
A Distanced Matching Game, Decremental APSP in Expanders, and

Faster Deterministic Algorithms for Graph Cut Problems∗

Julia Chuzhoy†

December 8, 2022

Abstract

Expander graphs play a central role in graph theory and algorithms. With a number of power-
ful algorithmic tools developed around them, such as the Cut-Matching game, expander pruning,
expander decomposition, and algorithms for decremental All-Pairs Shortest Paths (APSP) in ex-
panders, to name just a few, the use of expanders in the design of graph algorithms has become
ubiquitous. Specific applications of interest to us are fast deterministic algorithms for cut problems
in static graphs, and algorithms for dynamic distance-based graph problems, such as APSP.

Unfortunately, the use of expanders in these settings incurs a number of drawbacks. For example,
the best currently known algorithm for decremental APSP in constant-degree expanders can only
achieve a (log n)O(1/ε2)-approximation with n1+O(ε) total update time for any ε. All currently
known algorithms for the Cut Player in the Cut-Matching game are either randomized, or provide
rather weak guarantees: expansion 1/(log n)1/ε with running time n1+O(ε). This, in turn, leads to
somewhat weak algorithmic guarantees for several central cut problems: the best current almost
linear time deterministic algorithms for Sparsest Cut, Lowest Conductance Cut, and Balanced Cut
can only achieve approximation factor (log n)ω(1). Lastly, when relying on expanders in distance-
based problems, such as dynamic APSP, via current methods, it seems inevitable that one has to
settle for approximation factors that are at least Ω(log n). In contrast, we do not have any negative
results that rule out any super-constant approximation with almost linear total update time.

In this paper we propose the use of well-connected graphs, and introduce a new algorithmic
toolkit for such graphs that, in a sense, mirrors the above mentioned algorithmic tools for expanders.
One of these new tools is the Distanced Matching game, an analogue of the Cut-Matching game for
well-connected graphs. We demonstrate the power of these new tools by obtaining better results
for several of the problems mentioned above. First, we design an algorithm for decremental APSP
in expanders with significantly better guarantees: in a constant-degree expander, the algorithm
achieves (log n)1+o(1)-approximation, with total update time n1+o(1). We also obtain a deterministic
algorithm for the Cut Player in the Cut-Matching game that achieves expansion 1

(logn)5+o(1) in time

n1+o(1), deterministic almost linear-time algorithms for Sparsest Cut, Lowest-Conductance Cut,
and Minimum Balanced Cut with approximation factors O(poly log n), as well as an improved
deterministic algorithm for Expander Decomposition. We believe that the use of well-connected
graphs instead of expanders in various dynamic distance-based problems (such as APSP in general
graphs) has the potential of providing much stronger guarantees, since we are no longer necessarily
restricted to superlogarithmic approximation factors.

∗SODA 2023, to appear.
†Toyota Technological Institute at Chicago. Email: cjulia@ttic.edu. Supported in part by NSF grant CCF-2006464.

Contents

1 Introduction 1

1.1 Algorithmic Tools for Well-Connected Graphs. 2

1.2 Applications to Other Algorithmic Tools. 4

1.3 Applications to Static Graphs. 6

1.4 Applications to Dynamic Graphs: All-Pairs Shortest Paths (in Expanders). 8

2 Overview of Our Results and Techniques 11

2.1 The Distanced Matching Game and Related Algorithmic Toolkit. 11

2.2 Decremental APSP in Expanders. 15

2.3 Advanced Path Peeling and Deterministic Algorithm for the Cut Player in the Cut-
Matching Game. 15

2.4 Sparsest Cut and Lowest Conductance Cut. 17

2.5 Minimum Balanced Cut and Expander Decomposition. 17

3 Preliminaries 19

3.1 Dynamic Algorithms . 20

3.2 Cuts, Flows, Sparsity, Conductance and Expanders. 21

3.3 Embeddings with Fake Edges and Expansion. 22

3.4 The Cut-Matching Game. 23

3.5 Graph Cutting and Partitioning. 23

3.5.1 Procedure ProcCut. 24

3.5.2 Procedure ProcPartition. 25

3.5.3 Procedure ProcSeparate. 28

3.6 Basic Path Peeling. 28

4 The Distanced Matching Game 30

5 Hierarchical Support Structure 37

6 Algorithm for the Distancing Player – Proof of Theorem 5.2 42

6.1 Phase 1: Construction of Smaller Well-Connected Graphs 43

6.1.1 Description of Iteration q . 43

6.2 Phase 2: Distancing or Well-Connectedness . 47

6.3 Proof of Lemma 6.5 . 49

7 APSP in Well-Connected Graphs – Proof of Theorem 2.3 56

7.1 Base Case: j ≤ 8 . 57

7.2 Step: j > 8 . 57

7.2.1 Data Structures and Initialization . 61

7.2.2 Maintaining the Data Structures . 63

7.2.3 Analysis of Total Update Time . 63

7.2.4 Response to Queries . 65

8 APSP in Expanders – Proof of Theorem 2.4 66

8.1 Proof of Lemma 8.1 . 69

8.1.1 Data Structures and Initialization . 69

8.1.2 Maintaining the Data Structures . 72

8.1.3 Responding to Short-Path Queries . 72

9 Advanced Path Peeling – Proof of Theorem 2.5 73

9.1 Proof of Lemma 9.2 . 80

9.1.1 Special Case: k ≤ nε . 81

9.1.2 Stage 1: Embedding a Well-Connected Graph 82

9.1.3 Stage 2: Computing the Routing . 83

10 An Algorithm for the Cut Player in the Cut-Matching Game – Proof of Theo-
rem 2.6 87

11 Further Applications 89

11.1 Main Technical Tools . 89

11.1.1 Degree Reduction . 89

11.1.2 Faster Basic Path Peeling . 90

11.2 Most-Balanced Sparse Cut . 90

11.3 Sparsest Cut and Lowest-Conductance Cut – Proof of Theorem 2.7 93

11.4 Minimum Balanced Cut – Proof of Theorems 2.8 and 2.9 94

11.4.1 Proof of Theorem 2.8 . 96

11.4.2 Proof of Theorem 2.9 . 99

11.5 Expander Decomposition – Proof of Theorem 2.10 . 100

A Proof of Lemma 4.1 101

B Proof of Lemma 11.5 101

1 Introduction

Expander graphs are a central graph theoretic object that has been studied extensively, and they
are frequently used in the design of graph algorithms. In recent years, a number of powerful algo-
rithmic tools have been developed around expanders, including, for example, the Cut-Matching Game
of [KRV09], expander pruning of [SW19], Expander Decomposition, and algorithms for decremental
All-Pairs Shortest Paths (APSP) in expanders (see e.g. [CS21, Chu21]), to name just a few. This
powerful algorithmic toolkit has led to many new algorithms for optimization problems in graphs.
In this paper we are most interested in applications to fast deterministic algorithms for classical cut
problems, such as Sparsest Cut, Lowest Conductance Cut, and Minimum Balanced Cut, and to dynamic
algorithms, especially for distance-based graph problems, such as APSP.

Unfortunately, the use of expander graphs with the currently available expander-related tools incurs
a number of drawbacks in these settings. While the results of [KRV09] provide a near-linear time ran-
domized algorithm for the Cut Player in the Cut-Matching Game, which guarantees that the resulting
graph is an Ω(1)-expander, in the regime of deterministic algorithms, the best currently known results
are significantly weaker: the algorithm of [CGL+20] provides an implementation of the Cut Player in
time O

(
n1+O(ε)

)
, but only guarantees expansion of 1

(logn)1/ε for a sufficiently large ε. As a result, de-

spite having randomized algorithms for Sparsest Cut, Lowest Conductance Cut, and Minimum Balanced
Cut, that achieve O(log2 n)-approximation in m1+o(1) time, the best current deterministic algorithms
for these problems with running time m1+o(1) can only achieve approximation factor (log n)ω(1). Sim-
ilar issues, that we discuss in more detail below, arise in algorithms for Expander Decomposition. We
note that all these cut problems are used extensively, including in settings (such as, e.g. dynamic algo-
rithms), where deterministic algorithms are especially desirable. In recent years, the above mentioned
expander-based tools have also found many applications in dynamic algorithms; for now we focus on
decremental All-Pairs Shortest Paths (APSP). In this context, the use of expanders with the currently
available algorithmic tools also has several drawbacks. First, in a typical use of expanders in dynamic
APSP, one cannot obtain a better than Θ(log n) approximation factor; we discuss this in more de-
tail below. Second, the use of expanders usually involves either the Cut-Matching Game, or Expander
Decomposition, which suffer from the drawbacks mentioned above. Lastly, in most uses of expander
graphs for dynamic APSP, one needs to rely on algorithms for decremental APSP in expanders. How-
ever, the best such current algorithm only provides a rather weak tradeoff between the approximation
factor and total update time: for bounded-degree expanders, the results of [CS21, Chu21] achieve
(log n)O(1/ε2)-approximation with total update time n1+O(ε), where ε is a given precision parameter.

In this paper, we propose to study a different kind of graphs, that we call well-connected graphs.
Given an n-vertex graph G, a set S of its vertices called supported vertices, and parameters η, d > 0,
we say that graph G is (η, d)-well-connected with respect to S, if, for every pair A,B ⊆ S of disjoint
equal-cardinality subsets of supported vertices, there is a collection P of paths in G, that connect
every vertex of A to a distinct vertex of B, such that the length of each path in P is at most d,
and every edge of G participates in at most η paths in P. For intuition, it would be convenient to
think of d = 2poly(1/ε), η = nO(ε), and |S| ≥ |V (G)| − n1−ε, for some parameter 0 < ε < 1. In the
discussion below, we will informally refer to a graph G that is (η, d)-well-connected with respect to a
set S of its vertices, with the above setting of parameters, as a well-connected graph. We develop an
algorithmic toolkit for well-connected graphs that is, in a sense, analogous to some of the tools that
are known for expander graphs. We then show that using well-connected graphs, together with these
new algorithmic tools, allows us to overcome many of the hurdles mentioned above. For example,
we obtain deterministic almost linear-time O(poly log n)-approximation algorithms for Sparsest Cut,
Lowest Conductance Cut, and Minimum Balanced Cut, as well as a better deterministic algorithm for
the Cut Player in the Cut-Matching Game, and better algorithms for Expander Decomposition and

1

decremental APSP in expanders. While our algorithmic toolkit immediately leads to strengthening
the currently known algorithmic tools for expander graphs, it is our hope that it will eventually lead
to replacing expanders with well-connected graphs in some of the applications mentioned above.

We note that a very recent paper of [HRG22] introduced a graph-theoretic object, called h-hop ex-
pander, that appears closely related to the notion of well-connected graphs. Informally, a graph G
is an h-hop ϕ-expander, if any unit demand between pairs of its vertices that are within distance at
most h from each other, can be routed via paths of length comparable to h, with congestion Õ(1/ϕ).
Like with standard expanders, h-hop ϕ-expanders can also be defined via a dual notion of cuts (called
moving cuts in this case), and [HRG22], building on the work of [HWZ20], established a tight relation-
ship between the two definitions, somewhat similar to the standard notion of the flow-cut gap. They
also provide an algorithm to compute an h-hop expander decomposition of a given graph. While the
notions of h-hop expanders and well-connected graphs seem similar in spirit, there are some technical
differences. At the same time, an h-hop expander with small diameter is essentially a special case of
a well-connected graph. We also note that in this paper, our main focus is on routing via very short
paths, of sublogarithmic length, and on deterministic algorithms, while [HRG22] consider randomized
algorithms for (oblivious) routing on paths of length O(hpoly log n).

The remainder of the Introduction is organized as follows. We start by describing the algorithmic tools
that we developed for well-connected graphs. We then provide an overview of several applications of
these results to static graph cut problems, and then discuss new results and potential future uses of
these new algorithmic tools in dynamic APSP.

Before we continue, we need to introduce some notation. Given a graph G, a cut is a partition (A,B)

of its vertices into non-empty subsets. The sparsity of the cut (A,B) is |E(A,B)|
min{|A|,|B|} . Throughout this

paper, we say that a graph G is a ϕ-expander, if every cut in G has sparsity at least ϕ. All graphs
discussed in this paper are unweighted and undirected, unless stated otherwise. We will informally
say that the running time or a total update time of an algorithm is almost linear, if it is bounded by
O(m1+o(1)), where m is the number of edges in the input graph (or the initial number of edges, if the
graph is decremental). Given a graph G and a subset S of its vertices, the volume of S, denoted by
VolG(S), is the sum of degrees of all vertices in S. The volume of the graph G, denoted by Vol(G), is
Vol(G) = VolG(V) = 2|E(G)|. Given a collection M of pairs of vertices in graph G, and a collection
P of paths in G, we say that the paths in P route the pairs in M if, for every pair (u, v) ∈ M of
vertices, there is a path in P whose endpoints are u and v. The congestion of a collection P of paths
in a graph G is the largest number of paths that contain the same edge.

1.1 Algorithmic Tools for Well-Connected Graphs.

The Distanced Matching Game. The first tool that we develop is a Distanced Matching Game,
that can be viewed as an analogue of the Cut-Matching Game of [KRV09] for well-connected graphs.
The input to the Distanced Matching Game consists of an integer n, a distance parameter d, and
another parameter 0 < δ < 1. The game uses the notion of a distancing. Given an n-vertex graph G,
a (δ, d)-distancing for G is a triple (A,B,E′), where A and B are disjoint equal-cardinality subsets of
vertices of G with |A| ≥ n1−δ, and E′ is a subset of edges with |E′| ≤ |A|/16. We require that the
length of the shortest path connecting a vertex of A to a vertex of B in G \ E′ is at least d.

The Distanced Matching Game is played between a Distancing Player and a Matching Player. Similarly
to the Cut-Matching Game, we start with a graph H that contains n vertices and no edges, and then
iteratively add edges to H. In each iteration i, the Distancing Player needs to compute a (δ, d)-
distancing (Ai, Bi, E

′
i) in the current graph H, if it exists. The matching player then needs to compute

an arbitrary matching Mi ⊆ Ai×Bi, of cardinality at least |Ai|/4. The edges of Mi are added to graph

2

H, and we continue to the next iteration. The game terminates when no (δ, d)-distancing exists in H
(alternatively, we may terminate it earlier, if we establish that graph H has some desired properties,
such as, e.g. it is well-connected).

Our first result shows that, if d ≥ 24/δ, then the number of iterations in the Distanced Matching
Game is bounded by n8δ, regardless of the strategies of the two players. We note that this is signifi-
cantly larger than the number of iterations in the Cut-Matching Game, which is typically bounded by
O(poly log n) (see, e.g. [KRV09, KKOV07]). However, as we show later, we gain an advantage that,
under some specific strategy of the Distancing Player that we provide below, the resulting graph H
is well-connected, and the distances between the vertices lying in the set S of supported vertices are
quite low, as opposed to the (super)-logarithmic distances that expander graphs guarantee. We also
note that, while it appears that the bound on the number of iterations is close to being tight, it is not
clear whether the exponential dependence of the distance parameter d on 1/δ in our result is necessary.

We note that, in a very recent independent work, [HHG22] suggested and analyzed a variant of the Cut-
Matching Game for constructing h-hop expanders, whose diameter is small. The resulting expanders
are similar to well-connected graphs that we considere here.

Hierarchical Support Structure and an algorithm for the Distancing Player. Our next
result provides a deterministic algorithm for the Distancing Player. Suppose we are given a parameter
n, and a precision parameter ε. Let δ = 4ε3 and d = 232/ε4 , and let H be an n-vertex graph, that we
can think of as arising during the execution of the Distanced Matching Game. The algorithm either
computes a (δ, d)-distancing in graph H, or it computes a large set S ⊆ V (H) of its vertices, such that
H is (η, d̃)-well-connected for S, where η = nO(ε) and d̃ = 2O(1/ε5). The running time of the algorithm
is O(|E(H)|1+O(ε)).

In fact the above algorithm provides stronger guarantees. We define the notion of a Hierarchical Sup-
port Structure for an n-vertex graph H. Informally, the structure consists of a collection {H1, . . . ,Hr}
of r = Ω(nε) graphs, where |V (Hi)| =

⌈
n1−ε⌉ for all i, and an embedding of graph

⋃r
i=1Hi into H

via short paths that cause low congestion. For each one of the graphs Hi, we must in turn be given a
Hierarchical Support Structure, that can be used to define a set S(Hi) of supported vertices for Hi;
graph Hi must be well-connected with respect to S(Hi). We then let S(H) =

⋃
i S(Hi) be the set

of supported vertices for graph H. We note that a somewhat similar notion was (implicitly) used in
[CGL+20, CS21] in the context of expander graphs: that is, all graphs in the Hierarchical Support
Structure were required to be expanders.

Our deterministic algorithm for the Distancing Player either provides the desired (δ, d)-distancing in
graph H, or it constructs a Hierarchical Support Structure for H, so that H is well-connected with
respect to the resulting set S(H) of vertices. In all our subsequent results, we use the Distanced
Matching Game with this implementation of the Distancing Player. This ensures that, once the algo-
rithm terminates, we obtain a Hierarchical Support Structure for graph H, and a guarantee that H is
well-connected with respect to S(H).

APSP in Well-Connected Graphs. The Hierarchical Support Structure provides a convenient
basis for decremental APSP in well-connected graphs obtained via the Distanced Matching Game.
Indeed, suppose we are given such a graph H, that undergoes an online sequence of edge deletions.
As edges are deleted from H, the graph may no longer be well-connected with respect to S(H). We
design a deterministic algorithm for decremental APSP that, given such a graph H, can withstand up to
|V (H)|1−Θ(ε) edge deletions, as it maintains a set S′(H) ⊆ S(H) of supported vertices. Over the course
of the algorithm, vertices may leave S′(H) but they may not join it, and |S′(H)| ≥ |V (H)|/2O(1/ε) holds

3

at all times. The algorithm supports short-path queries between pairs of vertices in S′(H): given a pair
x, y ∈ S′(H) of such vertices, it must return a path P of length at most 2O(1/ε6) connecting them in the
current graph H, in time O(|E(P)|). The total update time of the algorithm is O(|E(H)|1+O(ε)). This
algorithm can be thought of as mirroring similar algorithms for APSP in expanders of [CS21, Chu21]
that we discuss below. For comparison, the best previous algorithm for APSP in bounded-degree
expanders could only report paths whose length is bounded by (log n)O(1/ε2) in response to short-
path queries, with total update time is O

(
n1+O(ε)

)
, though it could withstand a longer sequence of

edge deletions. Interestingly, the algorithmic tools presented so far can also be used to obtain better
algorithms for APSP in expanders, as we discuss below. We note that it is currently not clear to
us whether the exponential dependence of the lengths of the paths returned in response to short-
path queries on poly(1/ε) in our results is necessary. Improving this dependence may lead to further
improvements in applications discussed below.

1.2 Applications to Other Algorithmic Tools.

We use the machinery that we have developed in order to design better implementations of existing
algorithmic tools. The first such tool that we discuss is the Cut-Matching Game of [KRV09].

Cut-Matching Game. The Cut-Matching Game was initially introduced by [KRV09], as part of their
fast approximation algorithms for Minimum Balanced Cut and Sparsest Cut. The game has a single
parameter n, that is an even integer, and it is played between two players: a Cut Player and a Matching
Player. The purpose of the game is to construct an n-vertex expander. The game starts with a graph
H containing n vertices and no edges, and in every iteration edges are added to H, until we can certify
that it becomes an expander. In the original version of the game suggested by [KRV09], in every
iteration i, the cut player needs to compute a partition of V (H) into two equal-cardinality subsets
Ai and Bi, and the matching player needs to return an arbitrary perfect matching Mi ⊆ Ai × Bi.
The edges of Mi are then added to graph H, and the algorithm continues to the next iteration. In
their paper, [KRV09] provided an algorithm for the Cut Player, that computes, in every iteration, a
partition (Ai, Bi) of V (H), so that, regardless of the strategy of the Matching Player, the algorithm
is guaranteed to terminate with an Ω(1)-expander after O(log2 n) iterations. While the algorithm of
[KRV09] for the Cut Player is very efficient – its running time is Õ(n), it is unfortunately randomized,
and it is unclear how to derandomize it, if our goal is to obtain an algorithm with an almost linear
running time.

Instead, we consider a variant of the Cut-Matching Game due to [KKOV07], that was also studied in
[CGL+20]. In this variant, in every iteration i, the Cut Player must either compute a partition (A′i, B

′
i)

of V (H) with |A′i| ≥ |B′i| ≥ n/4 and |EH(A′i, B
′
i)| ≤ n/10; or it must compute a subset X ⊆ V (H)

of at least n/2 vertices, so that graph H[X] is a ϕ-expander (and we would like ϕ to be as close to 1
as possible). In the former case, the matching player must compute an arbitrary partition (Ai, Bi) of
V (H) with |Ai| = |Bi| and B′i ⊆ Bi, together with a perfect matching Mi ⊆ Ai×Bi. The edges of Mi

are added to H, and we continue to the next iteration. In the latter case, the matching player must
compute an arbitrary matching Mi ⊆ X × V (H) \X, of cardinality |V (H) \X|. The edges of Mi are
then added to graph H, which is now guaranteed to be a ϕ/2-expander, and the algorithm terminates.
As shown by [KKOV07], this variant of the game must terminate after O(log n) iterations1. Note that
the question of obtaining a fast deterministic algorithm for the Cut Player in this variation of the
game leads to a sort of chicken and egg situation: the Cut Player essentially needs to solve a Minimum
Balanced Cut problem on the current graph H, and solving this problem efficiently typically requires
running the Cut-Matching Game, which in turn requires an efficient implementation of the Cut Player.

1In fact the game presented here is a slight modification of the game suggested by [KKOV07]. A formal proof that
the number of iterations in this variations is still bounded by O(logn) appears in [CGL+20].

4

In [CGL+20], a deterministic algorithm for the Cut Player was presented for the above setting. For
a given precision parameter ε ≥ log logn

(logn)1/2 , the algorithm has running time O
(
n1+O(ε)

)
, and it ensures

that the resulting graph has expansion ϕ ≥ 1/(log n)1/ε. The algorithm proceeds by constructing a
hierarchical system of expanders that are embedded into H, similarly to our Hierarchical Support
Structure, except that expanders are used instead of well-connected graphs. Unfortunately, it appears
that the use of expanders forces one to lose a polylogarithmic in n factor in the expansion (or alter-
natively, in the length of the embedding paths) with every recursive level, which eventually leads to
a rather weak expansion guarantee. In this paper we design a deterministic algorithm for the Cut
Player with running time n1+o(1), that ensures that the resulting graph has expansion 1/(log n)5+o(1).
Instead of using the approach of [CGL+20], we rely on another algorithmic tool introduced in this
paper, that we call advanced path peeling. We believe that this algorithmic tool is of independent
interest, and in fact it can be used in order to either embed an expander graph into a given input
graph G, or compute a sparse cut in G, thereby completely bypassing the Cut-Matching Game. Before
we provide more details on advanced path peeling, we briefly mention a typical implementation of the
Matching Player in the Cut-Matching Game, since it is related to the path peeling technique.

Path Peeling Algorithms. Typically, a Cut-Matching Game is used in order to either embed a
large expander graph H into a given input graph G, or to compute a sparse cut in G. The game is
played on graph H, that initially contains the set V (G) of vertices and no edges. The Cut Player is
implemented using one of the algorithms described above. In order to implement a Matching Player,
in each iteration i, we try to construct a large matching Mi ⊆ Ai × Bi, and its routing Pi in G via
short paths that cause low congestion. Matching Mi is then used in order to compute the response of
the Matching Player. Paths in Pi also define an embedding of the edges of Mi into G, and so, as the
algorithm progresses and new edges are added to H, we maintain an embedding of H into G. Once
graph H becomes an expander, the algorithm terminates. Alternatively, if we are unable to compute a
routing of a large matching Mi ⊆ Ai×Bi, we would like to compute a sparse cut in G, and in this case
the algorithm terminates with this cut. Therefore, in order to implement the Matching Player, we need
an algorithm that, given a pair Ai, Bi of disjoint sets of vertices in a graph G, either computes a routing
Pi of a large enough matching Mi ⊆ Ai × Bi via short paths that cause low congestion, or returns
a sparse cut in G. In the original paper of [KRV09], the Matching Player was implemented via an
algorithm for computing maximum flow and minimum cut. However, as was later observed in [CK19],
it is sufficient to compute a maximal collection of such paths in G, by a simple greedy algorithm,
that can be implemented very efficiently. We informally refer to such algorithms as basic path peeling.
The algorithm keeps greedily adding short paths connecting vertices of Ai to vertices of Bi to set Pi,
while deleting from G edges that already participate in many paths. If, at the end of the algorithm,
|Pi| is not sufficiently large, a simple application of the classical Ball Growing technique is used to
compute a sparse cut in G. As an example, in one implementation of such an algorithm (Theorem 3.2
of [CGL+20]), given a graph G, equal-cardinality sets Ai, Bi of vertices of G, and parameters z > 0 and
0 < ϕ < 1, the algorithm either computes a cut (X,Y) of sparsity at most ϕ in G with |X|, |Y | ≥ z/2;
or it constructs a routing Pi of a matching Mi ⊆ Ai × Bi, with |Mi| ≥ |Ai| − z, such that paths

in Pi have length at most O
(

∆ logn
ϕ

)
each, and cause congestion at most O

(
∆2 log2 n

ϕ2

)
, where ∆ is

maximum vertex degree of G. The running time of the algorithm is Õ(|E(G)|/ϕ3). Using different
methods (that rely on algorithms for approximate Maximum Flow), [CGL+20] design algorithms with
better guarantees: the congestion is only bounded by O (∆(log n)/ϕ), and the running time is m1+o(1).
We note that a recent result of [CKL+22] provides a near-linear time randomized algorithm for the
exact maximum flow and min-cost flow problems, with running time m1+o(1), where m is the number
of graph edges, if all edge capacities and costs are polynomially bounded. It is likely that one can
obtain a randomized almost linear time algorithm for basic path peeling using this work as well.

5

Consider now a more general setting (that we refer to as advanced path peeling), where we are given
two sets A, B of vertices, and we need to route a specific matching M ⊆ A × B. In this case, the
input consists of an m-edge graph G, a collection M = {(s1, t1), . . . , (sk, tk)} of pairs of its vertices,
and parameters 0 < ϕ < 1 and z > 0. The goal is to either route a collection M ′ ⊆ M of at least
k− z pairs of vertices via paths that are short and cause low congestion (compared to 1/ϕ), or return
a cut (X,Y) of sparsity at most ϕ in G, with |X|, |Y | ≥ Ω(z). One could use the techniques employed
in basic path peeling in order to design such an algorithm, but it seems inevitable that the running
time of the algorithm can only be bounded by O(mk) (unless we have a very efficient algorithm for
decremental APSP with low approximation factor).

