈ C1 as
defined above, and, for each cluster C ∈ C1∪C2, a collection
{D(R)}R∈RG(C) of discs on the sphere with Properties (D1)
and (D2), computes a drawing ϕ′ of G on the sphere with
O ((|E′′|+ cr(ϕ)) · poly(∆ log n)) crossings, such that ϕ′

is canonical with respect to every cluster C ∈ C1 ∪ C2.

We note that for our purposes, an existential variant of
the above theorem, that shows that a drawing ϕ′ with the
required properties exists, is sufficient. We provide the proof



of the stronger constructive result in case it may be useful
for future work on the problem.

C. Completing the Proof of Theorem 1 for 3-Connected
Graphs

Notice that Theorem 10 concludes the proof of Theorem 1
for the special case where G is a 3-connected graph. Indeed,
given a 3-connected graph G, we use Theorem 7 to compute
a decomposition K = (E′′, A, C1, C2, {ψC}C∈C2 ,P(A)) of
G into acceptable clusters, such that E′ ⊆ E′′ and |E′′| ≤
O((|E′| + OPTcr(G)) · poly(∆ log n)). Next, we apply
Theorem 9 to each type-1 cluster Ci ∈ C1, to obtain the set
E∗(Ci) of edges, the drawing ψCi of Ci, and the discs D(R)
for all bridges R ∈ RG(Ci). Let E∗ =

⋃
Ci∈C1 E

∗(Ci),
so |E∗| ≤ O ((OPTcr(G) + |E′|) poly(∆ log n)), as ob-
served above. The final output of the algorithm is the
set E′′ ∪ E∗ of edges. Observe that |E′′ ∪ E∗| ≤
O((|E′| + OPTcr(G)) · poly(∆ log n)), as required. More-
over, by using Theorem 10 with the optimal drawing ϕ∗

of G, we conclude that there exists a drawing ϕ′ of G
with O ((|E′|+ OPTcr(G)) · poly(∆ log n)) crossings, that
is canonical with respect to all clusters in C1 ∪ C2. In
particular, the only edges that may participate in crossings
in ϕ′ are edges of E′′ ∪ E∗.

D. Extension to General Graphs

The extension of the proof of Theorem 1 to general graphs
is deferred to the full version of the paper. The extension
builds on techniques that were introduced in [CMS11].
Additionally, we prove the following theorem, that provides
a black-box reduction from the problem of approximat-
ing Minimum Crossing Number in general graphs using
paradigm Π′, to the problem of approximating Minimum
Crossing Number in 3-connected graphs, using the same
paradigm. The proof is also deferred to the full version of
the paper.

Theorem 11 Suppose there is an efficient (possibly ran-
domized) algorithm, that, given a 3-connected n-vertex
graph G with maximum vertex degree ∆, and a pla-
narizing set E′ of its edges, computes a drawing of
G with at most f(n,∆) · (OPTcr(G) + |E′|) crossings,
for any function f that is monotonously increasing in
both n and ∆. Then there exists an efficient (possibly
randomized) algorithm that, given a (not necessarily 3-
connected) graph Ĝ on n vertices with maximum vertex
degree ∆, and a planarizing set Ê′ of its edges, computes
a drawing of Ĝ with the number of crossings bounded by
O
(
f(n,∆) · (OPTcr(Ĝ) + |Ê′|) · poly(∆ log n)

)
.
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based approximation of the crossing number. In In-
ternational Colloquium on Automata, Languages, and
Programming, pages 122–134. Springer, 2011.

[Chu11] Julia Chuzhoy. An algorithm for the graph crossing
number problem. In Proceedings of the forty-third
annual ACM symposium on Theory of computing,
pages 303–312. ACM, 2011.

[CMM16] Julia Chuzhoy, Vivek Madan, and Sepideh Mahabadi.
In Private Communication, 2016.

[CMS11] Julia Chuzhoy, Yury Makarychev, and Anastasios
Sidiropoulos. On graph crossing number and edge
planarization. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete algorithms,
pages 1050–1069. SIAM, 2011.

[CS13] Chandra Chekuri and Anastasios Sidiropoulos. Ap-
proximation algorithms for euler genus and related
problems. In 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pages 167–176.
IEEE, 2013.

[DLM19] Walter Didimo, Giuseppe Liotta, and Fabrizio Montec-
chiani. A survey on graph drawing beyond planarity.
ACM Computing Surveys (CSUR), 52(1):1–37, 2019.



[EGS02] Guy Even, Sudipto Guha, and Baruch Schieber. Im-
proved approximations of crossings in graph drawings
and vlsi layout areas. SIAM Journal on Computing,
32(1):231–252, 2002.

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is
NP-complete. SIAM J. Algebraic Discrete Methods,
4(3):312–316, 1983.

[Gro04] M. Grohe. Computing crossing numbers in quadratic
time. J. Comput. Syst. Sci., 68(2):285–302, 2004.
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