In this paper, we provide a deterministic algorithm for advanced path peeling. For a given precision

parameter ε, the algorithm has running time O
(
m1+O(ε)

ϕ3

)
, and, in case a routing P is returned, the

length of every path is bounded by 2O(1/ε6)·∆·logn
ϕ , with congestion bounded by 2O(1/ε6)·∆2·log2 n

ϕ2 , where
∆ is maximum vertex degree in G. The fact that we can pre-specify pairs of vertices to be routed
makes advanced path peeling a much more powerful algorithmic tool than basic path peeling. For
example, we can use it directly in order to either embed some fixed low-degree expander H into a
given graph G, or to compute a sparse cut in G. This approach allows us to completely bypass the
Cut-Matching Game, and we use it in some of our algorithms.

1.3 Applications to Static Graphs.

Sparsest Cut and Lowest-Conductance Cut. Recall that the sparsity of a cut (A,B) in a graph

G is |EG(A,B)|
min{|A|,|B|} . In the Sparsest Cut problem, the goal is to compute a cut of minimum sparsity in the

input graph G. A closely related notion is that of conductance: the conductance of a cut (A,B) in G is
|EG(A,B)|

min{VolG(A),VolG(B)} . In the Lowest Conductance Cut problem, given a graph G, the goal is to compute

a cut of smallest conductance. We define the conductance of a graph G, Ψ(G), to be the smallest con-
ductance value of any cut in G. Both Sparsest Cut and Lowest Conductance Cut problems are among
the most fundamental optimization problems, and are routinely used in the design of graph algo-
rithms, for example, when divide-and-conquer paradigm is involved. The best current approximation
algorithms for these problems, due to [ARV09], achieve a factor-O(

√
log n)-approximation. Unfortu-

nately, these algorithms are rather slow (though their running times are polynomially bounded), as
they need to solve an SDP. The work of [KRV09], that introduced the Cut-Matching Game, provided
a randomized O(log2 n)-approximation algorithm for both problems, with running time Õ(m+ n3/2).
The super-linear running time in this algorithm is mostly due to the rather slow state of the art
algorithms for (approximate) maximum flow that were available at the time. With the more recent
improvements in such algorithms, the running time of the algorithm of [KRV09] becomes almost linear.
Since the Sparsest Cut and Lowest Conductance Cut problems are so ubiquitous, it is however highly
desirable to obtain fast deterministic algorithms for them. A number of deterministic algorithms,
that are based on the Multiplicative Weights Update framework of [GK98, Fle00, Kar08], achieve a
factor O(log n)-approximation for both problems, in time Õ(m2). Additionally, several algorithms in
which the approximation factor is roughly O(ϕ1/2), where ϕ is the value of the optimal solution, are
known (see e.g. [Alo86, ACL07, GLN+19]; the algorithms achieve running times Õ(nω), Õ(mn), and
O(m1.5+o(1)), respectively). In [CGL+20], deterministic algorithms for both Sparsest Cut and Lowest
Conductance Cut problems were presented, that, for a parameter log logn

(logn)1/2 ≤ ε < 1, achieve a factor

(log n)O(1/ε2)-approximation in time O(m1+ε+o(1)). Unfortunately, in time m1+o(1), these algorithms
cannot achieve a polylogarithmic approximation factor. Our improved algorithm for the Cut Player
in the Cut-Matching Game immediately leads to deterministic algorithms for both Sparsest Cut and
Lowest Conductance Cut problems, with approximation factor O(log7 n log log n), and running time

6

m1+o(1).

Minimum Balanced Cut. Minimum Balanced Cut is another classical graph partitioning problem
that is extensively used in algorithm design. Given a graph G, we say that a cut (A,B) in G is
β-balanced, if VolG(A),VolG(B) ≥ Vol(G)/β. We say that the cut is balanced, if it is β-balanced for
β = 1/3, and we say that it is almost balanced, if it is β-balanced for some absolute constant β. In
the Minimum Balanced Cut problem, given a graph G, the goal is to compute a balanced cut (A,B)
minimizing |EG(A,B)|. It is quite common to use bicriteria approximation algorithms for the prob-
lem: a factor-α bicriteria approximation algorithm must return an almost balanced cut (A,B) with
|EG(A,B)| ≤ α · OPT, where OPT is the lowest possible value of |EG(A′, B′)| for any balanced cut
(A′, B′). The seminal work of [ARV09] provides the best currently known bicriteria approximation
algorithm for the problem, whose approximation factor is O(

√
log n), though the algorithm is some-

what slow due to the need to solve an SDP. As with the Sparsest Cut and Lowest Conductance Cut
problems, the randomized algorithm of [KRV09] can be used to obtain a factor-O(log2 n) bicriteria
approximation in time O(m1+o(1)). The best current deterministic algorithm for the problem, due
to [CGL+20], obtained, for any log logn

(logn)1/2 ≤ ε < 1, a factor-(log n)O(1/ε2) bicriteria approximation, in

time O(m1+ε+o(1)). As in Sparsest Cut and Lowest Conductance Cut problems, this algorithm can only
achieve (log n)ω(1)-approximation in time m1+o(1). In this paper we provide a deterministic bicriteria
factor-(log n)8+o(1) approximation algorithm, with running time m1+o(1).

We also consider an important variant of the problem, that we call Minimum Balanced Cut with
Certificate. In this problem, we are given a graph G, and a target parameter ψ. The goal is to
compute a cut (A,B) in G with |EG(A,B)| ≤ αψ · Vol(G) (where α is the approximation factor
of the algorithm), such that either VolG(A),VolG(B) ≥ Vol(G)/3; or VolG(A) ≥ 2 Vol(G)/3, and
graph G[A] has conductance at least ψ. In the latter outcome, if VolG(B) ≤ Vol(G)/4, we can view
graph G[A] as a certificate that the value of the Minimum Balanced Cut in G is Ω(ψ · |E(G)|). A
factor-α approximation algorithm for Minimum Balanced Cut with Certificate can be easily converted
into a factor-O(α) approximation algorithm for the Minimum Balanced Cut problem, with running
time that increases by at most factor O(log n) (this was shown in [CGL+20]; we also provide more
details in Section 2.5). Algorithms for Minimum Balanced Cut with Certificate however appear to be
significantly more powerful than those for Minimum Balanced Cut, as they can be used in order to
compute expander decomposition of a given graph efficiently. In [CGL+20], a deterministic algorithm
for Minimum Balanced Cut with Certificate that achieves approximation factor α = (log n)O(1/ε2), in
time O(m1+ε+o(1)), for any log logn

(logn)1/2 ≤ ε < 1, was presented. We provide a deterministic algorithm

for Minimum Balanced Cut with Certificate with approximation factor (log n)8+o(1), whose running
time is O(m1+o(1)/ψ). For ψ ≥ 1/mo(1), which is a common setting used in algorithms for expander
decomposition, the running time becomes O(m1+o(1)). We provide another algorithm, whose running
time is O(m1+o(1)) for any value of ψ, and approximation factor remains the same, but it provides a
somewhat weaker certificate: in case where VolG(B) < Vol(G)/3, it only guarantees that G[A] contains
a large subgraph with conductance at least ψ, but it does not compute such a graph.

Expander Decomposition. An (δ, ψ)-expander decomposition of a graph G = (V,E) is a partition
Π = {V1, . . . , Vk} of the set V of vertices, such that for all 1 ≤ i ≤ k, the conductance of graph
G[Vi] is at least ψ, and

∑k
i=1 δG(Vi) ≤ δ · Vol(G). Algorithms for expander decomposition are used

extensively in the design of graph algorithms, in both static and dynamic settings. A long line of
research [ST04, NS17, Wul17, SW19, ADK22] culminated in a randomized algorithm that computes a
(δ, δ/poly(log n))-expander decomposition in time Õ(m/δ). The best previous deterministic algorithm,
due to [CGL+20], computes a (δ, ϕ)-expander decomposition with ϕ = Ω(δ/(logm)O(1/ε2)), in time

7

O
(
m1+ε+o(1)

)
. This algorithm was in turn used by [CGL+20] in order to obtain the first deterministic

algorithms for Dynamic Connectivity and Dynamic Minimum Spanning Forest, with no(1) worst-
case update time, making a significant progress on a major open question in the area of dynamic
algorithms. We provide a deterministic algorithm for computing a (δ, ψ)-expander decomposition of

G with ψ = Ω
(

δ
(logn)9+o(1)

)
, in time O(m1+o(1)/δ).

1.4 Applications to Dynamic Graphs: All-Pairs Shortest Paths (in Expanders).

In the decremental All-Pairs Shortest Paths (APSP) problem, the input is an n-vertex graph G with
non-negative length on edges, that undergoes an online sequence of edge deletions. The goal is to
support (approximate) shortest path queries: given a pair x, y of vertices, return an (approximate)
shortest path connecting x to y in the current graph G. We say that the algorithm achieves a factor-α
approximation, if, in response to a shortest path query between x and y, it is guaranteed to return a
path of length at most α · distG(x, y). Decremental, and, more generally, fully dynamic APSP is one
of the most basic problem in the area of dynamic algorithms. It also has important connections to
designing algorithms for classical cut and flow problems in the static graph model. For example, by
combining the standard primal-dual technique-based algorithm of [GK98, Fle00] with an algorithm
for a special case of decremental APSP, called Single-Source Shortest Paths (SSSP), one can obtain
fast approximation algorithms for maximum s-t flow, minimum-cost s-t flow, minimum s-t cut, and
so on, in both edge- and vertex-capacitated settings (see e.g. [CK19, Chu21]). Until recently, some
of these algorithms provided the best available guarantees. Additionally, by combining the same
techniques with the ideas of [Mad10] and the standard Ball Growing technique of [LR99, GVY95],
we can essentially reduce the Maximum Multicommodity Flow and Minimum Multicut problems in unit-
capacity graphs to decremental APSP. Indeed, a recent algorithm for APSP by [Chu21] has led to fast
deterministic algorithms for Maximum Multicommodity Flow and Minimum Multicut in unit-capacity
graphs: for any Θ(1/ log log n) < ε < 1, the algorithms achieve approximation factor (logm)2O(1/ε)

,

with running time O
(
m1+O(ε)(logm)2O(1/ε)

+ k/ε
)

, where m is the number of edges in the input

graph and k is the number of the demand pairs. Most likely any further improvements in the current
guarantees for decremental APSP will immediately lead to improved bounds for both these problems.
For comparison, the fastest previous approximation algorithms for Maximum Multicommodity Flow,
achieving (1 + ε)-approximation, had running times O(kO(1) · m4/3/εO(1)) [KMP12] and Õ(mn/ε2)
[Mad10], and we are not aware of any algorithms that achieve a faster running time with possibly
worse approximation factors.

We now turn to discuss the APSP problem in more detail. In addition to the approximation factor that
the algorithm achieves and its total update time (the time it takes to maintain its data structures),
two other parameters of interest are query time (the time the algorithm takes to respond to shortest
path query), and whether the algorithm can withstand an adaptive adversary. The latter means that
the input sequence of edge deletions may depend on the responses to the queries that the algorithm
returned so far, and even on the inner state of the algorithm. This is in contrast to the oblivious-
adversary setting, where the input sequence of edge deletions is fixed in advance. We note that
a deterministic algorithm by definition can withstand an adaptive adversary. With four different
parameters of interest to optimize, there is a vast amount of research achieving different tradeoffs
between them; we will not attempt to present them all. Instead we will focus on a specific setting,
where the algorithm must withstand an adaptive adversary (and is ideally deterministic), and the query
time for shortest path query is bounded by Õ(|E(P)|), where P is the path returned; note that this is
close to the best possible query time. Subject to these two constrains, we are interested in optimizing
the tradeoff between the approximation factor that the algorithm achieves and its total update time.

8

To the best of our knowledge, the best current algorithm for APSP in this setting, due to [Chu21],

is a deterministic algorithm that achieves approximation factor (logm)2O(1/ε)
, with total update time

O
(
m1+O(ε) · (logm)O(1/ε2) · logL

)
, for any Ω(1/ log logm) ≤ ε < 1; here, L is the ratio of longest to

shortest edge length. Another recent work2 [BGS22] mostly focused on a special case of APSP called
Single-Source Shortest Path, but they also obtained a deterministic algorithm for decremental APSP
with approximation factor mo(1) and total update time O(m1+o(1)); unfortunately, the tradeoff between
the approximation factor and the total update time is not stated explicitly, though it is mentioned
that the approximation factor is super-logarithmic. Until recently, the best negative results only ruled
out obtaining a better than factor-4 approximation in time O(n3−δ) and query time O(n1−δ), for any
constant 0 < δ < 1, under either the Boolean Matrix Multiplication, or the Online Boolean Matrix-
Vertex Multiplication conjectures [DHZ00, HKNS15]. A very recent result of [DJWW22] showed that,
for any integer k ≥ 1, under the combinatorial k-clique hypothesis, there is no combinatorial algorithm
for APSP in static unweighted undirected graphs, that achieves an approximation ratio better than
(1+1/k−ε), and has running time O(m2−2/(k+1) ·n1/(k+1)−ε), even if approximate shortest-path queries
are restricted to a specific collection of n vertex pairs. The paper provides several other lower bound
results with constant approximation factors, that are based on various conjectures. Another very
recent result of [ABKZ22] provided new lower bounds for the dynamic APSP problem, in the regime
where only approximate distance queries need to be supported, under either the 3-SUM conjecture
or the APSP conjecture. Let k ≥ 4 be an integer, let ε, δ > 0 be parameters, and let c = 4

3−ω and

d = 2ω−2
3−ω , where ω is the exponent of matrix multiplication. Then [ABKZ22] show that, assuming

either the 3-SUM Conjecture or the APSP Conjecture, there is no (k − δ)-approximation algorithm

for decremental APSP with total update time O(m1+ 1
ck−d−ε) and query time for dist-query bounded

by O(m
1

ck−d−ε). They also show that there is no (k − δ)-approximation algorithm for fully dynamic
APSP that has O(n3) preprocessing time, and then supports (fully dynamic) updates and dist-query

queries in O(m
1

ck−d−ε) time. Lastly, a very recent result of [ABF22] shows that, under the 3-SUM
conjecture, for any integer constant k ≥ 2, there is no approximate distance oracle for sparse graphs
(in which m = O(n)) with stretch k, preprocessing time Õ(m1+p) and query time Õ(m1+q), for all
p, q with kp+ (k+ 1)q < 1. To summarize, current negative results do not rule out any superconstant
approximation for decremental APSP with total update time m1+o(1).

A very interesting special case of decremental APSP is decremental APSP in expanders. In this
problem, the input graph G has unit edge lengths, and it is initially an expander. It is well known
that, if an n-vertex graph G with maximum vertex degree ∆ is a ϕ-expander, then for any pair x, y of

its vertices, there is a path of length at most O
(

∆ logn
ϕ

)
connecting them. Assume now that we are

given an n-vertex ϕ-expander G as above, that undergoes a sequence of edge deletions. We would like
to design an algorithm that supports short-path queries: given a pair x, y of vertices of G, return a
path connecting x to y in the current graph G, whose length is at most α · ∆ logn

ϕ , where we refer to α

as the approximation factor of the algorithm3. As graph G undergoes edge deletions, it may no longer
remain an expander, and distances between some of its vertices may grow significantly. In order to
overcome this difficulty, we only ask that the algorithm maintains a large enough subset S(G) ⊆ V (G)
of supported vertices, and we restrict short-path queries to pairs of vertices in S(G). We additionally
require that the set S(G) of supported vertices is decremental, that is, vertices may leave S(G) over
the course of the algorithm, but they may not join it. In its typical applications, the problem needs
to be solved on expander graphs that arise from the Cut-Matching Game; these are usually expanders

2To the best of our knowledge, the two works are independent
3Note that α is not necessarily an approximation factor strictly speaking, as it is possible that for a pair x, y of vertices

queried, distG(x, y) � ∆ logn
ϕ

. However, the approximation factors that we discuss are quite high, making this difference
insignificant, and it is convenient for us to use the ”approximation factor” notion for brevity.

9

with maximum vertex degree ∆ ≤ O(log2 n) and expansion ϕ = Θ(1).

Decremental APSP in expanders is especially interesting for several reasons. First, it seems to be a
relatively simple special case of APSP, and, if our goal is to obtain better algorithms for general APSP,
solving the problem in expander graphs is a natural first step. Second, this problem arises in various
algorithms for static cut and flow problems, and seems to be intimately connected to efficient imple-
mentations of the Cut-Matching Game. Third, expander graphs are increasingly becoming a central
tool for designing algorithms for various dynamic graph problems, and obtaining good algorithms for
APSP in expanders will likely become a powerful tool in the toolkit of algorithmic techniques in this
area. As such, we feel that it is crucial to obtain a good understanding of this problem.

The best previous algorithm for APSP in expanders due to [CS21] (see also [Chu21]), uses techniques
similar to those in [CGL+20], and provides the following guarantees4. Suppose we are given an n-
vertex and m-edge graph G with maximum vertex degree ∆ that is a ϕ-expander, which undergoes a
sequence of at most O

(ϕm
∆

)
edge deletions, and a precision parameter ε. The algorithm maintains a

set U of vertices of G, that is incremental: that is, vertices may be added to U but not deleted from
it. For every integer t, after t edges are deleted from G, we are guaranteed that |U | ≤ O(t∆/ϕ) holds.
Throughout the algorithm, we let S = V (G) \ U be the set of supported vertices. The algorithm
supports short-path queries between pairs of vertices in S. Given such a pair x, y ∈ S, it returns

a path P in G[S] of length at most O
(

∆2(log n)O(1/ε2)/ϕ
)

, with query time O(|E(P)|). The total

update time of the algorithm is O
(
n1+O(ε)∆7(log n)O(1/ε2)/ϕ5

)
. Assuming a typical setting where

∆ ≤ poly log n, ϕ ≥ (1/ poly log n), and ε ≥ 1/(log n)1/3, the algorithm achieves approximation factor
(log n)O(1/ε2), with total update time O

(
n1+O(ε)

)
. For example, if we wish to achieve a polylogarithmic

approximation factor, then the total update time of the algorithm is only bounded by O(n1+δ) for
some constant δ, and if we would like the total update time of the algorithm to be bounded by n1+o(1),
then the approximation factor must be super-polylogarithmic, that is, (log n)ω(1).

We use the algorithmic tools that we developed for well-connected graphs in order to design a determin-
istic algorithm for APSP in expanders that achieves a better tradeoff between the approximation factor
and total update time: our algorithm, when responding to short-path query between a pair x, y ∈ S
of vertices is guaranteed to return a path P connecting x to y, of length at most 2O(1/ε6)·∆2·logn

ϕ , with

query time O(|E(P)|). The total update time of the algorithm is O
(
m1+O(ε)·∆5

ϕ2

)
. If we consider again

the setting where ∆ ≤ poly log n and ϕ ≥ 1/ poly log n, the algorithm achieves approximation factor
O(poly log n) with total update time n1+o(1). On the negative side, our algorithm can only withstand
a somewhat shorter sequence of edge deletions: at most O

(
n · ϕ2/∆4

)
edges may be deleted, and it

only guarantees that, after t edge deletions from G, |U | ≤ O
(
∆4t/ϕ2

)
. However, since the algorithm is

typically used in the setting where ∆, 1/ϕ ≤ O(poly log n), these drawbacks are generally insignificant.
Another difference is that the path returned in response to a query by our algorithm is guaranteed to
be contained in the current graph G, while the paths returned by the algorithm of [CS21, Chu21] is
contained in G \ U . We are not aware of any negative implications of this difference.

Returning to the APSP problem in general graphs, the best current deterministic algorithm of [Chu21]
uses APSP in expanders as its building block. As mentioned already, the algorithm of [Chu21] achieves

approximation factor (logm)2O(1/ε)
, with total update time O

(
m1+O(ε) · (logm)O(1/ε2) · logL

)
. It

seems conceivable that the techniques from [Chu21] can be used in order to improve the approximation
factor to (logm)O(1/poly(ε)) with similar total update time, but there are significant obstacles to further
improvements. The first such obstacle is that the algorithm relies on the best previous algorithm for

4The algorithm from [CS21] was only analyzed for a specific setting of the parameters; a proof for the whole range of
the parameters was provided in [Chu21].

10

APSP in expanders, in the setting where ∆ ≤ poly log n and ϕ ≥ 1/ poly log n, whose approximation
factor is (log n)O(1/ε2) with total update time O

(
n1+O(ε)

)
. Our new algorithm removes this obstacle.

The second obstacle is that the algorithm from [Chu21] is recursive. The number of recursive levels
is O(1/ε), and in each recursive level, a factor (log n)O(1/ε2) is lost in approximation (due to the
algorithm for APSP in expanders). Even when using our new algorithm for APSP in expanders, at
least a poly log n factor must be lost in each recursive level, resulting in a (log n)Θ(1/ε) approximation
factor. One of the main reasons for this polylogarithmic loss in each recursive level is that, when we rely
on APSP in expanders, we are committing ourselves to at least a logarithmic loss in the approximation
factor. The reason is that we typically only require that, in response to short-path query, the algorithm
returns a path whose length is within factor α of ∆ logn

ϕ , a quantity that bounds the diameter of the
expander, even if the two queried vertices are very close to each other. Furthermore, one of the typical
ways to exploit expanders is to first embed a large expander into the given input graph G, for example,
using the Cut-Matching Game, and such an embedding typically does not preserve distances between
vertices, except with a poly log n distortion. We note that well-connected graphs do not suffer from
this drawback.

A very recent follow-up work of [CZ22] provides a deterministic algorithm for fully-dynamic APSP,

that, for a given precision parameter ε, achieves approximation (log log n)2O(1/ε3)
, and has amortized

update time O(nε logL) per operation, where L is the ratio of longest to shortest edge length, if
the initial graph has no edges. Their work improves the algorithm of [Chu21], by first improving

the approximation factor to (log log n)2O(1/ε3)
, and then extending the result to fully dynamic graphs.

The improvement in the approximation factor requires overcoming several major obstacles, one of
which arises from the use of expander graphs, as described above. By replacing expander graphs with
well-connected graphs, and exploiting the machinery introduced in this work, [CZ22] overcome this
obstacle.

Organization. For convenience, we provide a formal statement of our main results, and a high-level
overview of our techniques in Section 2. We provide preliminaries in Section 3. In Section 4 we
formally define the Distanced Matching Game, and prove the upper bound on its number of iterations.
We formally define Hierarchical Support Structure in Section 5, and provide an algorithm for the
Distancing Player in Section 6. We provide algorithms for decremental APSP in well-connected graphs
and in expanders in Sections 7 and 8 respectively. We present our algorithm for advanced path peeling
in Section 9. Our algorithm for the Cut Player in the Cut-Matching Game is presented in Section 10.
Finally, we present our algorithms for Sparsest Cut, Lowest Conductance Cut, Minimum Balanced Cut,
and Expander Decomposition in Section 11.

2 Overview of Our Results and Techniques

2.1 The Distanced Matching Game and Related Algorithmic Toolkit.

Let G be an n-vertex graph, and let d > 0 and 1 < δ < 1 be parameters. A (δ, d)-distancing in G is
a triple (A,B,E′), where A,B are disjoint equal-cardinality subsets of vertices of G with |A| ≥ n1−δ,
and E′ is a subset of edges of G with |E′| ≤ |A|/16. We require that, in graph G \ E′, the smallest
distance between a vertex of A and a vertex of B is at least d.

We introduce the Distanced Matching Game, that is played between two players: a Distancing Player
and a Matching Player. The game can be thought of as an analogue of the Cut-Matching Game for
well-connected graphs. The input to the game consists of an integral parameter n, and two additional

11

parameters, 0 < δ < 1 and d. The game starts with a graph H that contains n vertices and no
edges, and then proceeds in iterations. In every iteration some edges are inserted into H. In order
to execute the ith iteration, the Distancing Player must provide a (δ, d)-distancing (Ai, Bi, E

′
i) in the

current graph H. The matching player must return a matching Mi ⊆ Ai × Bi of cardinality at least
|Ai|/8. The matching cannot contain any pairs of vertices (x, y) for which an edge (x, y) lies in E′i.
We then add the edges of Mi to H, and continue to the next iteration. The game terminates when
the distancing player can no longer compute a (δ, d)-distancing, though we may choose to terminate
it earlier, if graph H has desired properties. Our first result bounds the number of iterations in the
Distanced Matching Game:

Theorem 2.1 Consider a Distanced Matching Game with parameters n > 0, 0 < δ < 1/4 and d, such

that d ≥ 24/δ and nδ ≥ 214 logn
δ2 . Then the number of iterations in the game is at most n8δ.

This theorem can be thought of as an analogue of similar results of [KRV09, KKOV07], that bound
the number of iterations in the Cut-Matching Game. The bound on the number of iteration that we
obtain here is significantly higher that those for the Cut-Matching Game, which are typically bounded
by O(poly log n). However, as we show below, we gain in other aspects – specifically, by constructing
a large enough subset S of vertices of H, so that H is well-connected with respect to S. This in
turn allows us to achieve significantly shorter distances between the vertices of S in H, than those
guaranteed in expander graphs.

Our proof of Theorem 2.1 is completely different from the types of arguments that were used in order
to bound the number of iterations in the Cut-Matching Game by [KRV09, KKOV07]. For all i > 0, let
Hi denote graph H at the beginning of iteration i. Let E′ =

⋃
iE
′
i, and, for all i > 0, let H ′i = Hi \E′.

We observe how the graphs H ′1, H
′
2, . . . evolve over the course of the execution of the game (note that

the set E′ of edges is computed in hindsight, after the game terminates, so in a sense we “replay” the
game to observe the evolution of these graphs). For all i, we define a partition Ci of the vertices of
Hi into clusters. We ensure that the set Ci+1 of clusters can only be obtained from set Ci by merging
existing clusters. We say that a cluster C ∈ Ci belongs to level j, if nδj < |V (C)| ≤ nδ(j+1). We also
ensure that, for all j, the diameter of every level-j cluster in Ci is at most 2O(j). If C ∈ Ci is a level-j
cluster, then we say that all vertices of C lie at level j. If a vertex of H lies at level j of clustering Ci,
and at a level j′ > j of clustering Ci+1, then we say that vertex v has been promoted over the course of
iteration i. The key in the proof is to show that, once

⌈
n4δ
⌉

iterations pass, a large number of vertices
are promoted. Since every vertex may only be promoted at most O(1/δ) times, this is sufficient in
order to bound the total number of iterations in the game.

Next, we define a Hierarchical Support Structure. The structure uses two main parameters: the
base parameter N > 0, and a level parameter j > 0. We also assume that we are given a precision
parameter 0 < ε < 1. The notion of Hierarchical Support Structure is defined inductively, using the
level parameter j. If H is a graph containing N vertices, then a level-1 support structure for H simply
consists of a set S(H) of vertices of H, with |V (H) \S(H)| ≤ N1−ε4 . Assume now that we are given a
graph H containing exactly N j vertices. A level-j Hierarchical Support Structure for H consists of a

collection H = {H1, . . . ,Hr} of r = N −
⌈
2N1−ε4

⌉
graphs, such that for all 1 ≤ i ≤ r, V (Hi) ⊆ V (H),

and V (H1), . . . , V (Hr) are all mutually disjoint. Additionally, it must contain, for all 1 ≤ i ≤ r,
a level-(j − 1) Hierarchical Support Structure for Hi, which in turn must define the set S(Hi) of
supported vertices for graph Hi. We require that each such graph Hi is (ηj−1, d̃j−1)-well-connected

with respect to S(Hi), where d̃j−1 = 2O(j/ε4) and ηj−1 = N6+O(jε2). Lastly, the Hierarchical Support
Structure for graph H must contain an embedding of graph H ′ =

⋃r
i=1Hi into graph H, via path of

length at most 2O(1/ε4), that cause congestion at most NO(ε2). We then set S(H) =
⋃r
i=1 S(Hi), and

we view S(H) as the set of supported vertices for graph H, that is defined by the Hierarchical Support

12

Structure.

We provide an algorithm for the Distancing Player of the Distanced Matching Game, that either pro-
duces the desired (δ, d)-distancing in the current graph H, or constructs a level-d1/εe Hierarchical
Support Structure for H, together with a large set S(H) of supported vertices, such that H is well-
connected with respect to S(H).

Theorem 2.2 There is a deterministic algorithm, whose input consists of a parameter 0 < ε < 1/4,
such that 1/ε is an integer, an integer N > 0, and a graph H with |V (H)| = N1/ε, such that N is

sufficiently large, so that Nε4

logN ≥ 2128/ε5 holds. The algorithm computes one of the following:

• either a (δ, d)-distancing (A,B,E′) in H, where δ = 4ε3, d = 232/ε4 and |E′| ≤ |A|
Nε3

; or

• a level-(1/ε) Hierarchical Support Structure for H, such that graph H is (η, d̃)-well-connected
with respect to the set S(H) of vertices defined by the support structure, where η = N6+O(ε) and
d̃ = 2O(1/ε5).

The running time of the algorithm is bounded by: O(|E(H)|1+O(ε)).

We note that our definition of the Hierarchical Support Structure ensures that |S(H)| ≥ |V (H)| ·(
1− 1

NΩ(ε4)

)
. The proof of Theorem 2.2 is similar to some of the arguments from [CGL+20], and

arguments used in previous algorithms for decremental APSP in expanders by [CS21, Chu21]. We
prove by induction on the level j that there is a deterministic algorithm, that, given a graph H with
|V (H)| = N j , either computes a (δj , dj)-distancing in graph H (for appropriately chosen parameters
δj and dj), or computes a level-j Hierarchical Support Structure for H, such that H is (ηj , d̃j)-well-
connected with respect to the set S(H) of vertices defined by the support structure, for appropriately
chosen parameters ηj , d̃j . The algorithm for level j proceeds as follows. We partition the vertices
of H into N subsets V1, . . . , VN , containing N j−1 vertices each. We then let H′ = {H1, . . . ,HN} be
an initial collection of graphs, where for all 1 ≤ i ≤ N , V (Hi) = Vi and E(Hi) = ∅. We run the
Distanced Matching Game on all of the graphs of H′ in parallel, with the level parameter (j − 1); the
algorithm for the Distancing Player is obtained from the induction hypothesis for level (j − 1). The
algorithm for the Matching Player performs a routing in graph H via basic path peeling, and is very
similar to the algorithm employed together with Cut-Matching Game in numerous previous results, e.g.
[CK19, CS21, CGL+20, Chu21]. If we successfully complete the Distanced Matching Game on at least
r′ = Ω(r) graphs of H, that we denote by H′ =

{
Hi1 , . . . ,Hir′

}
, then we simultaneously obtain an

embedding of graph
⋃r′

z=1Hiz into H, and also a guarantee that each graph Hiz ∈ H′ is well-connected
with respect to the corresponding set S(Hiz) of vertices that is defined by its Hierarchical Support
Structure that the algorithm constructed . We then attempt to connect, for every pair 1 ≤ z < z′ ≤ r′
of indices, the sets S(Hiz), S(Hiz′) of vertices by many paths in graph H, so that the paths are
sufficiently short and cause a low congestion. If we manage to do so for many such pairs z, z′ of
indices, then we will obtain a collection H′′ ⊆ H′ of r graphs, and a certificate that graph H is well-
connected with respect to the set S(H) =

⋃r
Hi∈H′′ S(Hi) of vertices. Otherwise, we will compute the

required (δj , dj)-distancing in graph H. Lastly, if we fail to complete the Distanced Matching Game on
many of the graphs in H, then we will also compute the required (δj , dj)-distancing in graph H.

In all our subsequent algorithms, we will employ the Distanced Matching Game with the algorithm for
the Distancing Player implemented by Theorem 2.2. Therefore, when the algorithm terminates, it
outputs a level-(1/ε) Hierarchical Support Structure for the input graph H, together with a large set
S(H) of supported vertices, so that graph H is well-connected with respect to S(H).

13

Lastly, we provide an algorithm for decremental APSP in a well-connected graph with a given Hierar-
chical Support Structure. Specifically, we assume that we are given a graph H that is an outcome of
the Distanced Matching Game, in which the Distancing Player is implemented by the algorithm from
Theorem 2.2. Therefore, we are given a level-(1/ε) Hierarchical Support Structure for H, together with
a large set S(H) of its vertices, so that H is well-connected with respect to S(H). We then assume that
graph H undergoes a sequence of edge deletions. As edges are deleted from H, the well-connectedness
property may no longer hold, and the Hierarchical Support Structure may be partially destroyed.
Therefore, we only require that the algorithm maintains a large enough subset S′(H) ⊆ S(H) of
supported vertices, and that it can respond to short-path queries between pairs of vertices in S′(H):
given a pair x, y of such vertices, the algorithm needs to return a path of length at most 2O(1/ε6) in
the current graph H connecting them. We also require that the set S′(H) is decremental, so vertices
can leave this set but they may not join it. The result is summarized in the following theorem.

Theorem 2.3 There is a deterministic algorithm, whose input consists of:

• a parameter 0 < ε < 1/400, so that 1/ε is an integer;

• an integral parameter N that is sufficiently large, so that Nε4

logN ≥ 2128/ε6 holds;

• a graph H with |V (H)| = N1/ε; and

• a level-(1/ε) hierarchical support structure for H, such that H is (η, d̃)-well-connected with respect
to the set S(H) of vertices defined by the Hierarchical Support Structure, where η and d̃ are the
parameters from Theorem 2.2.

Further, we assume that graph H undergoes an online sequence of at most Λ = |V (H)|1−10ε edge
deletions. The algorithm maintains a set S′(H) ⊆ S(H) of vertices of H, such that, at the beginning
of the algorithm, S′(H) = S(H), and over the course of the algorithm, vertices can leave S′(H) but

they may not join it. The algorithm ensures that |S′(H)| ≥ |V (H)|
24/ε holds at all times, and it supports

short-path queries between supported vertices: given a pair x, y ∈ S′(H) of vertices, return a path P
connecting x to y in the current graph H, whose length is at most 2O(1/ε6), in time O(|E(P)|). The
total update time of the algorithm is O(m1+O(ε)), where m = max {|E(H)|, |V (H)|}.

The algorithm for Theorem 2.3 is somewhat similar to the algorithm for APSP in expanders from
[CS21]. Instead of proving Theorem 2.3 directly, we prove a more general theorem, that, for all
1 ≤ j ≤ 1/ε, given a graph H with |V (H)| = N j and a level-j Hierarchical Support Structure for
H, such that H is well-connected with respect to the set S(H) of vertices defined by the Hierarchical
Support Structure, supports APSP in H, as the graph undergoes a limited number of edge deletions.
The proof of the theorem is by induction on j. In order to obtain an algorithm for a fixed level
j, we recursively maintain a data structure for APSP in graphs H1, . . . ,Hr ∈ H that belong to the
Hierarchical Support Structure of graph H. We also maintain, for all 1 ≤ i ≤ r, an Even-Shiloach Tree
data structure in graph H, that is rooted at the vertices of S′(Hi). These data structures allow us
to maintain a large enough decremental set S′(H) ⊆

⋃
i S
′(Hi) of vertices, and to support short-path

queries between pairs of vertices in S′(H) efficiently.

We compare this algorithm to the best previous algorithm for APSP in expanders, due to [CS21,
Chu21]. For APSP in expanders, we consider a typical setting where the maximum vertex degree is
∆ = O(poly log n), and the expansion parameter is ϕ = Ω(1/poly log n), where n is the number of
vertices in the input graph. For this setting, the algorithm of [CS21, Chu21] could only return paths
between pairs of vertices from the supported set of length at most (log n)O(1/ε2), compared to path

14

length 2O(1/ε6) of the above algorithm. The running time of both algorithms in this setting (assuming
that ε is not too small) is similar. On the negative side, our algorithm can only withstand n1−Θ(ε)

edge deletions, compared to the algorithm of [CS21], that can withstand up to Θ(m/poly log n) edge
deletions. Also, the size S(H) of supported vertices that the algorithm from [CS21] is significantly
larger: it is Ω(n), compared to our bound of n/2O(1/ε). Interestingly, the tools that we developed here
allow us to obtain better algorithms for the APSP in expanders problem itself, as we show next.

2.2 Decremental APSP in Expanders.

In the decremental APSP in expanders problem, the input is a graph G, that is initially a ϕ-expander.
The graph undergoes an online sequence of edge deletions. The algorithm needs to maintain a partition
(S,U) of vertices of G into a set S of supported vertices, and a set U of unsupported vertices. As the
algorithm progresses, vertices may be moved from S to U , but not in the opposite direction. The
algorithm must support shorth-path query: given a pair x, y ∈ S of supported vertices, return a short
path P connecting x to y, in time O(|E(P)|). Ideally, we would like to ensure that the algorithm can
withstand a long enough sequence of edge deletions, and that the set S of supported vertices remains
sufficiently large. We prove the following theorem for decremental APSP in expanders.

Theorem 2.4 There is a deterministic algorithm, whose input consists of an n-vertex graph G with
|E(G)| = m that is a ϕ-expander for some 0 < ϕ < 1, with maximum vertex degree at most ∆, and
a parameter 2

(logn)1/12 < ε < 1
400 , such that 1/ε is an integer. We assume that graph G undergoes an

online sequence of at most n·ϕ2

213∆4 edge deletions. The algorithm maintains a set U ⊆ V (G) of vertices,

such that, for every integer t > 0, after t edges are deleted from G, |U | ≤ 211∆4t
ϕ2 holds. Vertex set U is

incremental, so vertices may join it but they may not leave it. The algorithm also supports short-path
query: given a pair of vertices x, y ∈ V (G) \ U , return an x-y path P in the current graph G, of

length at most 2O(1/ε6)·∆2·logn
ϕ , with query time O(|E(P)|). The total update time of the algorithm is

O
(
m1+O(ε)·∆5

ϕ2

)
.

For a typical setting where ∆, 1/ϕ = O(poly log n), the algorithm, in response to a short-path query,
returns a path of length at most 2O(1/ε6) · poly log n, with total update time O(n1+O(ε)). For the
same setting, the best previous algorithm of [CS21], returned paths of length at most (log n)O(1/ε2)

in response to queries, and had similar total update time. On the negative side, the algorithm of
[CS21, Chu21] could withstand a longer sequence of edge deletions, though in both cases it remains
Ω(n/ poly log n). The cardinality of the set U of unsupported vertices is somewhat lower in [CS21],
though for this setting it remains in both cases Ω(t · poly log n) after t edge deletions. Note that,
for constant-degree expanders, by letting ε = (1/ log log log n), we can ensure that the paths returned
in response to short-path queries have length at most (log n)1+o(1), and the total update time of the
algorithm is n1+o(1).

2.3 Advanced Path Peeling and Deterministic Algorithm for the Cut Player in
the Cut-Matching Game.

We prove the following theorem for advanced path peeling.

Theorem 2.5 There is a deterministic algorithm, whose input consists of a connected n-vertex m-
edge graph G, a collection M = {(s1, t1), . . . , (sk, tk)} of pairs of vertices in G, such that M is a
matching, and parameters 0 < α ≤ 1/2, 0 < ϕ < 1 and 4

(logn)1/24 < ε < 1
400 . The algorithm computes

one of the following:

15

• either a cut (A,B) with |EG(A,B)| ≤ ϕ ·min {|EG(A)|, |EG(B)|}, and each of A, B contains at
least αk

16 vertices of set T = {s1, t1, . . . , sk, tk}; or

• a routing P in G of a subset M ′ ⊆ M containing at least (1 − α)k pairs of vertices, such that

every path in P has length at most 2O(1/ε6)·logn
ϕ , and the total congestion caused by the paths in

P is at most 2O(1/ε6)·logn
ϕ2 ·min

{
1
α , log n

}
.

The running time of the algorithm is bounded by O
(
m1+O(ε)

ϕ3

)
.

The idea in the proof of the theorem is to attempt to embed a well-connected graph H, whose vertex
set is T , into G, via the Distanced Matching Game. We require that the embedding paths are short and
cause low congestion. If we fail to do so, we will immediately obtain the desired sparse cut. Otherwise,
we can rely on the algorithm for APSP in well-connected graphs from Theorem 2.3, together with an
ES-Tree in graph G that is rooted at the set S′(H) of supported vertices of H that the algorithm
from Theorem 2.3 maintains, in order to support approximate shortest path queries in graph G. We
then greedily compute short paths routing pairs of vertices in M , while deleting edges that participate
in too many paths from G. Once a large enough number of paths is routed (so the algorithm from
Theorem 2.3 may no longer support short-path queries), we start the whole procedure from scratch.

Next, we provide the following deterministic algorithm for the Cut Player from the Cut-Matching
Game.

Theorem 2.6 There is a deterministic algorithm, that, given an n-vertex and m-edge graph G =
(V,E) with maximum vertex degree ∆, and a parameter 2

(logn)1/25 < ε < 1
400 , returns one of the

following:

• either a cut (A,B) in G with |A|, |B| ≥ n/4 and |EG(A,B)| ≤ n/100; or

• a subset S ⊆ V of at least n/2 vertices, such that graph G[S] is ϕ∗-expander, for ϕ∗ ≥
Ω
(

1

2O(1/ε6)·∆3·log2 n

)
.

The running time of the algorithm is O
(
m1+O(ε) ·∆7

)
.

We note that, since the number of iterations in the Cut-Matching Game is bounded by O(log n),
we can assume that ∆ ≤ O(log n). By setting ε = 1/(log log log n)1/6, we can then guarantee that
ϕ∗ ≥ 1

(logn)5+o(1) , and the running time of the algorithm is bounded by O(n1+o(1)). In contrast, the

algorithm of [CGL+20] could only achieve expansion ϕ∗ ≥ 1/(log n)1/ε with running time n1+O(ε), and
so in time n1+o(1) it could only achieve expansion 1/(log n)ω(1).

Our techniques are different from those of [CGL+20], who rely on a recursive application of the
Cut-Matching Game to smaller and smaller graphs. Instead, we compute a constant-degree n-vertex
expander H, and then attempt to embed it into G using the algorithm for advanced path peeling
from Theorem 2.5. If we successfully embed most edges of H into G, then, by invoking the expander
pruning result of [SW19], we can compute a large enough subset X ⊆ V (G) of vertices, such that
G[X] is a ϕ∗-expander. Otherwise, we obtain a sparse cut (A,B) in G with |A| ≥ |B|. We then delete
the vertices of B from G, and repeat this procedure. The algorithm continues as long as G contains
at least 2n/3 vertices. Once the number of vertices in G falls below 2n/3, if we did not successfully
embed an expander into G so far, then we obtain a sparse cut (A′, B′) in G, where A′ contains all
vertices that currently remain in G.

16

2.4 Sparsest Cut and Lowest Conductance Cut.

We prove the following result for the Sparsest Cut and Lowest Conductance Cut problems.

Theorem 2.7 There are deterministic algorithms for the Sparsest Cut and the Lowest Conductance
Cut problems, that achieve a factor-O(log7 n log logn)-approximation in time O

(
m1+o(1)

)
, where n

and m are the number of vertices and edges, respectively, in the input graph.

The best previous deterministic algorithm for both problems, due to [CGL+20], achieved a factor
(log n)1/ε2-approximation, in time O(m1+ε), for any log logn

(logn)1/2 ≤ ε < 1. Our algorithms for Sparsest Cut

and Lowest Conductance Cut are essentially identical to those of [CGL+20], except that we plug in our
stronger algorithm for the Cut Player in the Cut-Matching Game from Theorem 2.6 into their proof.

As in [CGL+20], we first consider the Most Balanced Sparse Cut problem. The input to the problem
is an n-vertex graph G, and a parameter 0 < ϕ ≤ 1. The goal is to compute a cut (X,Y) in G
of sparsity at most ϕ, while maximizing min {|X|, |Y |}, that we refer to as the size of the cut. An
(α, β)-bicriteria approximation algorithm for the problem, given parameters 0 < ϕ < 1 and z ≥ 1,
must either compute a cut (X,Y) in G of sparsity at most ϕ and size at least z; or correctly establish
that every cut (X ′, Y ′) whose sparsity is at most ϕ/α has size at most β · z.

The problem is a natural intermediate step for obtaining fast algorithms for Sparsest Cut and Lowest
Conductance Cut problems. It was first introduced independently by [NS17] and [Wul17], and has
been studied extensively since (see e.g. [CK19, CS19, CGL+20]). As observed in previous work, a fast
bicriteria approximation algorithm for this problem can be obtained by employing the Cut-Matching
Game. In [CGL+20] (see Lemma 7.3), an (α, β)-bicriteria deterministic approximation algorithm was
obtained for the Most Balanced Sparse Cut problem, with α = (log n)O(1/ε) and β = (log n)O(1/ε), in

time O
(
m1+O(ε)+o(1) · (log n)O(1/ε2)

)
for any 1

c logn ≤ ε ≤ 1, for some fixed constant c. We obtain a

deterministic (α, β)-bicriteria approximation algorithm with α = 2O(1/ε6) · log7 n and β = 2O(1/ε6) ·
log6 n, with running time O

(
m1+O(ε)+o(1)

)
, for any ε > 2/(log n)1/24. For example, by setting ε =

1/(log log log n)1/6, we can obtain an (α, β)-bicriteria approximation with α = (log n)7+o(1) and β =
(log n)6+o(1), and running time m1+o(1). In contrast, obtaining an (α, β)-bicriteria approximation with
α = O(logc n) and β = O(logc n) for any constant c, using the algorithm of [CGL+20] would result in
a running time that can only be bounded by m1+O(1/c). Our algorithm for the Most Balanced Sparse
Cut is essentially identical to that of [CGL+20], except that it uses our stronger algorithm for the
Cut Player in the Cut-Matching Game. Algorithms for Sparsest Cut and Lowest Conductance Cut easily
follow from the algorithm for Most Balanced Sparse Cut, as shown in [CGL+20].

2.5 Minimum Balanced Cut and Expander Decomposition.

We provide a deterministic factor-(log n)8+o(1) approximation algorithm for Minimum Balanced Cut
with Certificate problem, by proving the following theorem.

Theorem 2.8 There is a deterministic algorithm, that, given a graph G with n vertices and m edges,
and a parameter 0 < ψ ≤ 1, computes a cut (A,B) in G with |EG(A,B)| ≤ ψ · (log n)8+o(1) · Vol(G),
such that one of the following holds:

• either VolG(A),VolG(B) ≥ Vol(G)/3; or

• VolG(A) ≥ 2 Vol(G)/3, and graph G[A] has conductance at least ψ.

17

The running time of the algorithm is O(m1+o(1)/ψ).

For ψ ≥ 1/mo(1), which is a common setting used in algorithms for expander decomposition, our run-
ning time becomes O(m1+o(1)). As mentioned already, [CGL+20] presented a deterministic algorithm
for Minimum Balanced Cut with Certificate, that achieves approximation factor α = (log n)O(1/ε2), in
time O(m1+ε), for any log logn

(logn)1/2 ≤ ε < 1.

We provide another algorithm, that can be used in low-conductance regime, whose running time does
not depend on ψ. Unfortunately, this algorithm provides a somewhat weaker certiciate if the cut that
it returns is not balanced.

Theorem 2.9 There is a deterministic algorithm, that, given a graph G with n vertices and m edges,
and a parameter 0 < ψ ≤ 1, computes a cut (A,B) in G with |EG(A,B)| ≤ ψ · (log n)8+o(1) · Vol(G),
such that one of the following holds:

• either VolG(A),VolG(B) ≥ Vol(G)/3; or

• VolG(A) ≥ 2 Vol(G)/3, and for every partition (Z,Z ′) of A with VolG(Z),VolG(Z ′) ≥ Vol(G)/100,
|EG(Z,Z ′)| ≥ ψ ·Vol(G).

The running time of the algorithm is O(m1+o(1)).

The algorithm from Theorem 2.9 can be easily used to obtain a deterministic bicriteria factor-
(log n)8+o(1) approximation algorithm for the Minimum Balanced Cut problem in time O(m1+o(1)).
Given an input graph G, we perform a binary search on the parameter ψ, until we find a value
for which the algorithm from Theorem 2.9, when applied to G and ψ, returns a cut (A,B) with
|EG(A,B)| ≤ ψ · (log n)8+o(1) · Vol(G) and VolG(A),VolG(B) ≥ Vol(G)/4; while, if applied to G and
ψ/2, it returns a cut (A′, B′) with |EG(A′, B′)| ≤ ψ · (log n)8+o(1) · Vol(G) and VolG(B′) < Vol(G)/4.
Note that (A,B) is an almost balanced cut, with |EG(A,B)| ≤ αψ · Vol(G), where α = (log n)8+o(1).
Let (A∗, B∗) be the optimal balanced cut, so VolG(A∗),VolG(B∗) ≥ Vol(G)/3. We claim that
|EG(A∗, B∗)| ≥ ψ

2 · Vol(G). This is since cut (A∗, B∗) defines a partition of the set A′ of ver-
tices, that we denote by (Z,Z ′), for which VolG(Z),VolG(Z ′) ≥ Vol(G)/100 must hold. Therefore,
|EG(A∗, B∗)| ≥ |EG(Z,Z ′)| ≥ ψ

2 · Vol(G). We conclude that cut (A,B) is a factor-(2α) bicriteria
solution to instance G of Minimum Balanced Cut.

Our proofs of Theorem 2.8 and Theorem 2.9 depart from that of [CGL+20], who iteratively used
the algorithm for Most Balanced Sparse Cut. The reason is that, while we obtain significantly bet-
ter guarantees for the Most Balanced Sparse Cut problem, the approximation factor is still at least
polylogarithmic in n. Therefore, if we follow the framework of [CGL+20], who apply the algorithm
for the Most Balanced Sparse Cut over the course of O(1/ε) iterations, we will still accumulate an
approximation factor that is at least as high as (logn)Θ(1/ε). Instead, we employ the Cut-Matching
Game directly and iteratively. In every iteration, we either cut off a large enough subgraph of G via a
low-conductance cut, or we (implicitly) embed a large expander into G.

Lastly, we consider expander decomposition. Recall that an (δ, ψ)-expander decomposition of a graph
G = (V,E) is a partition Π = {V1, . . . , Vk} of the set V of vertices, such that for all 1 ≤ i ≤ k,
the conductance of graph G[Vi] is at least ψ, and

∑k
i=1 δG(Vi) ≤ δ · Vol(G). We prove the following

theorem.

Theorem 2.10 There is a deterministic algorithm, that, given a graph G with n vertices and m
edges, and a parameter 0 < δ < 1, where c is a large enough constant, computes a (δ, ψ)-expander

decomposition of G with ψ = Ω
(

δ
(logn)9+o(1)

)
, in time O(m1+o(1)/δ).

18

The best previous deterministic algorithm, due to [CGL+20], computes a (δ, ϕ)-expander decompo-
sition with ϕ = Ω(δ/(logm)O(1/ε2)), in time O

(
m1+O(ε)+o(1)

)
. Our algorithm is very similar to the

algorithm of [CGL+20], except that we use the algorithm from Theorem 2.8 for the Minimum Balanced
Cut problem, instead of its counterpart from [CGL+20].

3 Preliminaries

All logarithms in this paper are to the base of 2. All graphs are simple, undirected and unweighted,
unless stated otherwise. Graphs with parallel edges are explicitly referred to as multigraph. Through-
out the paper, we use a Õ(·) notation to hide multiplicative factors that are polynomial in log n, where
n is the number of vertices in the input graph.

We follow standard graph-theoretic notation. Given a graph G and two disjoint subsets A,B of its
vertices, we denote by EG(A,B) the set of all edges with one endpoint in A and another in B, and by
EG(A) the set of all edges with both endpoints in A. We also denote by δG(A) the set of all edges with
exactly one endpoint in A. For a vertex v ∈ V (G), we denote by δG(v) the set of all edges incident to
v in G, and by degG(v) the degree of v in G. We may omit the subscript G when clear from context.
Given a subset S of vertices of G, we denote by G[S] the subgraph of G induced by S. We say that a
subgraph C of G is a cluster, if C is a connected vertex-induced subgraph of G.

Matchings and Routings. If G is a graph, and P is a collection of paths in G, we say that the
paths in P cause congestion η in G if every edge e ∈ E(G) participates in at most η paths in P, and
some edge e ∈ E(G) participates in exactly η such paths.

Let G be a graph, and let M = {(s1, t1), . . . , (sk, tk)} be a collection of pairs of vertices of G. We say
that M is a matching if every vertex v ∈ V (G) participates in at most one pair in M , and for every
pair (si, ti) ∈M , si 6= ti. Note that we do not require that the pairs (si, ti) ∈M correspond to edges
of G. We say that a collection P of paths is a routing of the pairs in M in graph G, if |P| = k, the
paths in P are simple paths that are contained in G, and for every pair (si, ti) ∈M of vertices, there
is a path Pi ∈ P whose endpoints are si and ti.

Assume now that we are given a graph G, two disjoint sets S, T of its vertices, and a collection P of
paths. We say that the paths in P route vertices of S to vertices of T , or that P is a routing of S to
T , if P = {P (s) | s ∈ S}, and, for all s ∈ S, path P (s) originates at vertex s and terminates at some
vertex of T . We say that P is a one-to-one routing of S to T , if the endpoints of all paths in P are
distinct.

Embeddings of Graphs. Let G and X be two graphs with V (X) ⊆ V (G). An embedding of
X into G is a collection P = {P (e) | e ∈ E(X)} of paths in graph G, such that, for every edge
e = (x, y) ∈ E(X), path P (e) connects vertex x to vertex y. The congestion of the embedding is the
maximum, over all edges e′ ∈ E(G), of the number of paths in P containing e′.

Given graphs G and X as above, and a subset E′ ⊆ E(X) of edges of X, an embedding of E′ into G
is defined similarly: it is simply an embedding of the subgraph of X induced by E′.

We will sometimes use a more general setting, where V (X)∩V (G) = ∅. In this case, an embedding of
X into G must include a mapping π : V (X)→ V (G), where every vertex of X is mapped to a distinct
vertex of G. Additionally, it must include a collection P = {P (e) | e ∈ E(X)} of paths in graph G,
such that, for every edge e = (x, y) ∈ E(X), path P (e) connects vertex π(x) to vertex π(y). The
congestion of this embedding is defined as before.

19

We will use the following easy observation.

Observation 3.1 There is a deterministic algorithm, whose input consists of a pair H,G of graphs
with V (H) ⊆ V (G), an embedding P of H into G, so that the paths in P have length at most d
each and cause congestion at most η, a collection Π of pairs of vertices of H, and a collection Q =
{Q(u, v) | (u, v) ∈ Π} of simple paths in H, such that, for every pair (u, v) ∈ Π of vertices, path Q(u, v)
connects u to v, the paths in Q have length at most d′ each, and cause congestion at most η′ in H.
The algorithm computes a collection Q′ = {Q′(u, v) | (u, v) ∈ Π} of paths in graph G, such that, for
every pair (u, v) ∈ Π of vertices, path Q′(u, v) connects u to v, the paths in Q′ have length at most
d · d′ each, and cause congestion at most η · η′ in G. The running time of the algorithm is at most
O (min {|Π| · d · d′, |E(G)| · η · η′}).

Proof: We process every pair (u, v) ∈ Π one by one. When pair (u, v) is processed, we consider the
path Q(u, v) ∈ Q, and we denote the sequence of edges on Q(u, v) by (e1, e2, . . . , er), where r ≤ d′.
For all 1 ≤ i ≤ r, let P (ei) ∈ P be the path that serves as the embedding of edge ei, whose length
must be at most d. We obtain path Q′(u, v) connecting u to v in G by concatenating the paths
P (e1), P (e2), . . . , P (er). It is immediate to verify that the length of path Q′(u, v) is at most d · d′. Let
Q′ = {Q′(u, v) | (u, v) ∈ Π} be the resulting set of paths. Consider any edge e ∈ E(G), and let S(e)
be the collection of all edges e′ ∈ E(H) with e ∈ P (e′), where P (e′) ∈ P is the embedding path of e′.
Then |S(e)| ≤ η, and every edge e′ ∈ S(e) participates in at most η′ paths in Q. Therefore, edge e
may participate in at most η · η′ paths in Q′, and so the congestion that the paths in Q′ cause in G is
at most η · η′. It is immediate to verify that every pair (u, v) ∈ P of vertices can be processed in time
O(d · d′), and so the total running time of the algorithm is at most O(|Π| · d · d′). Since every edge of
E(G) belongs to at most η · η′ paths in Q′, it is also easy to verify that the running time is bounded
by O(η · η′ · |E(G)|).

Distances and Balls. Given a graph G, for a pair u, v ∈ V (G) of its vertices, we denote by
distG(u, v) the distance between u and v in G, that is, the length of the shortest path between u
and v. For a pair S, T of subsets of vertices of G, we define the distance between S and T to be
distG(S, T) = mins∈S,t∈T {distG(s, t)}. For a vertex v ∈ V (G), and a vertex subset S ⊆ V (G), we also
define the distance between v and S as distG(v, S) = minu∈S {distG(v, u)}. The diameter of the graph
G, denoted by diam(G), is the maximum distance between any pair of vertices in G. For a vertex
v ∈ V (G) and a distance parameter D ≥ 0, we denote by BG(v,D) = {u ∈ V (G) | distG(u, v) ≤ D}
the ball of radius D around v. Similarly, for a subset S ⊆ V (G) of vertices, we let the ball of radius
D around S be BG(S,D) = {u ∈ V (G) | distG(u, S) ≤ D}. We will sometimes omit the subscript G
when clear from context.

3.1 Dynamic Algorithms

Dynamic Graphs. Consider a graph G that undergoes an online sequence Σ = (σ1, σ2, . . .) of edge
deletions, that we may also refer to as updates. After each update operation, the algorithm will
perform some updates to the data structures that it maintains. We refer to different “times” during
the algorithm’s execution. The algorithm starts at time 0. For each t ≥ 0, we refer to “time t in the
algorithm’s execution” as the time immediately after all updates to the data structures maintained by
the algorithm following the tth edge deletion σt ∈ Σ are completed. When we say that some property
holds at every time during the algorithm’s execution, we mean that the property holds at all times
t of the algorithm’s execution, but it may not hold, for example, during the procedure that updates
the data structures maintained by the algorithm, following some edge deletion σt ∈ Σ. For t ≥ 0, we

20

denote by G(t) the graph G at time t; that is, G(0) is the original graph, and for t ≥ 0, G(t) is the
graph obtained from G after the first t edge deletions σ1, . . . , σt.

We say that a set S of elements is decremental if, once it is initialized, elements can be deleted from
S but they may not be added to S. Similarly, we say that S is incremental if elements can be added
to S as the time progresses, but not deleted from S.

Even-Shiloach Trees [ES81, Din06, HK95]. Suppose we are given a graph G = (V,E) with
integral lengths `(e) ≥ 1 on its edges e ∈ E, a source vertex s, and a distance bound D ≥ 1. Even-
Shiloach Tree (ES-Tree) algorithm maintains, for every vertex v with distG(s, v) ≤ D, the distance
distG(s, v), under the deletion of edges from G. Moreover, it maintains a shortest-path tree τ rooted
at vertex s, that includes all vertices v with distG(s, v) ≤ D. We denote the corresponding data
structure by ES-Tree(G, s,D), or just ES-Tree when clear from context. The total update time of the
algorithm, including the initialization and all edge deletions, is O(m ·D log n), where m is the initial
number of edges in G and n = |V |.

3.2 Cuts, Flows, Sparsity, Conductance and Expanders.

Even though all graphs that we deal with are undirected, it will sometimes be useful to assign directions
to paths in such graphs. In order to do so, for a path P in an undirected graph G, we designate one
of its endpoints (say u) as the first endpoint of P , and the other endpoint (say v) as its last endpoint.
We may then say that path P is directed from u to v, or that it originates at u and terminates at v.
If P is a collection of path in an undirected graph G, and we have assigned a direction to each of the
paths, we may refer to P as a collection of directed paths, even though graph G is undirected.

Flows. Let G be a graph, and let P be a collection of directed paths in graph G. A flow over the set
P of paths is an assignment of non-negative values f(P) ≥ 0, called flow-values, to every path P ∈ P.
We sometimes refer to paths in P as flow-paths for flow f . For each edge e ∈ E(G), let P(e) ⊆ P be
the set of all paths whose first edge is e, and let P ′(e) ⊆ P be the set of all paths whose last edge is e.
We say that edge e sends z flow units in f if

∑
P∈P(e) f(e) = z, and we say that edge e receives z flow

units in f if
∑

P∈P ′(e) f(P) = z. Similarly, for a vertex v ∈ V (G), we say that v sends z flow units in f
if the sum of flow-values of all paths P ∈ P that originate at v is z. We say that v receives z flow units
in f if the sum of the flow-values of all paths P ∈ P that terminate at v is z. The congestion that
flow f causes on an edge e is

∑
P∈P:

e∈E(P)
f(P), and the total congestion of the flow f is the maximum

congestion that it causes on any edge e ∈ E(G).

Cuts and Expansion. Given a graph G = (V,E), a cut in G is a bipartition (A,B) of the set V of

its vertices, with A,B 6= ∅. The sparsity of the cut (A,B) is ϕG(A,B) = |EG(A,B)|
min{|A|,|B|} . We denote by

Φ(G) the smallest sparsity of any cut in G, and we refer to Φ(G) as the expansion of G.

Expanders. We define the notion of expanders using graph expansion.

Definition 3.1 (Expander) We say that a graph G is a ϕ-expander, for a parameter 0 < ϕ < 1, if
Φ(G) ≥ ϕ.

We will sometimes informally say that graph G is an expander if Φ(G) is a constant independent of
|V (G)|. We use the following immediate observation, that was also used in previous works, (see e.g.

21

Observation 2.3 in [CGL+20]).

Observation 3.2 Let G = (V,E) be an n-vertex graph that is a ϕ-expander, and let G′ be another
graph that is obtained from G by adding to it a new set V ′ of at most n vertices, and a matching M ,
connecting every vertex of V ′ to a distinct vertex of G. Then G′ is a ϕ/2-expander.

We also use the following theorem that provides a fast algorithm for an explicit construction of an
expander, that is based on the results of Margulis [Mar73] and Gabber and Galil [GG81]. The proof
was shown in [CGL+20].

Theorem 3.3 (Theorem 2.4 in [CGL+20]) There is a constant α0 > 0 and a deterministic algo-
rithm, that we call ConstructExpander, that, given an integer n > 1, in time O(n) constructs a
graph Hn with |V (Hn)| = n, such that Hn is an α0-expander, and every vertex in Hn has degree at
most 9.

Expander Pruning. We use an algorithm for expander pruning by [SW19]. We slightly rephrase
it so it is defined in terms of graph expansion, instead of conductance that was used in the original
paper. This variation of the original expander pruning theorem of [SW19] was proved explicitly in
[Chu21] (see Theorem 2.2 in full version of the paper).

Theorem 3.4 (Adaptation of Theorem 1.3 in [SW19]; see Theorem 2.2 in [Chu21]) There
is a deterministic algorithm, that, given an access to the adjacency list of a graph G that is a ϕ-
expander, for some parameter 0 < ϕ < 1, such that the maximum vertex degree in G is at most ∆, and
a sequence Σ = (e1, e2, . . . , ek) of k ≤ ϕ|E(G)|

10∆ online edge deletions from G, maintains a set Ũ ⊆ V (G)

of vertices, with the following properties. Let G(i) denote the graph G \ {e1, . . . , ei}; let Ũ0 = ∅ be the
set Ũ at the beginning of the algorithm, and for all 0 < i ≤ k, let Ũi be the set Ũ after the deletion
of the edges of e1, . . . , ei from graph G. Then, for all 1 ≤ i ≤ k: Ũi−1 ⊆ Ũi; |Ũi| ≤ 8i∆

ϕ ; and graph

G(i) \ Ũi is a ϕ
6∆ -expander. The total running time of the algorithm is Õ(k∆2/ϕ2).

Graph Conductance. For a graph G = (V,E) and a subset S ⊆ V of its vertices, the volume of
S is VolG(S) =

∑
v∈S degG(v). We denote by Vol(G) = VolG(V). The conductance of a cut (A,B) in

G is: ψG(A,B) = |EG(A,B)|
min{VolG(A),VolG(B)} . We denote by Ψ(G) the smallest conductance of any cut in G,

and we refer to Ψ(G) as the conductance of G.

3.3 Embeddings with Fake Edges and Expansion.

Typically, when using the Cut-Matching game, we either embed an expander graph H with V (H) =
V (G) into the given graph G, or compute a sparse cut (A,B) in G. Unfortunately, it is possible that
one side of the cut, say A, is quite small in the latter case. This often poses challenges in applications
of the Cut-Matching game where the goal is to obtain very efficient algorithms. This is since we
essentially spend time Ω(|E(G)|) in order to execute the Cut-Matching game, and end up computing
a sparse cut whose one side may be very small. Ideally, for efficient algorithms, it is desirable that the
sparse cut that we compute is as balanced as possible. A standard way to overcome this issue, that
was suggested in the original paper of [KRV09] that introduced the Cut-Matching game, is to use fake
edges. Intuitively, we will augment the graph G with a small number of edges, that we refer to as fake
edges, to indicate that they do not actually lie in G. If F is the set of fake edges, we will denote by
G + F the graph obtained by adding the edges of F into G. We will use the Cut-Matching game to
either compute a sparse cut in G, whose both sides are relatively large; or to compute an embedding

22

of some expander graph H into G+ F . In the latter case, both the embedding and the set F of fake
edges are constructed during the Cut-Matching game, and we will then extract a large expander graph
from G. The following lemma from [CGL+20] provides an algorithm to extract a large expander graph
from G efficiently.

Lemma 3.5 (Lemma 2.9 from [CGL+20]) Let G be an n-vertex graph, and let H be another graph
with V (H) = V (G), with maximum vertex degree ∆H , such that H is a ψ-expander, for some 0 < ψ <
1. Let F be any set of k fake edges for G, and let ∆G be the maximum vertex degree in G+F . Assume
that there exists an embedding P = {P (e) | e ∈ E(H)} of H into G+F , that causes congestion at most
η, for some η ≥ 1. Assume further that k ≤ ψn

32∆Gη
. Then there is a subgraph G′ ⊆ G that is a ψ′-

expander, for ψ′ ≥ ψ
6∆G·η , such that, if we denote by A = V (G′) and B = V (G)\A, then |A| ≥ n− 4kη

ψ
and |EG(A,B)| ≤ 4k. Moreover, there is a deterministic algorithm, that we call AlgExtractExpander,
that, given G,H,P and F , computes such a graph G′ in time Õ(|E(G)|∆G · η/ψ).

3.4 The Cut-Matching Game.

The Cut-Matching Game was introduced by Khandekar, Rao, and Vazirani [KRV09] as a tool for
obtaining fast approximation algorithms for the Sparsest Cut and Minimum Balanced Cut problems.
We describe here a variant of this game, that was introduced by Khandekar et al. [KKOV07], and
later slightly modified by [CGL+20]. The game is played between two players, the Cut Player, and
the Matching Player. The game uses a parameter n, which is an even integer. The purpose of the
game is to construct an n-vertex expander graph H. At the beginning of the game, graph H contains
n vertices and no edges, and then in every iteration some edges are added to H. For intuition, it may
be convenient to think of the Cut Player’s goal being to construct the expander in as few iterations
as possible, and the Matching Player’s goal as trying to delay the construction of the expander.

The game starts with graph H containing n vertices and no edges. The ith iteration is played as
follows. The Cut Player either computes a partition (Ai, Bi) of V (H) with |Ai|, |Bi| ≥ n/4 and
|EH(Ai, Bi)| ≤ n/100; or it computes a set X ⊆ V (H) of vertices with |X| ≥ n/2, such that H[X]
is a ϕ-expander, for some expansion parameter 0 < ϕ < 1. Assume first that the former happens,
and assume without loss of generality that |Ai| ≤ |Bi|. The Matching Player must compute any
partition (A′i, B

′
i) of V (H) with |A′i| = |B′i|, such that Ai ⊆ A′i, and then it must compute an arbitrary

perfect matching Mi between A′i and B′i. The edges of Mi are then added to the graph H, and the
algorithm continues to the next iteration. If the latter case happens, that is, the Cut Player returns
a set X ⊆ V (H) of at least n/2 vertices, so that H[X] is a ϕ-expander, denote Y = V (H) \X. The
Matching Player must then compute a matching Mi ⊆ X × Y with |Mi| = Y . The edges of Mi are
added to graph H, and the algorithm terminates. In this case, from Observation 3.2, we are guaranteed
that H is a ϕ/2-expander. The next theorem follows directly from the result of [KKOV07], and was
proved explicitly in [CGL+20] (see Theorem 2.5 in the full version).

Theorem 3.6 There is a constant c, such that the algorithm described above terminates after at most
c log n iterations.

3.5 Graph Cutting and Partitioning.

We use several graph cutting and partitioning procedures, that exploit standard tools. In all these
procedures, the input is a graph G, with a subset T of vertices of G called terminals. The goal
is to either compute a single cluster, or a collection of clusters in G with some specific properties.
Throughout, a subgraph C ⊆ G, we denote by TC = T ∩V (C) the set of all terminals contained in C.

23

We start with procedure ProcCut, which is a variation of Leighton and Rao’s ball growing technique
[LR99].

3.5.1 Procedure ProcCut.

The input to the procedure is an n-vertex graph G, a set T ⊆ V (G) of k vertices called terminals, a
specific terminal tC ∈ T , and distance parameters d and ∆.

The procedure returns a cluster C ⊆ G, and a subset T̂C ⊆ T of terminals, for which the following
properties hold:

C1. TC ⊆ T̂C ;

C2. |T̂C | ≤ |TC | · k64/∆;

C3. V (C) ⊆ BG(tC ,∆ · d);

C4. T̂C ⊆ BG(tC ,∆ · d); and

C5. for every pair x ∈ V (C), t′ ∈ T \ T̂C of vertices, distG(v, t′) ≥ 4d.

The following lemma summarizes Procedure ProcCut.

Lemma 3.7 There is a deterministic algorithm called ProcCut, that, given an n-vertex graph G, a
subset T ⊆ V (G) of k vertices called terminals, a specific terminal tC ∈ T , and parameters d,∆ > 0,
computes a cluster C ⊆ G together with a set T̂C ⊆ T of terminals, for which properties (C1) – (C5)
hold. The running time of the algorithm is O(|E(C)| · n64/∆).

Proof: We assume that we are given as input an n-vertex graph G, a set T ⊆ V (G) of k vertices called
terminals, together with a specific terminal tC ∈ T that we denote by t for simplicity, and distance
parameters d and ∆. The procedure performs a breadth-first-search (BFS) from vertex t in graph G,
up to a certain depth, that will be determined later.

For all i ≥ 1, we denote by Li the set of all vertices of G that lie at distance 4(i− 1)d+ 1 to 4id from
t in G. In other words:

Li = BG(t, 4id) \BG(t, 4(i− 1)d).

We refer to the vertices of Li as layer i of the BFS. We denote by ki the number of terminals lying
in L1 ∪ · · · ∪ Li. We also denote by mi the total number of edges of G whose both endpoints lie in
L1 ∪ · · · ∪ Li. The following definition is crucial for the description of Procedure ProcCut.

Definition 3.2 (Eligible Layer) For an integer i > 1, we say that layer Li of the BFS is eligible if
both of the following two conditions hold:

L1. mi ≤ mi−1 · n64/∆; and

L2. ki ≤ ki−1 · k64/∆

We need the following claim, whose proof uses standard arguments.

24

Claim 3.8 There exists an index 1 < i ≤ ∆/8, such that layer Li is eligible.

Proof: Assume otherwise. Then for all 1 < i ≤ ∆/8, layer Li is ineligible. For each such index i, we
say that layer Li is type-1 ineligible if it violates Condition (L1). Otherwise, we say that it is type-2
ineligible, in which case it must violate Condition (L2). Since every layer Li with 1 < i ≤ ∆/8 is
ineligible, either there are at least ∆/32 type-1 ineligible layers Li with 1 < i ≤ ∆/8, or there are at
least ∆/32 type-2 ineligible layers Li with 1 < i ≤ ∆/8. We now consider each of the two cases and
prove that they are impossible.

Assume first that there are at least ∆/32 type-1 ineligible layers Li with 1 < i ≤ ∆/8, and denote
their indices by i1, i2, . . . , iz, where 1 < i1 ≤ i2 ≤ · · · ≤ iz ≤ ∆/8, and z ≥ ∆/32. But then, for all
1 ≤ a < z, mia+1 > mia · n64/∆. Therefore, miz > n64z/∆ ≥ n2, a contradiction.

Assume now that there are at least ∆/32 type-2 ineligible layers Li with 1 < i ≤ ∆/8, and denote
their indices by j1, j2, . . . , jz, where 1 < j1 ≤ j2 ≤ · · · ≤ jz ≤ ∆/8, and z ≥ ∆/32. But then, for all
1 ≤ a < z, kja+1 > kja · k64/∆. Therefore, kjz > k64z/∆ > k, a contradiction.

We are now ready to describe the algorithm for ProcCut. The algorithm performs a BFS from the
input terminal t in graph G, until it encounters the first index i > 1, such that layer Li is eligible.
The algorithm then returns cluster C, which is a subgraph of G induced by L1 ∪ L2 ∪ · · · ∪ Li−1, and
the set T̂C of terminals, containing all terminals in L1 ∪ · · · ∪ Li.

We now show that properties (C1) – (C5) hold for this output. Properties (C1), (C3) and (C4) follow
immediately from the definition of cluster C and set T̂C of terminals, and from the fact that, from
Claim 3.8, i ≤ ∆/8. Property (C2) follows immediately from Condition (L2) in the definition of an
eligible layer, since |TC | = ki−1 and |T̂C | = ki. Lastly, property (C5) follows immediately from the fact
that the vertices of C and the terminals of T \ T̂C are separated by layer Li, so every path connecting
a vertex of C and a terminal of T \ T̂C must contain at least 4d edges.

Notice that the running time of the algorithm is O(mi). Since |E(C)| = mi−1, from Condition (L1)
of an eligible layer, we get that the running time of the algorithm is bounded by O(mi−1 · n64/∆) =
O(|E(C)| · n64/∆).

Next, we describe a procedure called ProcPartition, that exploits Procedure ProcCut in order to compute
a number of clusters in the input graph G, that contain a large fraction of terminals, such that
the diameter of every cluster is relatively small, but pairs of vertices lying in different clusters are
sufficiently far away from each other.

3.5.2 Procedure ProcPartition.

The input to Procedure ProcPartition consists of an n-vertex graph G, a set T ⊆ V (G) of k vertices
called terminals, and distance parameters d and ∆.

The output of the procedure is a collection C of disjoint clusters of G, and, for every cluster C ∈ C, a
center terminal tC ∈ TC , and two sets T ′C , T̂C of terminals, such that the following properties hold.

R1. for every cluster C ∈ C, tC ∈ T ′C ; T ′C ⊆ V (C), and T ′C ⊆ T̂C ;

R2. for every cluster C ∈ C, |T̂C | ≤ |T ′C | · k64/∆;

R3. for every cluster C ∈ C, V (C) ⊆ BG(tC ,∆ · d);

R4. for every cluster C ∈ C, T̂C ⊆ BG(tC ,∆ · d);

25

R5. for every pair C,C ′ ∈ C of distinct clusters, for every pair t′ ∈ T ′C , t
′′ ∈ T ′C′ of terminals,

distG(t′, t′′) ≥ d; and

R6.
⋃
C∈C T̂C = T .

The following lemma summarizes Procedure ProcCut.

Lemma 3.9 There is a deterministic algorithm, called Procedure ProcPartition, whose input is an
n-vertex graph G, a set T ⊆ V (G) of k vertices called terminals, and distance parameters d and ∆.
The output of the procedure is a collection C of disjoint clusters of G, and, for every cluster C ∈ C,
a center terminal tC ∈ TC and sets T ′C , T̂C of terminals, for which Properties(R1)–(R6) hold. The
running time of the procedure is O(|E(G)| · n64/∆).

Proof: Throughout the algorithm, we maintain a set C of disjoint clusters of G, and, for every cluster
C ∈ C, we maintain a center terminal tC ∈ TC , and sets T ′C , T̂C of terminals. We ensure that,
throughout the algorithm, properties (R1)–(R5) hold. The algorithm terminates once we achieve
Property (R6).

At the beginning of the algorithm, we set C = ∅ and G0 = G. We then iterate. In iteration j,
we add a new cluster Cj to set C, and define the corresponding terminal tCj and sets T ′Cj , T̂Cj of

terminals. We denote Gj = G \ (V (C1) ∪ V (C2) ∪ · · · ∪ V (Cj)). As the algorithm progresses, we will
also delete some terminals from the set T . Specifically, we set T (0) = T , and, for all j ≥ 1, we set

T (j) = T \
(
T̂C1 ∪ T̂C2 ∪ · · · ∪ T̂Cj

)
. We will ensure that the following additional invariants hold at the

end of iteration j:

I1. T (j) ⊆ V (Gj), and for every pair t, t′ ∈ T (j) of terminals, if distGj (t, t
′) ≥ 4d, then distG(t, t′) ≥

4d.

I2. for every pair t, t′ of terminals with t ∈
⋃j
j′=1 T

′
Cj′

and t′ ∈ T (j), distG(t, t′) ≥ d.

At the beginning of the algorithm, C = ∅, G0 = G, and T (0) = T . Clearly, Properties (R1)–(R5)
and invariants (I1) and (I2) are satisfied. We perform iterations until Property (R6) holds. We now
describe the execution of the jth iteration.

Execution of the jth iteration. We assume that we are given a set C = {C1, . . . , Cj−1} of disjoint
clusters, and, for every cluster Cj′ ∈ C, a terminal tCj′ , and sets T ′Cj′

, T̂Cj′ of terminals, such that Prop-

erties (R1)–(R5), and Invariants (I1) and (I2) hold. Recall thatGj−1 = G\(V (C1) ∪ V (C2) ∪ · · · ∪ V (Cj−1))

and T (j−1) = T \
(
T̂C1 ∪ T̂C2 ∪ · · · ∪ T̂Cj−1

)
. We assume that Property (R6) does not hold, so there

must be at least one terminal in T (j−1); we let t ∈ T (j−1) be any such terminal.

In order to execute the jth iteration, we apply Procedure ProcCut from Lemma 3.7 to graph Gj−1,
set T (j−1) of terminals, and terminal t, keeping the parameters d and ∆ unchanged. We denote by
Cj the cluster of Gj−1 that the algorithm returns, by T̂Cj ⊆ T (j−1) the resulting set of terminals, and

by T ′Cj = T (j−1) ∩ V (C). Notice that, equivalently, T ′Cj = TCj \
(
T̂C1 ∪ T̂C2 ∪ · · · ∪ T̂Cj−1

)
. We also

denote tCj = t, and we add Cj to C, completing the iteration.

26

Analysis of the jth iteration. We now verify that all required properties hold at the end of
iteration j, assuming that they held at the beginning of the iteration. Consider first Properties (R1)–
(R4). Let C ∈ C be any cluster. If C 6= Cj , then these properties clearly continue to hold for C. Assume
now that C = Cj . Properties (R1) and (R2) immediately follow from Properties (C1) and (C2) that
are guaranteed by Procedure ProcCut, and from the definition of the set T ′C of terminals. Properties
(R3) and (R4) similarly follow from Properties (C3) and (C4), since, for every pair x, y ∈ V (Gj),
distGj−1(x, y) ≥ distG(x, y), and so BGj−1(tC ,∆ · d) ⊆ BG(tC ,∆ · d).

Consider now any pair Cj′ , Cj′′ ∈ C of clusters, and a pair t′ ∈ T ′Cj′ , t
′′ ∈ T ′Cj′′ of terminals. If both

j′, j′′ < j, then we are guaranteed that distG(t′, t′′) ≥ d from the fact that Property (R5) held at the
beginning of the iteration. Assume now w.l.o.g. that j′ < j and j′′ = j. In this case, t′′ ∈ T (j−1),
and, since we have assumed that Invariant (I2) held at the beginning of the iteration, we get that
distG(t′, t′′) ≥ d, establishing Property (R5).

Next, we establish Invariant (I1). Recall that T (j) = T \
(
T̂1 ∪ · · · ∪ T̂j

)
= T (j−1) \ T̂j . Consider

some terminal t′ ∈ T (j), and assume for contradiction that t′ 6∈ V (Gj). Recall that V (Gj) = V (G) \
(V (C1) ∪ · · · ∪ V (Cj)) = V (Gj−1) \ V (Cj). From Invariant (I1), since t′ ∈ T (j−1), t′ ∈ V (Gj−1) must
hold. Since t′ 6∈ V (Gj), it must be the case that t′ ∈ V (Cj). However, set T ′Cj contains every terminal

that lies in V (Cj) \
(
T̂C1 ∪ · · · ∪ T̂Cj−1

)
. Since t′ 6∈ T̂C1 ∪ · · · ∪ T̂Cj−1 , it must be the case that t′ ∈ T ′Cj ,

and so t′ ∈ T̂Cj . But then t′ 6∈ T (j), a contradiction.

Consider now some pair t, t′ ∈ T (j) of terminals, and assume that distGj (t, t
′) ≥ 4d. Note that, if

distGj−1(t, t′) ≥ 4d, then, from the fact that Invariant (I1) held at the beginning of the iteration, we
get that distG(t, t′) ≥ 4d must hold. We now show that distGj−1(t, t′) ≥ 4d must hold. Indeed, assume
otherwise. Let P be any path of length less than 4d in graph Gj−1 connecting t to t′. Since this
path does not lie in graph Gj , at least one vertex v ∈ V (P) must lie in V (Gj−1) \ V (Gj) = V (Cj).
Therefore, graph Gj−1 contains a path P ′ ⊆ P of length less than 4d between a vertex v ∈ V (Cj) and
a terminal t ∈ T (j−1) \ T̂Cj . This is impossible from Property (C5) of Procedure ProcCut. Therefore,
Invariant (I1) continues to hold at the end of iteration j.

Finally, we establish Invariant (I2). Consider a pair t, t′ of terminals with t ∈
⋃j
j′=1 T

′
Cj′

and t′ ∈ T (j).

If t ∈
⋃j−1
j′=1 T

′
Cj′

, then, since Invariant (I2) held at the beginning of the current iteration, we get that

distG(t, t′) ≥ d. Therefore we assume that t ∈ T ′Cj . In this case, t ∈ V (Cj), and t′ ∈ T (j−1) \ T̂Cj holds,

so from Property (C5) of Procedure ProcCut, distGj−1(t, t′) ≥ 4d. From the fact that Invariant (I1)
held at the beginning of the iteration, we then get that distG(t, t′) ≥ 4d.

We conclude that at the end of iteration j, Properties (R1)–(R5), and Invariants (I1) and (I2) continue
to hold.

We terminate Procedure ProcPartition once Property (R6) holds. Since, in every iteration, the number
of vertices in the current graph Gj decreases, we are guaranteed that the algorithm indeed terminates.

Running time analysis. Recall that, from Lemma 3.7, the running time of Procedure ProcCut is
bounded by O(|E(C)| · n64/∆), where C is the cluster that the procedure returns. Therefore, for all j,
the running time of iteration j is at most O(|E(Cj)| ·n64/∆). The total running time of the algorithm
is then bounded by

∑
Cj∈C O(|E(Cj)| · n64/∆). Since the clusters in C are disjoint, we get that the

total running time of Procedure ProcPartition is bounded by O(|E(G)| · n64/∆).

27

3.5.3 Procedure ProcSeparate.

Lastly, we provide Procedure ProcSeparate, whose input is similar to that of Procedure ProcPartition.
The goal of the procedure is to either produce two large subsets T1, T2 of terminals that are sufficiently
far from each other in G, or to compute a single terminal t ∈ T with set BG(t,∆ · d) containing many
terminals.

Lemma 3.10 There is a deterministic algorithm, that we call ProcSeparate, whose input is an n-vertex
graph G, a set T ⊆ V (G) of k vertices called terminals, distance parameters d and ∆, and an additional
parameter 0 < α ≤ 1. The algorithm either computes a terminal t ∈ T with |BG(t,∆·d)∩T | > αk, or it
computes two subsets T1, T2 of terminals, with |T1| = |T2|, such that |T1| ≥ k1−64/∆ ·min

{
(1− α), 1

3

}
,

and for every pair t ∈ T1, t′ ∈ T2 of terminals, distG(t, t′) ≥ d. The running time of the algorithm is
O(|E(G)| · n64/∆).

Proof: We use the following simple observation.

Observation 3.11 There is a deterministic algorithm, that, given a collection {k1, k2, . . . , kr} of non-
negative integers with

∑r
j=1 kj = k and maxj {kj} ≤ αk, computes a partition (J1, J2) of the set

J = {1, . . . , r} of indices, such that
∑

j∈J1
kj ,
∑

j∈J2
kj ≥ k ·min {(1− α), 1/3}. The running time of

the algorithm is O(r).

Proof: Assume w.l.o.g. that k1 = maxj {kj}. Assume first that k1 ≥ k/3. In this case, we let
J1 = {k1} and J2 = J \ J1. Clearly,

∑
j∈J2

kj ≥
∑r

j=1 kj − k1 ≥ (1− α)k, while
∑

j∈J1
kj ≥ k/3.

Assume now that k1 < k/3. In this case, we start with J1 = J2 = ∅, and process the indices of J one
by one. When index j is processed, we add it to J1 if

∑
j′∈J1

kj′ ≤
∑

j′∈J1
kj′ currently holds, and we

add it to J2 otherwise. It is easy to verify that, at the end of this algorithm, |
∑

j′∈J1
kj′−

∑
j′∈J2

kj′ | ≤
maxj′∈J

{
kj′
}
≤ k/3. Therefore,

∑
j∈J1

kj ,
∑

j∈J2
kj ≥ k/3.

We are now ready to describe the algorithm for the proof of Lemma 3.10. We start by applying
Procedure ProcPartition from Lemma 3.9 to graph G, the set T of terminals, and parameters d and

∆. Let

(
C = {C1, . . . , Cr} ,

{
tCj
}r
j=1

,
{
T̂ ′Cj

}r
j=1

,
{
T̂Cj

}r
j=1

)
be the outcome of the procedure. For

1 ≤ j ≤ r, denote kj = |T̂j |. If there is a cluster Cj ∈ C with kj > αk, then we return terminal tCj ;

from Property (R4), T̂Cj ⊆ BG(tCj ,∆ · d), and so |BG(tC ,∆ · d) ∩ T | ≥ |T̂Cj | = kj > αk must hold.

Assume now that, for all 1 ≤ j ≤ r, kj ≤ αk. Using the algorithm from Observation 3.11, we
compute a partition (J1, J2) of the set J = {1, . . . , r} of indices, such that

∑
j∈J1

kj ,
∑

j∈J2
kj ≥

k ·min {(1− α), 1/3}.

Denote T̂ 1 =
⋃
j∈J1

T̂Cj , and T̂ 2 =
⋃
j∈J2

T̂Cj . Then |T̂ 1|, |T̂ 2| ≥ k · min {(1− α), 1/3}. Lastly, we
let T1 =

⋃
j∈J1

T ′Cj and T2 =
⋃
j∈J2

T ′Cj . From Property (R5) of ProcPartition, for every pair t ∈ T1,

t′ ∈ T2 of terminals, distG(t, t′) ≥ d. From Property (R2), |T1| ≥ |T̂ 1|/k64/∆, and |T2| ≥ |T̂ 2|/k64/∆.
We conclude that |T1|, |T2| ≥ k1−64/∆ ·min

{
(1− α), 1

3

}
. We discard terminals from the larger of the

sets T1, T2 as needed, until the cardinalities of both sets become equal.

The running time of the algorithm is dominated by the running time of the algorithm from Lemma 3.9,
and is bounded by O(|E(G)| · n64/∆).

3.6 Basic Path Peeling.

In this subsection we present an algorithm, that we refer to as ProcPathPeel. This is a simple greedy
algorithm for connecting pre-specified pairs of subsets of vertices to each other with short paths.

28

Similar algorithms were used numerous times before (see e.g. Lemma 6.2 in [CK19], as well as [CS21,
Chu21], and Theorems 3.2 and 3.8 in [CGL+20]).

The input to Procedure ProcPathPeel consists of a graph G, collections A1, B1, . . . , Ak, Bk of subsets
of its vertices, and parameters d, η > 0. The output of the procedure is collections P1,P2, . . . ,Pk of
paths in graph G, for which the following properties hold:

P1. for all 1 ≤ i ≤ k, every path in Pi connects a vertex of Ai to a vertex of Bi, and the endpoints
of all paths in Pi are distinct;

P2. every path in set P =
⋃k
i=1 Pi has length at most d, and the paths in P cause congestion at

most η; and

P3. let E′ be the set of all edges e ∈ E(G), such that exactly η paths of P use e. For all 1 ≤ i ≤ k,
let A′i ⊆ Ai, B

′
i ⊆ Bi be the sets of vertices that do not serve as endpoints of the paths in Pi.

Then for all 1 ≤ i ≤ k, distG\E′(A
′
i, B

′
i) > d.

We note that we allow a path of Pi to contain vertices of Ai ∪ Bi, and also vertices from other sets
Aj ∪Bj as inner vertices. The following simple lemma summarizes our algorithm for ProcPathPeel.

Lemma 3.12 There is a deterministic algorithm, called ProcPathPeel, that, given a graph G, collec-
tions A1, B1, . . . , Ak, Bk of subsets of its vertices, and parameters d, η > 0, outputs sets P1,P2, . . . ,Pk
of simple paths in G, for which properties (P1) – (P3) hold. The running time of the algorithm is
O(mη +mdk log n), where m = |E(G)| and n = V (G).

Proof: We use a simple greedy algorithm combined with the ES-Tree data structure. The algorithm
consists of k phases, where for all 1 ≤ i ≤ k, we construct the set Pi of paths in phase i. At the
beginning of the algorithm, we set, for all 1 ≤ i ≤ k, Pi = ∅. Throughout the algorithm, we maintain
the set P =

⋃k
i=1 Pi of paths (that is set to ∅ at the beginning), and, for every edge e ∈ E(G), we

maintain a counter n(e), whose value is equal to the number of paths in P containing e. At the
beginning of the algorithm, we initialize n(e) = 0 for every edge e.

We now describe the execution of the ith phase, for some 1 ≤ i ≤ k. We start by constructing a
graph Gi. Initially, we let Gi = G. We then delete from Gi every edge e ∈ E(G) with n(e) = η.
Additionally, we add a source vertex si to Gi, that connects with an edge to every vertex of Ai, and a
destination vertex ti, that connects with an edge to every vertex of Bi. We also initialize an ES-Tree
data structure Ti in graph Gi, with source vertex si, and distance bound d+ 2.

We then perform iterations, as long as the distance between si and ti in Ti is bounded by d+2. In every
iteration, we use the ES-Tree data structure Ti to compute the shortest si-ti path P in the current
graph Gi, whose length must be at most d+ 2. We delete the first and the last edges of P , obtaining a
path P ′ of length at most d, that connects some vertex x ∈ Ai to some vertex y ∈ Bi. We add path P ′

to Pi, and increase the counter n(e) for every edge e ∈ E(P ′). We then update the current graph Gi,
by deleting the edges (si, x), (y, ti) from it, as well as every edge e whose counter n(e) has reached η.
The ES-Tree data structure Ti is also updated with these deletions. Once the ES-Tree data structure
Ti reports that the distance between si and ti in the current graph Gi is greater than d+ 2, the phase
terminates. This completes the description of a phase, and of the algorithm.

From the description of the algorithm, it is immediate to verify that properties (P1) and (P2) hold
for the resulting sets P1, . . . ,Pk of paths. Property (P3) is also easy to establish. Indeed, assume for
contradiction that, for some index 1 ≤ i ≤ k, there is a path P ′ of length at most d, connecting a

29

vertex of A′i to a vertex of B′i in graph G \ E′. Then this path must have existed in graph Gi at the
end of the ith phase, and so the phase should not have terminated when it did.

Lastly, we bound the running time of the algorithm. Let m = |E(G)|. The time that is required to
maintain a single ES-Tree Ti is bounded by O(md log n). Additionally, whenever a path P is added to
set P, the algorithm spends O(|E(P)|) time on processing this path, and on increasing the counters
n(e) of edges e ∈ E(G). Since the counter of an edge may be increased at most η times, the total
running time of the algorithm is bounded by O(mη +mkd log n).

4 The Distanced Matching Game

The goal of the Distanced Matching Game is to construct a well-connected graph, that we define next.

Definition 4.1 (Well-connected graph) Let G = (V,E) be a graph, let S(G) ⊆ V be a subset of
its vertices called supported vertices, and let η,D > 0 be parameters. We say that graph G is (η,D)-
well-connected with respect to the set S(G) of supported vertices if, for every pair A,B ⊆ S(G) of
disjoint equal-cardinality subsets of supported vertices, there is a collection P(A,B) of paths in graph
G, routing every vertex of A to a distinct vertex of B (that is, P(A,B) is a one-to-one routing of A
to B), such that the paths in P(A,B) cause congestion at most η, and the length of every path is at
most D.

Unlike the Cut-Matching Game, whose goal is to construct an expander graph, the goal of the Distanced
Matching Game is to construct a graph that is (η,D)-well-connected with respect to a set S(G) of
supported vertices; typically, for an n-vertex graph G, we will require that |S(G)| ≥ n − n1−Θ(ε),
η ≤ nO(ε), and D = 2O(1/ε), for a given parameter 0 < ε < 1.

The main component of the Distanced Matching Game is a distancing, that is defined next. Distancings
play a role similar to that of cuts in the Cut-Matching Game.

Definition 4.2 (Distancing) Let G be an n-vertex graph, and let 0 < δ < 1, d > 0 be parameters.
A (δ, d)-distancing for G is a triple (A,B,E′), where A,B are disjoint subsets of V (G) of cardinality
at least n1−δ each, with |A| = |B|, and E′ ⊆ E(G) is a subset of edges of cardinality at most |A|/16.
We require that distG\E′(A,B) ≥ d.

While the notion of distancing, to the best of our knowledge, was never formally defined before, it
is a well-known and widely used fact that one can efficiently obtain a sparse cut in a graph from a
distancing. The following lemma, whose analogues have been widely used before, summarizes such an
algorithm. The proof uses standard ball-growing technique, and appears in Section A of Appendix.

Lemma 4.1 There is a deterministic algorithm, whose input consists of a connected graph G with
|V (G)| = n and |E(G)| = m, a parameter 0 < ϕ < 1/2, and a (δ, d)-distancing (X,Y,E′) in G, where
0 < δ < 1 is any parameter, d ≥ (32 logm)/ϕ, and |E′| ≤ ϕ|X|/4. The algorithm computes a cut
(X ′, Y ′) in graph G, with X ⊆ X ′ and Y ⊆ Y ′, such that |EG(X ′, Y ′)| ≤ ϕ ·min {|EG(X ′)|, |EG(Y ′)|}.
The running time of the algorithm is bounded by O(n+ min {|EG(X ′)|, |EG(Y ′)|}).

We note that, if the maximum vertex degree in G is bounded by ∆, then |EG(X ′)| ≤ ∆ · |X ′|,
and similarly |EG(Y ′)| ≤ ∆ · |Y ′|. Therefore, the algorithm guarantees that |EG(X ′, Y ′)| ≤ ϕ · ∆ ·
min {|X ′|, |Y ′|}.

A Distanced Matching Game receives as input an integral parameter n, and two other parameters
0 < δ < 1 and d ≥ 24/δ. The game is played between a distancing player and a matching player, in

30

iterations. Over the course of the game, a graph G is constructed. Initially, graph G contains a set V
of n vertices and no edges. In every iteration, some edges are added to G.

The ith iteration is executed as follows. First, the distancing player either computes a (δ, d)-distancing
(Ai, Bi, E

′
i) in the current graph G, or returns “END”. If the distancing player returned “END”,

then the game terminates, and we say that the game lasted for (i − 1) iterations. Otherwise, the
matching player computes a (possibly partial) matching Mi between vertices of Ai and vertices of Bi,
of cardinality at least |Ai|/8. We require that Mi does not contain pairs (u, v) of vertices for which
edge (u, v) ∈ E′. We note that Mi is not a subset of edges of G; it is just a collection of pairs of
vertices from Ai ×Bi, with every vertex of Ai ∪Bi appearing in at most one pair in Mi. We add the
edges of Mi to graph G, completing iteration i, and proceed to the next iteration.

We note that, once the current graph G contains no (δ, d)-distancing, the game must terminate. From
the above description, graph G remains a simple graph (that is, we never add parallel edges to it).

The main technical result of this section is the proof of Theorem 2.1, that bounds the number of
iterations in the Distanced Matching Game. We restate the theorem here for convenience.

Theorem 4.2 (Restatement of Theorem 2.1) Consider a Distanced Matching Game with param-

eters n > 0, 0 < δ < 1/4 and d, such that d ≥ 24/δ and nδ ≥ 214 logn
δ2 . Then the number of iterations

in the game is at most n8δ.

We note that we do not currently know whether the bounds in this theorem are tight, and in particular
whether the requirement that d ≥ 24/δ is necessary. It would be interesting to establish whether a
similar theorem can be proved for values of d that have a lower dependence on 1/δ.

We now turn to prove Theorem 4.2. We assume that the paramters n, δ and d are fixed. We let V be
a set of n vertices, over which the game is played.

Consider a Distanced Matching Game that lasts for z iterations. We can summarize the game via
a transcript T = ((A1, B1, E

′
1),M1, . . . , (Az, Bz, E

′
z),Mz), where for 1 ≤ i ≤ z, (Ai, Bi, E

′
i) is the

distancing computed by the distancing player, and Mi is the matching returned by the matching
player in iteration i. For all 1 ≤ i ≤ z, we denote by Gi the graph obtained after i iterations of the
game, so V (Gi) = V and E(Gi) =

⋃i
i′=1Mi′ . We also let G0 be the graph with V (G0) = V and

E(G0) = ∅.

Consider now any subset I ⊆ {1, . . . , z} of indices, and assume that I = {i1, i2, . . . , iq} with i1 < i2 <
· · · < iq. Consider now the following sequence, that, intuitively corresponds to only executing the
iterations of the Distanced Matching Game whose indices lie in I:

T′ =
(

(Ai1 , Bi1 , E
′′
i1),Mi1 , . . . , (Aiq , Biq , E

′′
iq),Miq

)
.

Here for all 1 ≤ j ≤ q, E′′ij is defined to be E′ij ∩
(⋃j−1

j′=1Mij′

)
.

We claim that T′ is a valid transcript of a Distanced Matching Game. In order to show this, for all
1 ≤ j ≤ q, let G′j be the graph obtained after j iterations of the game, that is, V (G′j) = V , and

E(G′j) =
⋃j
j′=1Mij′ . We also let G′0 be the graph containing the set V of vertices and no edges. It is

enough to show that, for all 1 ≤ j ≤ q, (Aij , Bij , E
′′
ij

) is a valid (δ, d)-distancing in graph G′j−1. We
now prove that this is indeed the case.

Since (Aij , Bij , E
′
ij

) is a valid (δ, d)-distancing in the graph Gij−1 obtained after (ij − 1) iterations of
the original Distanced Matching Game, it is enough to show that there is no path of length less than
d connecting a vertex of Aij to a vertex of Bij in graph G′ij−1

\ E′′ij . Assume for contradiction that

31

such a path P exists. Recall that G′ij−1
⊆ Gij−1, and that every edge e ∈ E′ij ∩ E(G′ij−1

) lies in E′′ij .

Therefore, path P also lies in graph Gij−1 \ E′ij , contradicting the fact that (Aij , Bij , E
′
ij

) is a valid

(δ, d)-distancing in graph Gij−1. We conclude that (Aij , Bij , E
′′
ij

) is a valid (δ, d)-distancing in graph

G′j−1, and T′ is a valid transcript of a Distanced Matching Game.

To summarize, we can select a subset of iterations from the transcript of the Distanced Matching Game,
and obtain a valid transcript of a Distanced Matching Game, induced by these iterations. We say that
the Distanced Matching Game associated with transcript T′ is defined by the set I of indices.

For the sake of the proof of Theorem 4.2, it would be convenient for us to assume that the cardinalities
of the matchings Mi returned in every iteration of the Distanced Matching Game are roughly the same.
In order to do so, we partition the set I∗ = {1, . . . , z} of indices into at most r = d16δlog ne subsets,
as follows. Recall that for all 1 ≤ i ≤ z, we are guaranteed that |Mi| ≥ |Ai|/8 ≥ n1−δ/8, and clearly
|Mi| ≤ n must hold. For all 1 ≤ j ≤ r, we let Ij ⊆ I∗ contain all indices i, for which n

2j
< |Mi| ≤ n

2j−1 .
Clearly, there must be an index j, such that |Ij | ≥ z

r = z
d16δ logne . From now on we will focus on the

Distanced Matching Game that is defined by the set Ij of indices, and we will bound the number of
iterations in this game, that we denote by z′ ≥ z

d16δ logne . For simplicity of notation, for all 1 ≤ i ≤ z′,
we denote the distancing associated with the ith iteration of the game by (Ai, Bi, E

′
i) and the matching

associated with iteration i by Mi. As before, we denote by G0 the graph whose vertex set is V and
edge set is empty, and for 1 ≤ i ≤ z′, we let Gi be the graph obtained after i iterations of the game,
that is, V (Gi) = V and E(Gi) = M1 ∪ · · · ∪Mi. We also denote I = {1, . . . , z′} and G = Gz′ .

Let E∗ =
⋃z′

i=1E
′
i, and for all 1 ≤ i ≤ z′, let M ′i = Mi \ E∗. We also denote H0 = G0, and for all

1 ≤ i ≤ z′, we let Hi be a graph whose vertex set is V , and edge set is E(Gi) \ E∗ =
⋃i
i′=1M

′
i′ . We

also denote H = Hz′ . The following observation is immediate from the definitions.

Observation 4.3 For all 1 ≤ i ≤ z′, (Ai, Bi, ∅) is a (δ, d)-distancing in graph Hi; in other words,
there is no path of length less than d connecting Ai to Bi in Hi.

Note that:

|E(H)| = |E(G) \ E∗| =
z′∑
i=1

|Mi| −
z′∑
i=1

|E′i| ≥
z′∑
i=1

(|Mi| − |E′i|) ≥
z′∑
i=1

|Mi|
2
≥ |E(G)|

2
. (1)

We have used the fact that, from the definition of the Distanced Matching Game, for all i, |Mi| ≥ |Ai|/8,
while |E′i| ≤ |Ai|/16, so |E′i| ≤ |Mi|/2 must hold.

We say that an iteration i ∈ I is bad if |M ′i | < |Mi|/16; otherwise, iteration i is good. We let Ib ⊆ I
be the set of all indices i, such that the ith iteration is bad, and we let Ig = I \ Ib be the set of all
indices of good iterations. We use the following simple observation.

Observation 4.4 |Ib| ≤ 7z′/8.

Proof: Denote |I
b|
z′ = β, and assume for contradiction that β > 7/8. Recall that, for all i ∈ I,

n
2j
< |Mi| ≤ n

2j−1 . Therefore:

32

|E(H)| =
∑
i∈Ib
|M ′i |+

∑
i∈Ig
|M ′i |

≤ β · z′ · n

16 · 2j−1
+ (1− β) · z′ · n

2j−1

=
2z′n

2j
− βz′n

2j
· 15

8

≤ 2z′n

2j
− z′n

2j
· 7

8
· 15

8

≤ 23

64
· z
′n

2j

<
z′n

2j+1
.

On the other hand, from Equation 1:

|E(H)| ≥
z′∑
i=1

|Mi|
2
≥ z′n

2j+1
,

a contradiction. We conclude that β ≤ 7z′/8 holds.

To summarize, so far we have shown that:

|Ig| ≥ z′

8
≥ z

256δ log n
. (2)

In order to bound z, it is now enough to bound the number of good iterations in the game. In order
to do so, we partition the game into phases, each of which (except for, possibly, the last one), contains
exactly

⌈
n4δ
⌉

good iterations. It is now enough to prove the following lemma.

Lemma 4.5 The number of phases is bounded by 2n2δ

δ .

Indeed, assume that Lemma 4.5 holds. Then |Ig| ≤ 2n2δ

δ ·
⌈
n4δ
⌉
≤ 4n6δ

δ , and, from Equation 2, we get
that:

z ≤ |Ig| · 256δ log n ≤ 1024n6δ log n ≤ n7δ,

since nδ ≥ 1024 log n.

In order to complete the proof of Theorem 4.2, it is now enough to prove Lemma 4.5, which we do
next. We denote the number of phases in the game by ẑ.

For every integer 1 ≤ k ≤ ẑ, we denote by Ĥ(k) the graph H at the beginning of the kth phase. In
other words, if the last iteration of phase (k− 1) is i, then Ĥ(k) = Hi. We will define, for every phase
k, a collection C(k) of disjoint subgraphs of H(k), that we refer to as clusters; we also refer to C(k) as

a clustering of graph H(k). For all integers 1 ≤ s ≤ d1/δe, we let C(k)
s ⊆ C(k) be the set of all clusters

C ∈ C(k), with n(s−1)δ < |V (C)| ≤ nsδ, and let C(k)
0 ⊆ C(k) be the set of all clusters C containing a

single vertex. For 0 ≤ s ≤ d1/δe, we say that a cluster C ∈ C(k)
s lies at level s of the clustering C(k).

If cluster C lies at level s of C(k), then we say that every vertex of C lies at level s of C(k).

We will ensure that the following invariants hold for every integer 1 ≤ k ≤ ẑ:

33

I1. V =
⋃
C∈C(k) V (C);

I2. for all 0 ≤ s ≤ d1/δe, if C ∈ C(k)
s is a level-s cluster of C(k), then for every pair x, y ∈ V (C) of

vertices, distC(x, y) ≤ 4s (and in particular distC(x, y) < d must hold, as d ≥ 24/δ); and

I3. if C is a cluster of C(k), and C ′ is a cluster of C(k+1), then either V (C)∩ V (C ′) = ∅, or C ⊆ C ′.

Note that Invariant I3 ensures that, if C ′ is a cluster of C(k+1), then either C ′ is a cluster of C(k), or
C ′ is obtained by taking the union of several clusters of C(k), and possibly adding some edges to the
resulting graph. In particular, the level of any given vertex v ∈ V may only grow from phase to phase.
Consider now some vertex v ∈ V . If vertex v lies at level s of C(k), and at level s′ > s of C(k+1), then
we say that vertex v was promoted by C(k+1), or that it is promoted during phase k.

Initially, we let C(1) contain, for every vertex v ∈ V , a separate cluster C(v), consisting of only vertex v
iteslf, so C(1) = {C(v) | v ∈ V }. Therefore, every vertex lies at level 0 of C(1). Clearly, as the algorithm
progresses, the level of a vertex may be at most d1/δe. The key in bounding the number of phases is
to show that the clusterings C(k) can be constructed so that a large number of vertices are promoted
in every phase. Since every vertex may only be promoted at most d1/δe times, this will be sufficient
in order to bound the number of phases. In order to complete the proof of Lemma 4.5, it is enough to
prove the following claim.

Claim 4.6 Consider some integer k ≥ 1, such that phase k is not the last phase, and assume that
we are given a clustering C(k) of graph Ĥ(k), for which Invariants I1 and I2 hold. Then there is a
clustering C(k+1) of graph Ĥ(k+1), for which Invariants I1 and I2 hold. Additionally, for every pair
C ∈ C(k), C ′ ∈ C(k+1) of clusters, either V (C) ∩ V (C ′) = ∅ or C ⊆ C ′ hold. Lastly, the number of
vertices that are promoted in C(k+1) is at least n1−2δ.

Note that Lemma 4.5 follows immediately from Claim 4.6. Since every vertex may be promoted at
most d1/δe times, and every phase promotes at least n1−2δ vertices, the total number of phases must

be bounded by n·d1/δe
n1−2δ ≤ 2n2δ

δ . We now prove Claim 4.6.

Proof of Claim 4.6. Let Ik ⊆ I be the collection of indices i ∈ I, such that iteration i belongs to
phase k, and let I ′k = Ik ∩ Ig be the set of indices corresponding to good iterations of phase k. Recall
that |I ′k| =

⌈
n4δ
⌉
. We will use the following simple observation.

Observation 4.7 Consider an iteration i ∈ Ik, and the corresponding distancing (Ai, Bi, E
′
i). Then

for every cluster C ∈ C(k), either Ai ∩ V (C) = ∅, or Bi ∩ V (C) = ∅. Moreover, if there is a pair
C,C ′ ∈ C(k) of clusters, such that some edge e ∈M ′i connects a vertex of C to a vertex of C ′, then for
every subsequent iteration i′ > i, either Ai′ ∩ (V (C) ∪ V (C ′)) = ∅, or Bi′ ∩ (V (C) ∪ V (C ′)) = ∅ must
hold.

Proof: We fix an index i ∈ Ik, and consider the corresponding distancing (Ai, Bi, E
′
i). From Obser-

vation 4.3, (Ai, Bi, ∅) is a (δ, d)-distancing in graph Hi. Therefore, if P is any path in Hi connecting a
vertex of Ai to a vertex of Bi, then the length of P is at least d. Consider now some cluster C ∈ C(k),

and assume that C ∈ C(k)
s , for some 0 ≤ s ≤ d1/δe. Assume for contradiction that there is a pair

u, v ∈ V (C) of vertices, with u ∈ Ai and v ∈ Bi. From Invariant I2, distC(u, v) ≤ 4s ≤ 4d1/δe < d
(since d ≥ 24/δ). Since C ⊆ Ĥ(k) ⊆ Hi, this is a contradiction.

Assume now that there is a pair C,C ′ ∈ C(k) of clusters, such that some edge e ∈ M ′i connects a
vertex of C to a vertex of C ′. Using the same reasoning as above, and since edge e is added to graph
Hi+1, we get that, for every pair u ∈ V (C), v ∈ V (C ′) of vertices, distHi+1(u, v) ≤ 1 + 2 · 4d1/δe < d.

34

Therefore, for all i′ > i, distHi′ (u, v) < d holds as well. Since, from Observation 4.3, (Ai′ , Bi′ , ∅) is a
(δ, d)-distancing in graph Hi′ , we conclude that at most one of the sets Ai′ , Bi′ may contain a vertex
of V (C) ∪ V (C ′).

In the remainder of the proof of Claim 4.6, we consider good iterations i ∈ I ′k. For each such iteration
i, we will select a large enough subset M ′′i ⊆ M ′i of edges, and integers 0 ≤ s′, s ≤ d1/δe, so that
every edge in M ′′i connects a vertex of

⋃
C∈C(k)

s
V (C) to a vertex of

⋃
C′∈C(k)

s′
V (C ′). We then say that

iteration i belongs to class (s, s′). Since the number of possible classes is small, we can find a class
(s, s′) to which many iterations of I ′k belong. Assume w.l.o.g. that s ≥ s′. We will then use the
iterations of I ′k from class (s, s′) in order to identify a large number of level-s clusters that can be
merged together, so that, on the one hand, Invariants I1 and I2 continue to hold, while, on the other
hand, a large number of vertices are promoted. The remainder of the proof of Claim 4.6 consists of
three steps. In the first step, we define a subset M ′′i ⊆ M ′i of edges for each iteration i ∈ I ′k, and
classify the iteration into some class (s, s′). Then in the second step we define a new contracted graph

J , representing the clusters of C(k)
s ∪C(k)

s′ , where (s, s′) is the most common class among the iterations
of I ′k. Graph J is then used in Step 3 in order to define the new clustering C(k+1). We now present
each of the three steps in turn.

Step 1: Iteration Classification. Consider an iteration i ∈ I ′k. Since iteration i is good, |M ′i | ≥
|Mi|
16 ≥

|Ai|
128 ≥

n1−δ

128 . Consider now an edge e = (u, v) ∈ M ′i , with u ∈ Ai, v ∈ Bi. From Invariant I1,

there must be clusters C,C ′ ∈ C(k) with u ∈ V (C) and v ∈ V (C ′). Moreover, from Observation 4.7,
C 6= C ′ must hold. We say that edge e is of type (s, s′), for a pair 0 ≤ s, s′ ≤ d1/δe of indices, if

C ∈ C(k)
s and C ′ ∈ C(k)

s′ ; note that it is possible that s = s′. Clearly, there is a pair 0 ≤ s, s′ ≤ d1/δe of

indices, such that the number of edges of type (s, s′) in M ′i is at least
|M ′i |

(1+d1/δe)2 ≥ n1−δ·δ2

512 . From now

on we fix this pair of indices, and we denote by M ′′i ⊆M ′i the set of all edges of type (s, s′) in M ′i , so

|M ′′i | ≥ n1−δ·δ2

512 . We say that iteration i is an iteration of type (s, s′).

Note that there must be an ordered pair (s, s′) of indices, with 0 ≤ s, s′ ≤ d1/δe, such the number of

good iterations in I ′k that are of type (s, s′) is at least:
|I′k|

(1+d1/δe)2 ≥ δ2

6 ·
⌈
n4δ
⌉
. From now on we fix

this pair (s, s′) of indices, and we denote by I ′′k ⊆ I ′k the set of all good iterations i from phase k that

are of type (s, s′), so |I ′′k | ≥
δ2

6 ·
⌈
n4δ
⌉
. We assume w.l.o.g. that s ≥ s′.

Step 2: Contracted Graph. In this step we construct a weighted contracted graph J , as follows.

For every cluster C ∈ C(k)
s ∪ C(k)

s′ , we add a vertex v(C) to graph J ; we refer to vertices of J as
supernodes, to distinguish them from vertices of V . The set of edges of J is the union of the sets
{Ei | i ∈ I ′′k} of edges that we define below. We refer to the edges of J as meta-edges. For every
iteration i ∈ I ′′k , every meta-edge ê ∈ Ei represents some collection S(ê) ⊆M ′′i of edges.

Consider some iteration i ∈ I ′′k . For every pair C ∈ C(k)
s , C ′ ∈ C(k)

s′ of clusters, such that at least one
edge of M ′′i connects a vertex of C to a vertex of C ′, we add a meta-edge ê = (v(C), v(C ′)) to Ei.
We let S(ê) be the set of all edges of M ′′i that connect vertices of C to vertices of C ′, and we set the
weight of the meta-edge ê to be w(ê) = |S(ê)|. We note that, since M ′′i is a matching of cardinality at

least n1−δ·δ2

512 , we get that
∑

ê∈Ei w(e) ≥ n1−δ·δ2

512 . Moreover, for every cluster C ∈ C(k)
s ∪ C(k)

s′ , the total
weight of all meta-edges of Ei incident to C is at most |V (C)|.

Consider a pair i, i′ ∈ I ′′k of indices with i < i′. Note that, if a meta-edge (v(C), v(C ′)) belongs to
Ei, then, from Observation 4.7, meta-edge (v(C), v(C ′)) may not lie in Ei′ . We set E(J) =

⋃
i∈I′′k

Ei.

From the above discussion, graph J contains no parallel edges. For every supernode v(C) ∈ V (J),

35

the total weight of all meta-edges incident to v(C) is bounded by |V (C)| · |I ′′k |. The total weight of all

meta-edges in graph J is at least n1−δ·δ2

512 · |I ′′k |.

Step 3: Constructing the Clustering C(k+1). In order to construct clustering C(k+1), we start
with C(k+1) = C(k), and then iteratively merge some clusters of C(k+1). In every iteration, we consider

the graph J . Assume that there is a cluster C ′ ∈ C(k)
s′ , such that supernode v(C ′) has at least nδ

neighbor vertices in graph J . We denote the neighbor vertices of v(C ′) by v(C1), . . . , v(Cq). Note that

for all 1 ≤ a ≤ q, Ca ∈ C(k)
s must hold. We delete clusters C ′, C1, . . . , Cq from C(k+1), and instead

add a single cluster C∗, whose vertex set is V (C ′) ∪ V (C1) ∪ · · · ∪ V (Cq), and edge set is the union
of E(C ′) ∪ E(C1) ∪ · · · ∪ E(Cq) with the set

⋃q
a=1 S(v(C ′), v(Ca)) of edges. Note that C∗ ⊆ Ĥ(k+1)

holds. We then delete vertices v(C ′), v(C1), . . . , v(Cq) from graph J .

Observe that, for every vertex x ∈ V (C∗), the level of x in C(k) was either s or s′ ≤ s. Moreover,
if C ∈ C(k) is the cluster that contained x, then |V (C∗)| > nδ · |V (C)|. Therefore, the level of x in
C(k+1) is strictly greater than that in C(k). We conclude that every vertex in V (C∗) is promoted in the
current phase, and the level of cluster C∗ is at least (s+ 1). We use the following simple observation,
that will allow us to establish Invariant I2.

Observation 4.8 For every pair x, y ∈ V (C∗) of vertices, distC∗(x, y) ≤ 4s+1.

Proof: If both x and y belong to a single cluster of {C ′, C1, . . . , Cq}, then, since Invariant I2 held for
C(k), and since each such cluster is contained in C∗, distC∗(x, y) ≤ 4s must hold. Assume now that x
and y belong to different clusters. We assume w.l.o.g. that x ∈ V (C1) and y ∈ V (C2); the other cases
are treated similarly.

From the definition of cluster C∗, meta-edges ê1 = (v(C ′), v(C1)), ê2 = (v(C ′), v(C2)) lie in J . Consider
any real edge e1 ∈ S(ê1) and e2 ∈ S(ê2). Both edges must lie in Ĥ(k+1), and in C∗. We denote
e1 = (x1, y1) with x1 ∈ V (C1), and e2 = (x2, y2) with y2 ∈ V (C2). In particular, y1, x2 ∈ V (C ′) must
hold. From Invariant I2, there is a path P1 of length at most 4s connecting x to x1 in C1; a path P ′

of length at most 4s
′ ≤ 4s connecting y1 to x2 in C ′; and a path P3 of length at most 4s connecting

y2 to y in C2. By combining these three paths with edges e1 and e2, we obtain a path in cluster C∗,
connecting x to y, whose length is at most 3 · 4s + 1 ≤ 4s+1. Therefore, distC∗(x, y) ≤ 4s+1.

The algorithm terminates once, every supernode v(C ′) of J with C ′ ∈ C(k)
s′ , the number of meta-edges

incident to v(C ′) in the current graph J is less than nδ.

From the above discussion, once the algorithm terminates, Invariant I2 holds for the final clustering
C(k+1), as every newly added cluster to C(k+1) belongs to level (s + 1) or higher. It is immediate to
verify that Invariant I1 holds for the final set C(k+1) of clusters. It now only remains to prove that
sufficiently many vertices are promoted in the current iteration.

Consider the graph J that is obtained at the end of the algorithm. In this graph, for every cluster

C ′ ∈ C(k)
s′ , its corresponding supernode v(C ′) has fewer than nδ meta-edges incident to v(C ′). Since,

for every meta-edge ê ∈ E(J) that is incident to a supernode v(C), w(ê) ≤ |V (C)| must hold, we get
that the total weight of all edges remaining in graph J at the end of the algorithm is bounded by:

∑
C′∈C(k)

s′

|V (C ′)| · nδ ≤ n1+δ.

Recall that the total weight of all meta-edges of J at the beginning of the algorithm was at least:

36

n1−δ · δ2

512
· |I ′′k | ≥

n1+3δ · δ4

212
> 2n1+δ,

since |I ′′k | ≥
δ2

6 ·
⌈
n4δ
⌉

and nδ ≥ 214/δ2.

Therefore, the total weight of the meta-edges that remain at the end of the algorithm in J is less than
half the original total weight. In other words, the total weight of all meta-edges that were deleted
from J is at least n1−δ·δ2

1024 · |I ′′k |. Each of the deleted meta-edges is incident to some supernode v(C),

with C ∈ C(k)
s that was deleted from J . Recall that every vertex of such a cluster C is promoted in

the current phase.

Consider now some supernode v(C) that was deleted from J in the current phase. The total weight
of all meta-edges incident to v(C) in the original graph J was at most |V (C)| · |I ′′k |, and each of the
vertices of C was promoted in phase k. Therefore, if we denote by U is the set of all vertices of V
that were promoted in phase k, then the total weight of all meta-edges that were deleted from J is at
most |U | · |I ′′k |. Since, as shown above, the total weight of all such edges is at least n1−δ·δ2

1024 · |I
′′
k |, and

since we have assumed that nδ ≥ 214/δ2, we get that |U | ≥ n1−δ·δ2

1024 ≥ n1−2δ.

This concludes the proof of Theorem 4.2. We obtain the following immediate corollary of the theorem.

Corollary 4.9 Consider a Distanced Matching Game with parameters n > 0, 0 < δ < 1/4 and d,

such that d ≥ 24/δ, nδ ≥ 214 logn
δ2 . Let G be the graph that is obtained at the end of the game. Then

|E(G)| ≤ n1+8δ holds, and every vertex of G has degree at most n8δ.

The corollary follows from the fact that the set E(G) of edges is partitioned into at most n8δ matchings
– the responses of the matching player in the game.

5 Hierarchical Support Structure

A Hierarchical Support Structure uses two parameters, an integer N > 0, and another parameter
0 < ε ≤ 1/4. Throughout, we denote ε′ = ε4. For an integer j ≥ 1, we also let ηj = N6+256jε2 and

d̃j = 2cj/ε
4
, where c is a sufficiently large constant.

For all 1 ≤ j ≤ d1/εe, we define a level -j Hierarchical Support Structure for a graph containing N j

vertices. The definition of the support structure is recursive.

Level-1 Hierarchical Support Structure. Given a graphH with |V (H)| = N , level-1 Hierarchical
Support Structure for H consists of a subset S(H) of vertices of H, such that |V (H)\S(H)| ≤ N1−ε4 .

Level-j Hierarchical Support Structure. Consider now some integer 1 < j ≤ d1/εe. Let H
be a graph with |V (H)| = N j . A level-j Hierarchical Support Structure for graph H consists of the
following:

• a collection H = {H1, . . . ,Hr} of r = N −
⌈
2N1−ε4

⌉
graphs, such that all vertices in sets

V (H1), V (H2), . . . , V (Hr) are mutually disjoint, and additionally, for all 1 ≤ i ≤ r: V (Hi) ⊆
V (H); |V (Hi)| = N j−1; and |E(Hi)| ≤ N j−1+32ε2 hold;

• an embedding of the graph H ′ =
⋃r
i=1Hi into graph H via paths of length at most 264/ε4 , that

causes congestion at most N128ε2 ;

37

• for all 1 ≤ i ≤ r, a level-(j − 1) Hierarchical Support Structure for graph Hi; and

• a set S(H) ⊆ V (H) of vertices, where S(H) =
⋃
Hi∈H S(Hi), and, for all Hi ∈ H, S(Hi) is the

set of vertices that is given as part of the level-(j − 1) Hierarchical Support Structure for Hi.

Additionally, we require every graph Hi ∈ H is (ηj−1, d̃j−1)-well-connected with respect to the set
S(Hi) of vertices. We say that H is the set of graphs associated with the level-j Hierarchical Support
Structure for graph H.

This completes the definition of a Hierarchical Support Structure. We will need to use the following
simple claim.

Claim 5.1 Let 1 ≤ j ≤ d1/εe be an integer, and let H be a graph with |V (H)| = N j, together with a
level-j Hierarchical Support Structure. Then |V (H) \ S(H)| ≤ |V (H)| · 4j

Nε4
.

Proof: The proof is by induction on j. When j = 1, then |V (H)| = N , and, from the definition of

level-1 Hierarchical Support Structure, |V (H) \ S(H)| ≤ N1−ε4 = |V (H)|
Nε4

≤ |V (H)| · 4j

Nε4
.

Consider now some integer j > 1, and assume that the claim holds for j − 1. Let H be a graph with
|V (H)| = N j , for which a level-j Hierarchical Support Structure is given, and let H be the collection
of graphs associated with the structure. Let V1 =

⋃
Hi∈H V (Hi) and V2 = V (H) \ V1. From the

definition of level-j Hierarchical Support Structure, |H| = N −
⌈
2N1−ε4

⌉
≥ N − 4N1−ε4 . Therefore,

|V1| ≥ N j − 4Nj

Nε4
, and V2 ≤ 4Nj

Nε4
= 4|V (H)|

Nε4
.

Let V ′1 =
⋃
Hi∈H S(Hi) and V ′′1 = V1 \ V ′1 . Clearly, V (H) \ S(H) = V ′′1 ∪ V2. We now bound |V ′′1 |.

Since, for every graph Hi ∈ H, by the induction hypothesis, |V (Hi) \ S(Hi)| ≤ |V (Hi)| · 4(j−1)

Nε4
=

4(j−1)·Nj−1

Nε4
, and since |H| < N , we get that |V ′′1 | ≤

4(j−1)·Nj

Nε4
= 4(j−1)·|V (H)|

Nε4
.

Altogether, we get that:

|V (H) \ S(H)| = |V ′′1 |+ |V2| ≤
4(j − 1) · |V (H)|

N ε4
+

4|V (H)|
N ε4

=
4j · |V (H)|

N ε4

The following theorem provides an algorithm for the Distancing Player in the Distanced Matching
game.

Theorem 5.2 There is a large enough constant c, and a deterministic algorithm, whose input consists
of a parameter 0 < ε < 1/4, a pair N , 1 ≤ j ≤ d1/εe of integers, and a graph H with |V (H)| = N j,

such that N is sufficiently large, so that Nε4

logN ≥ 2128/ε5 holds. The algorithm computes one of the
following:

• either a (δj , d)-distancing (A,B,E′) in graph H, where δj = 4jε4, d = 232/ε4 and |E′| ≤ |A|
Njε4

; or

• a level-j Hierarchical Support Structure for H, such that graph H is (ηj , d̃j)-well-connected with

respect to the set S(H) of vertices defined by the support structure, where ηj = N6+256jε2 and

d̃j = 2cj/ε
4
.

The running time of the algorithm is bounded by:

cj ·N j(1+64ε2)+7 + c|E(H)| ·N6.

38

We prove Theorem 5.2 in Section 6. Note that Theorem 2.2 follows from the theorem directly, by
setting j = 1/ε.

The following immediate corollary of the theorem can be used in order to either embed a large graph
H into an input graph G, and construct a Hierarchical Support Structure for H, so that graph H is
well-connected with respect to the resulting set S(H) of vertices given by the Hierarchical Support
Structure; or to compute a distancing in graph G. The latter can in turn be used in order to compute
a sparse cut in G, via Lemma 4.1. We state the corollary in a slightly more general form that will be
helpful for us later: we assume that, together with graph G, we are given a subset T of its vertices
called terminals, and that we are interested in embedding a large graph H into G with V (H) ⊆ T .

Corollary 5.3 There is a deterministic algorithm, whose input consists of an n-vertex graph G, a set
T of k vertices of G called terminals, and parameters 2

(log k)1/12 < ε < 1
400 , d > 1 and η > 1, such that

1/ε is an integer. The algorithm computes one of the following:

• either a pair T1, T2 ⊆ T of disjoint subsets of terminals, and a set E′ of edges of G, such that:

– |T1| = |T2| and |T1| ≥ k1−4ε3

4 ;

– |E′| ≤ d·|T1|
η ; and

– for every pair t ∈ T1, t
′ ∈ T2 of terminals, distG\E′(t, t

′) > d;

• or a graph H with V (H) ⊆ T , |V (H)| = N1/ε ≥ k − k1−ε/2, where N = bkεc, and maximum
vertex degree at most k32ε3, together with an embedding P of H into G via paths of length at
most d that cause congestion at most η · k32ε3, and a level-(1/ε) Hierarchical Support Structure
for H, such that H is (η′, d̃)-well-connected with respect to the set S(H) of vertices defined by
the support structure, where η′ = N6+256ε, and d̃ = 2c/ε

5
, with c being the constant used in the

definition of the Hierarchical Support Structure.

The running time of the algorithm is O
(
k1+O(ε) + |E(G)| · kO(ε3) · (η + d log n)

)
.

Proof: Let q = 1/ε, let N = bkεc, and let T ′ ⊆ T be any subset of N q terminals. Observe that:

N q = bkεc1/ε ≥ (kε − 1)1/ε = k ·
(

1− 1

kε

)1/ε

≥ k ·
(

1− 1

kε · ε

)
≥ k − k1−ε

ε
≥ k − k1−ε/2 (3)

(we have used the fact that for all 0 < δ < 1 and a > 2, (1− δ)a ≥ 1− δa).

We will attempt to construct a graph H with V (H) = T ′, together with an embedding P of H into
G with congestion at most η · k32ε3 and path lengths at most d, and a level-q Hierarchical Support
Structure for H, such that H is (η′, d̃)-well-connected with respect to the set S(H) of vertices defined
by the support structure. If we fail to construct such a graph H, we will compute the sets T1, T2 ⊆ T
of terminals and the set E′ ⊆ E(G) of edges as required.

We will employ the distanced-matching game on graph H with parameters n = |T ′|, δ = 4ε3, and
distance parameter d′ = 232/ε4 .

We will use the algorithm from Theorem 5.2 for the distancing player, with parameter j = q, and
parameters N and ε remaining unchanged. In order to be able to use the algorithm, we need to verify

that Nε4

logN ≥ 2128/ε5 holds. Recall that, from the conditions of Corollary 5.3, 2
(log k)1/12 < ε < 1

400 .

39

Therefore, log k > (2/ε)12 and k > 2(2/ε)12
. Moreover, from the above calculations, log k

log log k >
1
ε8

holds,

and so kε
8
> log k must hold. Altogether, we get that:

N ε4

logN
≥ kε

5

2 · log k
≥ kε6 ≥ 2128/ε5 . (4)

We will bound the number of iterations of the Distanced Matching game via Theorem 4.2. In order

to use Theorem 4.2, we need to verify that |T ′|δ
log(|T ′|) ≥

214

δ2 , or, equivalently: |T ′|4ε3

log(|T ′|) ≥
210

ε6
. Recall

that |T ′| = N q = N1/ε, and so |T ′|4ε3

log(|T ′|) = ε·N4ε2

logN ≥ Nε4

logN ≥ 2128/ε5 ≥ 210

ε6
from Equation 4, and since

ε ≤ 1/400. We also need to verify that d′ ≥ 24/δ. Since d′ = 232/ε4 and δ = 4ε3, this is immediate
to verify. From Theorem 4.2, we can now conclude that the number of iterations in a Distanced
Matching game with parameters n = |T ′|, δ = 4ε3, and distance parameter d′ = 232/ε4 is bounded by
|T ′|8δ ≤ k32ε3 .

We start with a graph H whose vertex set is V (H) = T ′, and edge set is E(H) = ∅, and then iterate.
In each iteration i, we will add some set Ei of edges to graph H, and we will define an embedding
P (e) for every edge e ∈ Ei. We now describe the execution of a single iteration.

Execution of Iteration i.

We apply the algorithm from Theorem 5.2 to the current graph H, with parameter j = q, and
parameters N, ε remaining unchanged. Note that |V (H)| = |T ′| = N q, and, as we have established

above, Nε4

logN ≥ 2128/ε5 holds.

We now consider two cases. The first case is when the algorithm from Theorem 5.2 returns a (δq, d
′)-

distancing (Xi, Yi, E
′
i) in graph H, where δq = 4jε4 = 4qε4 = 4ε3 = δ (since q = 1/ε), and d′ = 232/ε4 .

In this case, we say that iteration i is regular. We view this distancing as the response of the distancing
player in iteration i of the Distanced Matching game that we play on graph H.

We then apply Procedure ProcPathPeel from Lemma 3.12 to graph G and sets A1 = Xi, B1 = Yi of
its vertices, together with parameters d and η from the statement of Corollary 5.3. Let Q1 denote
the collection of paths that the algorithm returns. Recall that every path in Q1 connects some vertex
of Xi to a vertex of Yi, and that every vertex of Xi ∪ Yi may serve as an endpoint of at most one
such path. We let Mi ⊆ Xi × Yi be the matching that is defined by the paths in Q1: a pair (x, y) of
vertices with x ∈ Xi, y ∈ Yi is added to Mi iff some path Q(x, y) ∈ Q1 has endpoints x, y. We again
consider two cases. The first case happens if |Mi| ≥ |Xi|/2. In this case, we say that iteration i is
successful. We obtain a collection Ei ⊆Mi of edges as follows: we start with Ei = Mi, and we delete
from Ei all pairs (x, y) of vertices where edge (x, y) lies in E′i. Since, from the definition of distancing,
|E′i| ≤ |Xi|/16, we get that |Ei| ≥ |Xi|/4. We let Pi = {Q(x, y) | (x, y) ∈ Ei} be the collection of
paths that route the pairs of vertices in Ei. We add the edges of Ei to graph H, and we view Ei as
the response of the matching player in iteration i. We also view the set Pi of paths in graph H as an
embedding of the set Ei of edges. Recall that each path in Pi has length at most d, and the paths in
Pi cause congestion at most η. We then continue to the next iteration.

The second case happens if |Mi| < |Xi|/2. In this case we say that iteration i is unsuccessful. Let E′

be the set of all edges e in graph G that participate in exactly η paths in Q1. Let X ′ ⊆ Xi and Y ′ ⊆ Yi
be the sets of vertices that do not serve as endpoints of the paths in Q1. Recall that Lemma 3.12
guarantees (via Property P3) that the length of the shortest path connecting a vertex of X ′ to a vertex
of Y ′ in G \ E′ is greater than d.

40

Recall that |X ′| = |Y ′| ≥ |Xi|
2 ≥ |T ′|1−δ

2 ≥ k1−δ

4 ≥ k1−4ε3

4 . Since every path in Q1 has length at most

d, we get that
∑

Q∈Q1
|E(Q)| ≤ d · |Xi|2 ≤ d · |X ′|. Since set E′ contains edges that participate in η

paths in Q1, we get that: |E′| ≤ d·|X′|
η . We return the set E′ of edges and the sets T1 = X ′, T2 = Y ′

of terminals. From the above discussion, |T1| = |T2|, |T1| ≥ k1−4ε3

4 , and |E′| ≤ d·|T1|
η hold as required.

Moreover, for every pair t ∈ T1, t
′ ∈ T2 of terminals, distG\E′(t, t

′) > d.

It remains to consider the second case, when the algorithm from Theorem 5.2 constructs a level-q
Hierarchical Support Structure for H, such that graph H is (ηq, d̃q)-well-connected with respect to the

set S(H) of vertices defined by the support structure, where d̃q = 2cq/ε
4

= 2c/ε
5

= d̃, and:

ηq = N6+256qε2 = N6+256ε = η′.

In this case, we say that iteration i is irregular. Recall that |V (H)| = |T ′| = N q ≥ k − k1−ε/2

from Inequality 3. As observed already, the number of iterations in the Distanced Matching game is
bounded by k32ε3 , and so the maximum vertex degree in H is bounded by k32ε3 , and the number of
edges in graph H is bounded by k1+32ε3 throughout the algorithm. If we denote by z ≤ k32ε3 the
number of iterations in the Distanced Matching game, then for all 1 ≤ i ≤ z, we have constructed a
set Pi of paths in graph H embedding the edges of Ei. The paths in Pi have length at most d each,
and they cause congestion at most η in G. By letting P =

⋃z
i=1 Pi, we obtain an embedding of graph

H into G via paths of length at most d, that cause congestion at most η · z ≤ η · k32ε3 . We output
graph H, its embedding P, and the level-q Hierarchical Support Structure for H.

This completes the description of a single iteration. It now remains to bound the running time of the
algorithm.

Running Time Analysis

Recall that, throughout the algorithm, |E(H)| ≤ k1+32ε3 holds, and that the number of regular
successful iterations in the algorithm is at most k32ε3 . Additionally, there could be at most one
irregular iteration, and at most one regular but unsuccessful iteration.

We now bound the running time of a single iteration. This running time is dominated by the running
times of the algorithms from Theorem 5.2 and Lemma 3.12.

The former is bounded by:

O(q ·N q(1+64ε2)+7 + |E(H)| ·N6) ≤ O
(
k1+O(ε) + k1+32ε3 · kO(ε)

)
≤ O

(
k1+O(ε)

)
.

The latter is bounded by: O(|E(G)|(η + d log n)).

The total running time of the algorithm is then bounded by:

O
(
k1+O(ε) + |E(G)| · kO(ε3) · (η + d log n)

)
.

41

6 Algorithm for the Distancing Player – Proof of Theorem 5.2

This section is dedicated to proving Theorem 5.2. Throughout the proof we use the following three
parameters: ε′ = ε4; ∆ = 64/ε′; and d′ = 2d ·∆. Note that:

d′ = 2∆d =
128d

ε′
=

128 · 232/ε4

ε4
≤ 264/ε4 <

1

4
· 2c/ε4 , (5)

since c is large enough.

The proof is by induction on j. We start with the base case, where j = 1.

Base Case: j = 1

We assume that we are given a graphH onN vertices. Our goal is to either compute a (δ1, d)-distancing
in graph H, or to construct a set S(H) ⊆ V (H) of vertices, such that |V (H) \ S(H)| ≤ N1−ε4 , and
graph H is (η1, d̃1)-well-connected with respect to S(H).

We apply Algorithm ProcSeparate from Lemma 3.10 to graph H, with the set T = V (H) of terminal
vertices, with distance parameters d and ∆ remaining the same, and parameter α = 1− 1

Nε′ .

Assume first that the outcome of the algorithm is a pair T1, T2 ⊆ V (H) of subsets of vertices, with
|T1| = |T2|, such that for every pair t ∈ T1, t′ ∈ T2 of vertices, distH(t, t′) ≥ d, and additionally:

|T1| ≥ N1−64/∆ ·min

{
(1− α),

1

3

}
≥ N1−2ε′ .

(recall that ∆ = 64/ε′ and N ε′ > 3). In this case, since δ1 = 4ε′, we obtain a (δ1, d)-distancing
(T1, T2, ∅) in graph H. We return this distancing as the outcome of the algorithm.

Otherwise, Procedure ProcSeparate must return a vertex v ∈ V (H), with |BH(v,∆ · d)| > α · N =

N ·
(

1− 1
Nε′

)
. In this case, we set S(H) = BH(v,∆ · d), and we report that graph H is (η1, d̃1)-

well-connected with respect to S(H). We also return S(H) as level-1 Hierarchical Support Structure
for H. Note that |V (H) \ S(H)| ≤ N1−ε′ = N1−ε4 as required. It remains to show that graph H is
indeed (η1, d̃1)-well-connected with respect to S(H). Recall that η1 > N and d′ < d̃1 from Inequality
5, since d̃1 = 2c/ε

4
. Let A,B ⊆ S(H) be any pair of equal-cardinality subsets of vertices. We define

an arbitrary perfect matching M ⊆ A × B between vertices of A and vertices of B. Consider now
any pair (a, b) ∈ M of matched vertices. Since a, b ∈ BH(v,∆ · d), there is a path P (a, b) connecting
a to b in H of length at most 2∆ · d = d′ ≤ d̃1. We then let P(A,B) = {P (a, b) | (a, b) ∈M} be the
resulting collection of paths, that routes every vertex of A to a distinct vertex of B. The length of
every path in P(A,B) is at most d̃1, and the congestion caused by the paths in P(A,B) is at most
|P(A,B)| ≤ |V (H)| ≤ N < η1.

The running time of the algorithm is dominated by the running time of Procedure ProcSeparate,
which is bounded by O(|E(H)| ·N64/∆) ≤ O(|E(H)| ·N ε′) < c|E(H)| ·N6, if c is large enough, since
∆ = 64/ε′.

Step: 1 < j ≤ h

We now assume that we are given some integer 1 < j ≤ d1/εe, such that the statement of Theorem 5.2
holds for j − 1, and we prove the statement of the theorem for j. Recall that we are given as input a

42

graph H with |V (H)| = N j .

We partition the set V (H) of vertices into N subsets V1, . . . , VN , each of which contains exactly N j−1

vertices. The algorithm consists of two phases. In the first phase, we run the Distanced Matching
Game in parallel on N graphs H1, . . . ,HN , where for all 1 ≤ i ≤ N , V (Hi) = Vi. We will add edges to
graphs H1, . . . ,HN gradually via the Distanced Matching Game, while computing an embedding of all
resulting edges into graph H, so that the resulting embedding paths have sufficiently low length and
cause sufficiently low congestion. In this phase, we will either compute the required (δj , d)-distancing
in H, or we will be able to successfully complete the Distanced Matching Game on a sufficiently large
collection H′ ⊆ {H1, . . . ,HN} of the graphs. In the latter case, for each such graph Hi ∈ H′, we will
also compute a level-(j − 1) Hierarchical Support Structure for Hi. If the outcome of the first phase
is a (δj , d)-distancing for H, then we terminate the algorithm and return this distancing. Otherwise,
we continue to the second phase. In the second phase we will exploit the graphs in H′ to either
compute a (δj , d)-distancing in graph H, or to compute a subset H′′ ⊆ H′ of r graphs, so that, if we
let S(H) =

⋃
Hi∈H′′ S(Hi), then graph H is (δj , d̃j)-well-connected with respect to the set S(H) of

vertices. We now describe each of the two phases in turn.

6.1 Phase 1: Construction of Smaller Well-Connected Graphs

In this phase, we gradually construct a collection H = {H1, . . . ,HN} of graphs, over the course of
at most N64ε2 iterations, by running the Distanced Matching Game over these graphs in parallel with
parameters δ = δj−1 and d = 232/ε4 . Initially, for all 1 ≤ i ≤ N , we let V (Hi) = Vi and E(Hi) = ∅. In
every iteration q ≥ 1, we will compute, for all 1 ≤ i ≤ N , a partial matching Eqi over the vertices of
Vi. We will ensure that either Eqi = ∅, or |Eqi | ≥ N (j−1)(1−δj−1)/8. The edges of Eqi are then added to

graph Hi. Additionally, in the qth iteration, we will compute an embedding Pq of all edges in
⋃N
i=1E

q
i

into H. We now describe a single iteration q.

6.1.1 Description of Iteration q

Using the induction hypothesis, we apply the algorithm from Theorem 5.2 to each of the graphs
Hi ∈ H, with parameter (j − 1). We denote by H1 ⊆ H the collection of all graphs Hi, for which the
algorithm returned a (δj−1, d)-distancing in Hi, and we denote by H2 = H \H1 all remaining graphs.
Recall that, for each graph Hi ∈ H2, the algorithm computes a level-(j − 1) Hierarchical Support
Structure. We now consider two cases, depending on whether |H1| > N1−ε′ .

Case 1: |H1| > N1−ε′. If this case happens, then we say that iteration q is regular. Recall that, for
every graph Hi ∈ H1, the algorithm from Theorem 5.2 returned a (δj−1, d)- distancing (Ai, Bi, E

′
i),

where |Ai| = |Bi| ≥ |V (Hi)|1−δj−1 = N (j−1)(1−δj−1), and |E′i| ≤
|Ai|

N(j−1)ε′ .

Let z′ =
⌈

2 logN
ε

⌉
. We further partition the collection H1 of graphs into subsets H1

0, . . . ,H1
z′ , where

for all 0 ≤ z ≤ z′, class H1
z contains all graphs Hi ∈ H1, for which Nj−1

2z+1 ≤ |Ai| < Nj−1

2z holds. Clearly,
there must be an index 0 ≤ z ≤ z′, such that:

|H1
z| ≥

|H1| · ε
4 logN

≥ N1−ε′ · ε
4 logN

≥ N1−2ε′ . (6)

(since Nε′

logN ≥ 2128/ε5 from the statement of Theorem 5.2).

43

From now on we fix this index z. Since, for all Hi ∈ H1, |Ai| ≥ N (j−1)(1−δj−1) ≥ N j−jδj−1−1, we get
that:

2z ≤ N jδj−1 . (7)

For convenience, we denote by I ⊆ {1, . . . , N} the set of all indices i with Hi ∈ H1
z. Next, we apply

Algorithm ProcPathPeel from Lemma 3.12, to graph H, collections of subsets {(Ai, Bi)}i∈I of its

vertices, length parameter d′, and congestion parameter η = N8ε3 . Consider the resulting collections
{Pqi }i∈I of paths. Recall that, from Lemma 3.12, for all i ∈ I, every path in the corresponding set Pqi
has length at most d′, and it connects a vertex of Ai to a vertex of Bi, so that the endpoints of all
paths in Pi are distinct. Therefore, we can use the paths in Pqi in order to define a partial matching
M q
i between vertices of Ai and vertices of Bi: a pair (a, b) ∈ Ai × Bi of vertices is added to M q

i iff
some path of Pqi has endpoints a, b. We denote by A′i ⊆ Ai and B′i ⊆ Bi the subsets of vertices of Ai
and Bi respectively, that do not serve as endpoints of the paths in Pqi . Let E∗ ⊆ E(H) be the set of
all edges e that participate in exactly η paths of

⋃
i∈I P

q
i . Recall that Lemma 3.12 further guarantees

that the paths of
⋃
i∈I P

q
i cause congestion at most η in H. Moreover, if we consider graph H \ E∗,

then for all i ∈ I, the length of a shortest path connecting a vertex of A′i to a vertex of B′i is greater
than d′.

Running time of Algorithm ProcPathPeel is O(|E(H)| · (η + jNd′ logN)) ≤ O(|E(H)| · (N8ε3 +
jNd′ logN)) ≤ O(|E(H)| · jNd′ logN), since |H| = N .

We say that a graph Hi ∈ H1
z is successful if |Pqi | ≥ |Ai|/4, and it is unsuccessful otherwise. We let

Gs ⊆ H1
z be the collection of all successful graphs, and Gu = H1

z \ Gs the collection of all unsuccessful
graphs. For convenience, we also partition the collection I of indices into a set Is containing all indices
i ∈ I where Hi ∈ Gs and Iu = I\Is. We consider again two cases, depending on whether |Gs| ≥ |H1

z|/2.

Case 1a: |Gs| ≥ |H1
z|/2. If Case 1a happens then we say that iteration q is successful. Consider

some index i ∈ Is. Recall that the matching M q
i that we have defined contains at least |Ai|/4 pairs of

vertices (that we refer to as edges), while |E′i| ≤ |Ai|/16 by the definition of distancing. We discard
from M q

i all edges that lie in E′i; note that |M q
i | ≥ |Ai|/8 continues to hold. We add the edges of the

resulting matching M q
i to graph Hi, and we say that graph Hi received a matching in iteration q. We

view this matching as the response of the matching player in the Distanced Matching Game. We let
Pq =

⋃
i∈Is P

q
i . Notice that the paths in Pq can be viewed as an embedding of the set

⋃
i∈IsM

q
i of

edges into graph H. The length of each path is at most d′, and the congestion of the embedding is
at most η. Observe that, if an iteration is successful, then the number of graphs in H that receive
matchings is at least |Gs| ≥ |H1

z|/2 ≥ N1−2ε′/2 (from Equation 6). We terminate the current iteration,
and proceed to the next iteration.

Case 1b: |Gs| < |H1
z|/2. If Case 1b happens, then we say that the current iteration is unsuccessful.

In this case, we will construct a (δj , d)-distancing (A,B,E∗) in graph H, where E∗ is the set of edges

that we have defined above. We will ensure that |E∗| ≤ |A|/N jε4 . The current iteration then becomes
the last iteration of the algorithm, and we return (A,B,E∗) as its output. We need the following
simple observation bounding |E∗|:

Observation 6.1 |E∗| ≤ Nj ·d′
η·2z .

Proof: Note that for every graph Hi ∈ H1
z, |P

q
i | ≤ |Ai| ≤

Nj−1

2z . Since the length of each such path is

at most d′, the total number of edges on all paths in
⋃
i∈I P

q
i is

∑
i∈I
∑

P∈Pqi
|E(P)| ≤ d′ · |H1

z| · N
j−1

2z ≤

44

Nj ·d′
2z (as |H1

z ≤ N). Since set E∗ only contains edges that lie on η path of Pq, the observation follows.

Recall that, if Hi ∈ Gu, then |A′i| ≥
|Ai|

2 ≥
Nj−1

2z+2 . Recall also that |B′i| = |A′i|, and distH\E∗(A
′
i, B

′
i) > d′.

We denote T =
⋃
i∈Iu(A′i ∪ B′i), and we call the vertices of T terminals. Since we have assumed that

|Gs| < |H1
z|/2, we get that:

|T | ≥ |Gu| · N
j−1

2z+1
≥ |H1

z| ·
N j−1

2z+2
≥ N j−2ε′

2z+2
. (8)

(we have used Equation 6.)

We need the following simple observation.

Observation 6.2 For every terminal t ∈ T , at most |T |/2 terminals may lie in BH\E∗(t, d
′/2).

Proof: Consider any terminal t ∈ T , and denote Bt = BH\E∗(t, d
′/2). Recall that for all Hi′ ∈ Gu,

distH\E∗(A
′
i′ , B

′
i′) > d′. Therefore, Bt may not contain a vertex of A′i′ and a vertex of B′i′ . We conclude

that, for every terminal t ∈ T , |Bt ∩ T | ≤ |T |/2.

We apply Algorithm ProcSeparate from Lemma 3.10 to graph G = H \ E∗, the set T of terminals,
distance parameters d and ∆ that remain unchanged, and α = 1/2. The running time of the algorithm
is O(|E(H)| · |V (H)|64/∆) ≤ O(|E(H)| ·N jε′).

From Observation 6.2, the algorithm may not return a terminal t ∈ T with |BH\E∗(t,∆ · d) ∩ T | =
|BH\E∗(t, d′/2) ∩ T | > α · |T |. Therefore, it must compute two subsets T1, T2 of terminals, with
|T1| = |T2|, such that for every pair t ∈ T1, t

′ ∈ T2 of terminals, distH\E∗(t, t
′) ≥ d. Moreover:

|T1| ≥
|T |1−64/∆

3
≥ |T |

1−ε′

3
≥ N (j−2ε′)(1−ε′)

3 · 2(z+2)(1−ε′) ≥
N j−2jε′

2z+4

(we have used the fact that ∆ = 64/ε′, and Equation 8).

Recall that, from Observation 6.1, |E∗| ≤ Nj ·d′
η·2z . Recall also that η = N8ε3 , j ≤ d1/εe, and d′ ≤

264/ε4≤Nε′
from Inequality 5, and since Nε′

logN ≥ 2128/ε5 from the statement of Theorem 5.2. Therefore,
we get that:

|E∗| ≤ N j

2z
· N

ε4

N8ε3
≤ N j

2z+4
· 1

N6ε3
≤ N j

2z+4
· 1

N3ε4·d1/εe ≤
N j

2z+4
· 1

N3ε′j
≤ |T1|
N jε′

.

Lastly, recall that we have shown in Inequality 7, that 2z ≤ N jδj−1 . Therefore, we get that:

|T1| ≥
N j

16N j(2ε′+δj−1)
≥ N j

16N j(4(j−1)ε′+2ε′)
≥ N j

N j(4jε′)
= N j(1−δj).

We conclude that (T1, T2, E
∗) is a (δj , d)-distancing, with |E∗| ≤ |T1|/N jε′ as required. We return this

distancing and terminate the algorithm.

45

Case 2: |H1| ≤ N1−ε′. If this case happens, then we say that the current iteration is irregular.
In this case, we terminate Phase 1. The outcome of the phase is the collection H2 ⊆ H of at least
N − N1−ε′ graphs. Recall that, for each graph Hi ∈ H2, we computed a level-(j − 1) Hierarchical
Support Structure, that includes a subset S(Hi) ⊆ V (Hi) of vertices, such that Hi is (ηj−1, d̃j−1)-
well-connected with respect to S(Hi). Let H ′ =

⋃
Hi∈H2 Hi. Notice that the sets Pq of paths that are

computed in each iteration provide an embedding of graph H ′ into H. The length of each resulting
path is bounded by d′. We use the following observation in order to both bound the congestion of this
embedding, and the running time of the algorithm.

Observation 6.3 At the end of Phase 1, for each graph Hi ∈ H, |E(Hi)| ≤ N j−1+32ε2. The number
of iterations in Phase 1 is at most N64ε2.

Proof: Recall first that δj−1 = 4(j − 1)ε′ ≥ 4ε4, while d = 232/ε4 . Therefore, d ≥ 24/δj−1 holds. We
can then view our algorithm from Phase 1 as running the Distanced Matching Game simultaneously
over the graphs in H. Note that for every graph Hi ∈ H:

|V (Hi)|δj−1 = N (j−1)δj−1 ≥ N4ε′ ≥ 2128 logN

ε11
≥ 2124 logN

16(ε′)2ε3
≥ 214(j − 1) logN

δ2
j−1

=
214 log(|V (Hi)|)

δ2
j−1

,

since δj−1 = 4(j − 1)ε′, 2 ≤ j ≤ d1/εe, and Nε4

logN ≥ 2128/ε5 from the statement of Theorem 5.2.

We conclude that |V (Hi)|δj−1 ≥ 214 log(|V (Hi)|)
δ2
j−1

holds, satisfying the conditions of Theorem 4.2. From

Theorem 4.2, the number of iterations in a Distanced Matching Game in a single graph Hi ∈ H is
bounded by:

|V (Hi)|8δj−1 ≤ N (j−1)·8δj−1 ≤ N32(j−1)2ε′ ≤ N32ε2 ,

since ε′ = ε4, δj−1 = 4(j − 1)ε′, and j ≤ d1/εe. Therefore, a graph Hi ∈ H may receive a matching in

at most N32ε2 iterations, and the cardinality of each such matching is at most |V (Hi)|/2 ≤ N j−1/2.
We conclude that at the end of Phase 1, for each graph Hi ∈ H, |E(Hi)| ≤ N j−1 ·N32ε2 .

Next, we bound the number of iterations in Phase 1. Note that at most one iteration of Phase 1 may
be irregular, and at most one iteration may be regular and unsuccessful. It is now enough to bound
the number of regular and successful iterations. In every regular and successful iteration, at least
N1−2ε′/2 graphs in H receive matchings. Therefore, every regular and successful iteration of Phase
1 results in the completion of a single iteration of the Distanced Matching Game in at least N1−2ε′/2
graphs of H. At the same time, the number of pairs (i, q), where graph Hi ∈ H receives a matching in
iteration q must be bounded by |H| ·N32ε2 ≤ N1+32ε2 . Since in every regular and successful iteration
at least N1−2ε′/2 graphs in H receive matchings, we get that the number of iterations is bounded by
2N32ε2+2ε′ ≤ N64ε2 .

Since every set Pq of paths causes congestion at most η = N8ε3 , and the number of iterations is bounded
by N64ε2 , we obtain an embedding of graph H ′ into H via paths of length at most d′ ≤ 264/ε4 (from
Equation 5), that cause total congestion at most N64ε2 ·N8ε3 ≤ N128ε2 . We denote this embedding by
P.

Note that the Phase 1 can either terminate with a regular unsuccessful iteration, in which case we
terminate the algorithm and return the resulting distancing for graph H, or with an irregular iteration,
in which case we proceed to Phase 2 of the algorithm. Before we describe Phase 2 of the algorithm,
we analyze the running time of Phase 1.

46

Running Time Analysis of Phase 1.

We start by bounding the running time of a single iteration. Over the course of the iteration, we apply
the algorithm from Theorem 5.2 to each of the graphs Hi ∈ H, with parameter (j − 1). Recall that,
from Observation 6.3, for each graph Hi ∈ H, |E(Hi)| ≤ N j−1+32ε2 . From the induction hypothesis,
the running time of the algorithm from Theorem 5.2 on a single graph Hi ∈ H is bounded by:

c(j − 1) ·N (j−1)(1+64ε2)+7 + c|E(Hi)| ·N6

≤ c(j − 1) ·N j+64(j−1)ε2+6 + cN j−1+32ε2 ·N6

= c(j − 1) ·N j+64(j−1)ε2+6 + cN j+5+32ε2 .

≤ cj ·N j+64(j−1)ε2+6.

Since |H| = N , the running time of this part of the algorithm is bounded by:

cj ·N j+64(j−1)ε2+7

If the iteration is regular, then we apply Algorithm ProcPathPeel from Lemma 3.12, to graph H,
collections of subsets {(Ai, Bi)}i∈I of its vertices, length parameter d′, and congestion parameter

η = N8ε3 . As observed above, the running time of Algorithm ProcPathPeel is O(|E(H)| ·jNd′ logN) =
O(|E(H)|·N ·264/ε4 ·logN/ε) ≤ O(|E(H)|·N2), since d′ ≤ 264/ε4 from Equation 5 andN ε′ > 264/ε5 ·logN
from the statement of Theorem 5.2.

If the iteration is regular and unsuccessful, then we apply Algorithm ProcSeparate from Lemma 3.10,
whose running time, as observed above, is bounded by O(|E(H)|·N jε′) ≤ O(|E(H)|·N2ε3), as j ≤ d1/εe
and ε′ = ε4.

Overall, the running time of a single iteration is bounded by:

cj ·N j+64(j−1)ε2+7 +O
(
|E(H)| ·N2

)
.

Since, from Observation 6.3, the number of iterations in Phase 1 is at most N64ε2 , we get that the
total running time of Phase 1 is bounded by:

cj ·N j+64jε2+7 +O
(
|E(H)| ·N3

)
.

6.2 Phase 2: Distancing or Well-Connectedness

The starting point of Phase 2 is the collection H2 ⊆ H of at least N−N1−ε′ graphs that was computed
in Phase 1. Recall that, for each graph Hi ∈ H2, we computed a level-(j − 1) Hierarchical Support
Structure, that includes a subset S(Hi) ⊆ V (Hi) of vertices, such that Hi is (ηj−1, d̃j−1)-well-connected
with respect to S(Hi). Additionally, we have computed an embedding P of graph H ′ =

⋃
Hi∈H2 Hi,

so that the length of each path in P is at most d′ ≤ 264/ε4 , and the paths in P cause congestion at
most N128ε2 .

In this phase we will either compute a subset H′ ⊆ H2 of r graphs, such that graph H is (ηj , d̃j)-well-
connected with respect to the set S(H) =

⋃
Hi∈H′ S(Hi) of vertices; or we compute a (δj , d)-distancing

(A,B,E′) in graph H, with |E′| ≤ |A|
Njε4

.

47

We consider every pair Hi, Hi′ ∈ H2 of graphs, with i < i′ one by one. When the pair (Hi, Hi′) of
graphs is considered, we apply Procedure ProcPathPeel from Lemma 3.12 to graph H, and two sets
A1 = S(Hi), B1 = S(Hi′) of its vertices, with distance parameter d′ and congestion parameter η = N4.
Recall that the running time of the procedure is O(|E(H)|(N4 + jd′ logN)) ≤ O(|E(H)| · N4). We
denote by Qi,i′ the set of paths that the algorithm returns, and by E′i,i′ the set of all edges of H that

participate in N4 paths of Qi,i′ . We also denote by A′i,i′ ⊆ S(Hi) and B′i,i′ ⊆ S(Hi′) the sets of vertices
that do not serve as endpoints of paths in Qi,i′ . Recall that the paths in Qi,i′ have length at most
d′ each, and they cause congestion at most N4. Every path in Qi,i′ connects a vertex of S(Hi) to a
vertex of S(Hi′), and every vertex of S(Hi) ∪ S(Hi′) may serve as an endpoint of at most one path
in Qi,i′ . Moreover, the length of the shortest path in H \ E′i,i′ connecting a vertex of A′i,i′ to a vertex

of B′i,i′ is greater than d′. Observe also that, since |Qi,i′ | ≤ |S(Hi)| ≤ |V (Hi)| = N j−1, and since the

length of every path in Qi,i′ is at most d′, we get that
∑

Q∈Qi,i′
|E(Q)| ≤ d′ · N j−1. Since E′i,i′ only

contains edges that participate in N4 paths in Q, we get that |E′i,i′ | ≤ d′ ·N j−5.

Let E′ be the union of all sets E′i,i′ of edges, over all pairs Hi, Hi′ ∈ H2 of graphs with i < i′. Clearly,

|E′| ≤ d′ ·N j−3. Moreover, for every pair Hi, Hi′ ∈ H2 of graphs with i < i′, the length of the shortest
path in H \ E′ connecting a vertex of A′i,i′ to a vertex of B′i,i′ is greater than d′.

Next, we apply procedure ProcSeparate from Lemma 3.10 to graph H̃ = H \E′, with the set T = V (H)
of terminal vertices, distance parameters d and ∆ that remain unchanged, and parameter α = 1− 1

8Nε′ .

Recall that the running time of the algorithm isO(|E(H)|·N64j/∆) ≤ O(|E(H)|·N2ε3) (since ∆ = 64/ε′,
j ≤ d1/εe, and ε′ = ε4).

We now consider two cases. The first case is that Procedure ProcSeparate returns two subsets A,B ⊆
V (H) of vertices, such that |A| = |B|, and for every pair v ∈ A, u ∈ B of vertices, distH̃(u, v) ≥ d.
Recall that in this case, the algorithm also ensures that:

|A| ≥ |V (H)|1−64/∆ ·min

{
(1− α),

1

3

}
≥ N j(1−ε′) · 1

8N ε′

≥ N j(1−ε′)−2ε′

≥ N j(1−4jε′)

= |V (H)|1−δj .

(9)

(We have used the fact that ∆ = 64/ε′ and δj = 4jε′).

Recall that:

|E′| ≤ d′ ·N j−3 ≤ N j−3+ε′ .

(since d′ ≤ 264/ε3 from Equation 5 and N ε4 ≥ 2128/ε5 from the statement of Theorem 5.2.) Since, from
Equation 9, |A| ≥ N j−jε′−2ε′ ≥ N j−3ε3 (as ε′ = ε4), we get that |E′| ≤ |A|/N jε4 .

We conclude that (A,B,E′) is a valid (δj , d)-distancing in graph H, with |E′| ≤ |A|/N jε4 . We return
this distancing and terminate the algorithm.

From now on we assume that Procedure ProcSeparate computed a vertex v ∈ V (H), such that

|BH̃(v,∆ · d)| > α · |V (H)| = N j ·
(

1− 1
8Nε′

)
. For convenience, we denote B∗ = BH̃(v,∆ · d).

48

In this case, we construct a set H′ ⊆ H2 of graphs as follows: we add graph Hi to H′ iff |B∗∩V (Hi)| ≥
7|V (Hi)|

8 . We need the following observation.

Observation 6.4 |H′| ≥ N − 2N1−ε′.

Proof: Recall that |H2| ≥ N −N1−ε′ . Notice that, if Hi ∈ H2 \H′, then |V (Hi) \B∗| ≥ |V (Hi)|/8 =

N j−1/8. Since |V (H) \ B∗| ≤ N j−ε′/8, we get that |H2 \ H′| ≤ Nj−ε′/8
Nj−1/8

= N1−ε′ . Therefore, |H′| ≥
|H2| −N1−ε′ ≥ N − 2N1−ε′ .

We discard arbitrary graphs from H′, until |H′| = N −
⌈
2N1−ε′

⌉
holds. Let S(H) =

⋃
Hi∈H′ S(Hi).

Note that we have now obtained a level-j Hierarchical Support Structure for graph H, whose associated

collection of graphs is H′, with |H′| = N −
⌈
2N1−ε′

⌉
= r. We use the embedding P of the graph⋃

Hi∈H2 Hi that we have computed in Phase 1. By discarding paths that are no longer needed from
P, we obtain an embedding P of graph

⋃
Hi∈H′ Hi into H, such that every path in the embedding

has length at most d′ ≤ 264/ε4 , and the paths in P cause congestion at most N128/ε3 . We prove the
following lemma in Section 6.3.

Lemma 6.5 Graph H is (ηj , d̃j)-well-connected with respect to S(H).

In order to complete the proof of Theorem 5.2, it is now enough to show that the running time of the
algorithm is suitably bounded.

Running Time Analysis

The algorithm performs at most N2 calls to Procedure ProcPathPeel. As observed above, the running
time of each such call is at most O(|E(H)| · N4). The running time of Procedure ProcSeparate, as
shown above, is at most O(|E(H)| ·N2ε3). Overall, the running time of Phase 2 is O(|E(H)| ·N6).

Altogether, the running time of the whole algorithm is bounded by:

cj ·N j+64jε2+7 +O
(
|E(H)| ·N6

)
≤ cj ·N j(1+64ε2)+7 + c|E(H)| ·N6,

if c is a large enough constant.

In order to complete the proof of Theorem 5.2, it is now enough to prove Lemma 6.5, which we do
next.

6.3 Proof of Lemma 6.5

We will use the following simple observation.

Observation 6.6 For every pair Hi, Hi′ ∈ H′ with i < i′, |Qi,i′ | ≥ N j−1/4. (Here, Qi,i′ is the set of
paths that was computed in Phase 2 of the algorithm.)

Proof: Recall that, from Claim 5.1, |V (Hi) \ S(Hi)| ≤ |V (Hi)| · 4(j−1)

Nε4
< |V (Hi)|

64 (since j ≤
⌈

1
ε

⌉
).

Therefore, |S(Hi)| ≥ 63|V (Hi)|
64 = 63·Nj−1

64 , and similarly, |S(Hi′)| ≥ 63·Nj−1

64 .

Assume now for contradiction that |Qi,i′ | < Nj−1

4 . Recall that we have defined sets A′i,i′ ⊆ S(Hi) and

B′i,i′ ⊆ S(Hi′) of vertices that do not serve as endpoints of paths in Qi,i′ . If |Qi,i′ | < Nj−1

4 , then:

49

|A′i,i′ | ≥ |S(Hi)| − |Qi,i′ | ≥
63 ·N j−1

64
− N j−1

4
>

2 ·N j−1

3
.

Similarly, |B′i,i′ | >
2·Nj−1

3 . Since Hi was added to H′, |B∗ ∩ V (Hi)| ≥ 7·Nj−1

8 . So at least one vertex
u ∈ A′i,i′ must lie in B∗. For similar reasons, at least one vertex u′ ∈ B′i,i′ must lie in B∗. From the

definition of B∗, distH̃(u, u′) ≤ 2∆ ·d = d′. Recall however that H̃ = H \E′, and E′i,i′ ⊆ E′. Procedure
ProcPathPeel guarantees that the shortest path connecting u to u′ in graph H \E′i,i′ has length greater
than d′. So distH̃(u, u′) > d′ must hold, contradicting our previous claim that distH̃(u, u′) ≤ d′.

We now turn to the proof of Lemma 6.5. We assume that we are given two disjoint equal-cardinality
subsets A,B of vertices of S(H). Our goal is to prove that there exists a set P∗ of paths in graph
H, routing every vertex of A to a distinct vertex of B, such that the paths in P∗ cause congestion at
most ηj in H, and the length of every path is at most d̃j . We will prove that such a set of paths exists
by exploiting the fact that, every graph Hi ∈ H′ is (ηj−1, d̃j−1)-well-connected with respect to the set
S(Hi) of its vertices, together with the embedding of these graphs into H, and the sets Qi,i′ of paths
that we have computed in Phase 2 of the algorithm for every pair Hi, Hi′ ∈ H′ of graphs with i < i′.

The remainder of the proof of Lemma 6.5 consists of three steps. In the first step, we route some
pairs in A×B within the graphs Hi ∈ H′. After the completion of this step, for every graph Hi ∈ H′,
either all vertices of S(Hi) that remain to be routed lie in A, or all such vertices lie in B. In the
remaining two steps we complete the routing of these remaining vertices. Specifically, in Step 2 we
define a “meta-graph” Ĝ, whose vertices represent the graphs Hi ∈ H′, with weights on its edges.
Intuitively, if an edge connecting two vertices that represent graphs Hi and Hi′ has weight w(e), then
we intend to construct w(e) paths that connect vertices of S(Hi)∩A to vertices of S(Hi′)∩B. In this
step, we also perform a “global routing”: for every pair Hi, Hi′ ∈ H′ of graphs, whose corresponding
edge in Ĝ has weight w, we connect vertices of S(Hi) to vertices of S(Hi′) with w paths. In the third
and the final step, we complete the construction of the set P∗ of paths by using “local routing”, in
which some pairs of vertex subsets are routed within each graph Hi ∈ H′. We now describe each of
the three steps in turn.

Step 1: Initial Routing within the Graphs of H′

We process every graph Hi ∈ H′ one by one. When graph Hi is processed, we denote NA
i = |A∩S(Hi)|

and NB
i = |B ∩ S(Hi)|. Denote βi = min

{
NA
i , N

B
i

}
. Next, we select two arbitrary subsets Xi ⊆

A∩S(Hi) and Yi ⊆ B∩S(Hi), each of which contains exactly βi vertices. Since our algorithm ensures
that graph Hi is (ηj−1, d̃j−1)-well-connected with respect to S(Hi), there exists a set Ri of paths in
graph Hi, which is a one-to-one routing of vertices of Xi to vertices of Yi. Every path in Ri has length
at most d̃j−1, and the paths in Ri cause congestion at most ηj−1 in Hi.

Let H ′ =
⋃
Hi∈H′ Hi. Recall that we have computed, in Phase 1 of the algorithm, an embedding P

of H ′ into H, where every path in the embedding has length at most d′, and the paths in P cause
congestion at most N128ε2 in H.

Consider now the set
⋃
Hi∈H′ Ri of paths in graph H ′. This set of paths defines a one-to-one routing

of vertex set X =
⋃
Hi∈H′ Xi to vertex set Y =

⋃
Hi∈H′ Yi, where the length of every path is at most

d̃j−1, and the paths in R cause congestion at most ηj−1 in H ′. We now use the embedding P of H ′

into H in order to compute a set P ′ of paths in graph H, that route every vertex of X to a distinct
vertex of Y , via the algorithm from Observation 3.1. We are then guaranteed that the length of every
path in P ′ is at most d̃j−1 · d′. Recall that d̃j−1 = 2c(j−1)/ε4 , while d′ < 1

4 · 2
c/ε4 from Inequality 5.

Therefore, the length of every path in P ′ is bounded by:

50

d̃j−1 · d′ ≤ 2c(j−1)/ε4 · 2c/ε4 = 2cj/ε
4

= d̃j .

The algorithm from Observation 3.1 also guarantees that the congestion caused by the paths in P ′ in
H is at most ηj−1 ·N128ε2 . Since ηj−1 = N6+256(j−1)ε2 , we get that the congestion caused by the paths
in P ′ is bounded by:

ηj−1 ·N128ε2 ≤ N6+256(j−1)ε2 ·N128ε2 ≤ N6+256jε2

2
=
ηj
2
.

We have now obtained a set P ′ of paths in graph H, that routes every vertex of X to a distinct vertex
of Y , so that the length of every path is at most d̃j , and the congestion caused by the paths in P ′ is
bounded by ηj/2.

We partition the graphs of H′ into three subsets. Set HN contains all graphs Hi ∈ H′, in which NA
i =

NB
i . We no longer need to route any vertices in such graphs, as for each such graph βi = NA

i = NB
i ;

Xi = A∩S(Hi); and Yi = B∩S(Hi) must hold. Set HA contains graphs Hi ∈ H′ with NA
i > NB

i . For
each such graph Hi, we denote by D(Hi) = NA

i −NB
i , and by X ′i = (A∩S(Hi))\Xi – the set of vertices

of S(Hi) that remain to be routed. Clearly, |X ′i| = D(Hi). Similarly, set HB contains graphs Hi ∈ H′
with NB

i > NA
i . For each such graph Hi, we denote by D(Hi) = NB

i −NA
i , and by X ′i = (B∩S(Hi))\Yi

– the set of vertices that remain to be routed. As before, |X ′i| = D(Hi) holds. Notice also that, since
|A| = |B|,

∑
Hi∈HA D(Hi) =

∑
Hi∈HB D(Hi) must hold. Denote Â =

⋃
Hi∈HA X

′
i and B̂ =

⋃
Hi∈HB X

′
i.

It is now enough to prove the following lemma.

Lemma 6.7 There is a set P ′′ of paths in graph H, routing every vertex of Â to a distinct vertex of
B̂, so that the length of every path in P ′′ is at most d̃j, and the paths in P ′′ cause congestion at most
ηj/2 in H.

Indeed, by letting P∗ = P ′∪P ′′, we obtain a set of paths in graph H that defines a one-to-one routing
of the set A of vertices to the set B of vertices via paths of length at most d̃j , so that the paths in P∗
cause congestion at most ηj . In order to complete the proof of Lemma 6.5, it is now enough to prove
Lemma 6.7. We focus on the proof of Lemma 6.7 in the remainder of this section.

We will start by constructing a “meta-graph” representing the graphs of HA∪HB, that will guide the
construction of global routing.

Step 2: Meta-Graph and Global Routing

Abusing the notation, for simplicity, in the remainder of this proof we denote HA = {H1, H2, . . . ,Hq},
and for all 1 ≤ i ≤ q, we denote D(Hi) by Di. We also denote HB =

{
H ′1, H

′
2, . . . ,H

′
q′

}
, and for

1 ≤ i′ ≤ q′, we denote D(H ′i′) by D′i′ . For all 1 ≤ i ≤ q, we denote the set X ′i ⊆ S(Hi) of Di vertices
that remains to be routed by Yi, and for all 1 ≤ i′ ≤ q′, we denote the corresponding subset of D′i
vertices of S(H ′i′) by Y ′i′ . We now define a routing meta-graph, that will be used in order to guide the
construction of the paths in P∗, and show that such a graph exists.

Routing Meta-Graph

We start by defining a routing meta-graph.

51

Definition 6.1 (Routing Meta-Graph) A bipartite graph Ĝ = (U,U ′, Ê) with integral weights
w(e) ≥ 0 on its edges e ∈ Ê is a routing meta-graph if:

• U = {v1, . . . , vq};

• U ′ =
{
v′1, . . . , v

′
q′

}
;

• for every vertex vi ∈ U ,
∑

e∈δĜ(vi)
w(e) = Di; and

• for every vertex v′i′ ∈ U ′,
∑

e∈δĜ(v′
i′)
w(e) = D′i′.

We refer to vertices of Ĝ as supernodes and edges of Ĝ as meta-edges.

We use the following claim to show that a routing meta-graph exists.

Claim 6.8 There exists a routing meta-graph.

Proof: We start with the graph Ĝ = (U,U ′, Ê), where U = {v1, . . . , vq}, U ′ =
{
v′1, . . . , v

′
q′

}
, and

Ê = ∅, and then iterate, as long as there exist indices 1 ≤ i ≤ q and 1 ≤ i′ ≤ q′, such that Di > 0 and
D′i′ > 0 holds.

In order to execute an iteration, we consider any pair of such indices (i, i′). Let ∆̂ = min
{
Di, D

′
i′
}

. We

add an edge (vi, v
′
i′) to Ê, whose weight is ∆̂, and we decrease Di and D′i′ by ∆̂. Once the algorithm

terminates, since
∑q

i=1Di =
∑q′

i′=1D
′
i′ , it is immediate to verify that the resulting graph Ĝ is a valid

routing meta-graph.

Global Routing

Consider some pair vi ∈ U , v′i′ ∈ U ′ of supernodes in graph Ĝ. From Observation 6.6, there exists a
collection of paths in graph H, that we denote, abusing the notation, by Qi,i′ , such that the following
hold:

• every path in Qi,i′ originates at a vertex of S(Hi) and terminates at a vertex of S(H ′i′);

• every vertex of S(Hi) ∪ S(H ′i′) is an endpoint of at most one path in Qi,i′ ;

• |Qi,i′ | =
⌈
N j−1/4

⌉
;

• each path in Qi,i′ has length at most d′; and

• the paths in Qi,i′ cause congestion at most N4 in H.

The set Qi,i′ of paths naturally defines a matching Mi,i′ ⊆ S(Hi) × S(H ′i′): we include a pair (x, y)
of vertices in Mi,i′ if x ∈ S(Hi), y ∈ S(H ′i′), and some path in Qi,i′ has x and y as its endpoints.

Clearly, |Mi,i′ | =
⌈
N j−1/4

⌉
. Notice that for every meta-edge e = (vi, v

′
i′) in graph Ĝ, w(e) ≤ Di ≤

|S(Hi)| ≤ N j−1 must hold. We will select, for every edge e = (vi, v
′
i′) ∈ Ĝ, a multi-set M ′i,i′ of pairs

(x, y) ∈ Mi,i′ of vertices, of cardinality w(e). (We note that a pair (x, y) ∈ Mi,i′ of vertices may be
added to M ′i,i′ multiple times). We will ensure that, for every supernode vi ∈ U , a vertex x ∈ S(Hi)
may participate in at most four pairs in

⋃
e=(vi,v′i′)∈δĜ(vi)

M ′i,i′ , and the same holds for supernodes of

52

U ′. For every meta-edge e = (vi, v
′
i′) ∈ Ê, we will then use the paths of Qi,i′ whose endpoints lie in

M ′i,i′ to define a global routing. Let Q0 denote the resulting collection (multiset) of all such paths.

So for every meta-edge (vi, v
′
i′) ∈ Ê, for every pair (x, y) ∈ M ′i,i′ of vertices, Q0 contains the path of

Qi,i′ whose endpoints are x and y. If (x, y) appears multiple times in M ′i,i′ , then Q0 contains multiple

copies of this path. For every graph H̃ ∈ HA ∩HB, for every vertex x ∈ S(H̃), we denote by k(x) the
number of paths of Q0, for which x serves as an endpoint. Our construction will guarantee that, for all
1 ≤ i ≤ q,

∑
x∈S(Hi)

k(x) = Di, and similarly, for all 1 ≤ i′ ≤ q′,
∑

x∈S(H′
i′)
k(x) = D′i′ . As mentioned

already, we will ensure that, for every graph H̃ ∈ H′, for every vertex x ∈ S(H̃), k(x) ∈ {0, . . . , 4}. In
our last step, we will perform local routing, in which, for all 1 ≤ i ≤ q, we connect every vertex of Yi
to some vertex of S(Hi) by a path, such that every vertex x ∈ S(Hi) is the last endpoint of exactly
k(x) such paths. We perform a similar routing in graphs of HB. This local routing exploits the fact
that every graph H̃ ∈ H′ is (ηj−1, d̃j−1)-well-connected, together with the embedding P of the graph
H ′ =

⋃
H̃∈H′ H̃ into H that we have computed.

In order to simplify the notation, for all 1 ≤ i ≤ q, we denote by Êi ⊆ Ê the set of all meta-edges of
Ĝ that are incident to supernode vi in Ĝ. Similarly, for all 1 ≤ i′ ≤ q′, we denote by Ê′i′ ⊆ Ê the set

of all meta-edges of Ĝ that are incident to supernode v′i′ in Ĝ. We prove the following lemma, that
allows us to perform global routing.

Lemma 6.9 For every meta-edge e = (vi, v
′
i′) ∈ Ê, there is a multiset M ′i,i′ of pairs of vertices of

S(Hi) × S(H ′i′), for which the following hold. For all 1 ≤ i ≤ q, for every vertex x ∈ S(Hi), let
k(x) be the total number of pairs in

⋃
(vi,v′i′)∈Êi

M ′i,i′, in which vertex x participates. Similarly, for all

1 ≤ i′ ≤ q′, for every vertex x ∈ S(H ′i′), let k(x) be the total number of pairs in
⋃

(vi,v′i′)∈Ê
′
i′
M ′i,i′, in

which vertex x participates. Then:

• for every meta-edge e = (vi, v
′
i′) ∈ E(Ĝ), a pair (x, y) of vertices may only belong to M ′i,i′ if

(x, y) ∈Mi,i′ (but it may be added to M ′i,i′ multiple times);

• for every vertex x ∈ (
⋃q
i=1 S(Hi)) ∪

(⋃q′

i′=1 S(H ′i′)
)

, k(x) ∈ {0, . . . , 4};

• for all 1 ≤ i ≤ q,
∑

x∈S(Hi)
k(x) = Di; and

• for all 1 ≤ i′ ≤ q′,
∑

x∈S(H′
i′)
k(x) = D′i′.

Proof: We construct the following directed flow network. We start with a bipartite graph G̃ =

(X̃, Ỹ , Ẽ), where X̃ =
⋃q
i=1 S(Hi), Ỹ =

⋃q′

i′=1 S(H ′i′), and Ẽ =
⋃

(vi,v′i′)∈E(Ĝ)Mi,i′ . All edges are

directed from vertices of X̃ towards vertices of Ỹ , and they have capacity 4 each. For all 1 ≤ i ≤ q, we
add a vertex si, that connects to every vertex in S(Hi) with an edge of capacity 4. For all 1 ≤ i′ ≤ q′,
we add a vertex ti′ , to which every vertex of S(H ′i′) connects with an edge of capacity 4. Lastly, we
add a source vertex s, and a destination vertex t. For all 1 ≤ i ≤ q, we add an edge (s, si) of capacity
Di, and for all 1 ≤ i′ ≤ q′, we add an edge (ti, t) of capacity D′i′ .

We claim that this network as a valid s-t flow f of value D =
∑q

i=1Di =
∑q′

i′=1D
′
i′ . We obtain

this flow as follows. Consider a meta-edge e = (vi, v
′
i′) ∈ E(Ĝ). Recall that we are given an integral

weight w(e) ≤ N j−1, and a matching Mi,i′ ⊆ S(Hi)× S(H ′i′) of cardinality
⌈
N j−1/4

⌉
. For every edge

e′ = (x, y) ∈ Mi,i′ , we set the flow f(e′) = w(e)
|Mi,i′ |

= w(e)
dNj−1/4e . Notice that this ensures that the total

flow on all edges of Mi,i′ is precisely w(e), and for every edge e′ ∈ Mi,i′ , f(e′) ≤ 4. Once we process

every meta-edge of Ĝ, we finalize the flow values f(e′) for all edges e′ ∈ Ẽ.

53

Consider now some index 1 ≤ i ≤ q, and some vertex x ∈ S(Hi). We claim that the total flow on all
edges of Ẽ that are incident to x in the flow network is at most 4. Indeed, recall that Êi is the set of
all meta-edges of Ĝ that are incident to supernode vi. From the definition of a routing meta-graph,
we are guaranteed that

∑
e∈Êi w(e) = Di. For every meta-edge e = (vi, v

′
i′) ∈ Êi, if some edge of Mi,i′

is incident to x, then the flow on this edge is w(e)
dNj−1/4e . Therefore, the total flow on all edges of Ẽ that

are incident to x is bounded by:

∑
e∈Êi

w(e)

dN j−1/4e
=

Di

dN j−1/4e
≤ 4,

since Di ≤ |S(Hi)| ≤ N j−1 must hold.

We set the flow on edge (si, x) to be equal to the total amount of flow on all edges of Ẽ that are
incident to x in the flow network, which, from the above discussion, is bounded by 4.

From similar arguments, for every index 1 ≤ i′ ≤ q′, and every vertex y ∈ S(H ′i′), the total flow on all
edges of Ẽ that are incident to y in the flow network is at most 4. We set the flow on the edge (y, ti)
to be the total flow on all edges of Ẽ that are incident to y in the flow network.

Next, we consider an index 1 ≤ i ≤ q. We set the flow on edge (s, si) to be Di. We claim that∑
x∈S(Hi)

f(si, x) = Di. Indeed, from our construction:

∑
x∈S(Hi)

f(si, x) =
∑

(vi,v′i′)∈Êi

∑
(x,y)∈Mi,i′

f(x, y) =
∑

e=(vi,v′i′)∈Êi

∑
(x,y)∈Mi,i′

w(e)

dN j−1/4e
=

∑
e=(vi,v′i′)∈Êi

w(e) = Di.

(we have used the fact that |Mi,i′ | =
⌈
N j−1/4

⌉
for every meta-edge (vi, v

′
i′) ∈ E(Ĝ)).

Similarly, we consider an index 1 ≤ i′ ≤ q′. We set the flow on edge (ti′ , t) to be D′i′ . Using the same
reasoning as above,

∑
y∈S(H′

i′)
f(y, ti) = D′i′ . We conclude that we have obtained a valid s-t flow in

the above flow network, whose value is D. Since all edge capacities in the flow network are integral,
from the integrality of flow, there is an integral s-t flow f ′ of value D in this flow network.

We are now ready to define the multisets M ′i,i′ of pairs of vertices from S(Hi)×S(H ′i′), for all (vi, v
′
i′) ∈

E(Ĝ). Consider any meta-edge (vi, v
′
i′) ∈ E(Ĝ), and some pair (x, y) ∈Mi,i′ of vertices. If f ′(x, y) > 0,

then we include f ′(x, y) copies of the pair (x, y) to M ′i,i′ .

We now verify that all requirements hold for this definition of the multisets M ′i,i′ for all (vi, v
′
i′) ∈ E(Ĝ).

Clearly, a pair (x, y) of vertices may only be added to M ′i,i′ if (x, y) ∈Mi,i′ .

Consider now some vertex x ∈
⋃q
i=1 S(Hi). Recall that k(x) is the total number of pairs in

⋃
(vi,v′i′)∈Ê

M ′i,i′

in which x participates. This is equal to the total flow leaving vertex x in f ′, which, in turn, is equal
to the flow on edge (si, x). From our definition, the capacity of this edge is 4, so k(x) ∈ {0, . . . , 4}. If

x ∈
⋃q′

i′=1 S(H ′i′), then k(x) ∈ {0, . . . , 4} for similar reasons.

Consider now some index 1 ≤ i ≤ q. From the above discussion,
∑

x∈S(Hi)
k(x) =

∑
x∈S(Hi)

f ′(si, x).

In other words,
∑

x∈S(Hi)
k(x) is the total amount of flow leaving vertex si in f ′. From conservation

of flow this must be equal to the total amount of flow entering si. Since we send D =
∑q

i=1Di flow
units from s to t, and since, for all 1 ≤ i ≤ q, the capacity of the edge (s, si) is Di, we must send Di

flow units on edge (s, si). In other words, for all 1 ≤ i ≤ q,
∑

x∈S(Hi)
k(x) = Di must hold. From

similar arguments, for all 1 ≤ i′ ≤ q′,
∑

x∈S(H′
i′)
k(x) = D′i′ must hold.

54

We are now ready to define the global routing. For every meta-edge e = (vi, v
′
i′) ∈ E(Ĝ), we consider

the resulting collection M ′i,i′ ⊆ S(Hi)×S(Hi′) of pairs of vertices. We define a (multi)-setQ′i,i′ of paths,
as follows. Consider any pair (x, y) ∈ M ′i,i′ , and assume that the number of times that it appears in
M ′i,i′ is N(x, y). Recall that (x, y) ∈Mi,i′ must hold, so there must be a path Q(x, y) ∈ Qi,i′ connecting
x to y. We add N(x, y) copies of this path to Q′i,i′ . Note that, from Lemma 6.9, N(x, y) ≤ k(x) ≤ 4
must hold.

We then let Q0 =
⋃

(vi,v′i′)∈E(Ĝ)Q
′
i,i′ (again, set Q0 is a multiset, so if some path appears several times

in some set Q′i,i′ , then it will appear several times in Q0).

Recall that, for every pair Hi, H
′
i′ ∈ H′ of graphs, the paths in Qi,i′ have length at most d′ each,

and they cause congestion at most N4 in H. Since Q′i,i′ contains at most four copies of each path in

Qi,i′ , and since |E(Ĝ)| ≤ |H′|2 ≤ N2, the paths in Q0 cause congestion at most 4N6 in H, and every

path has length at most d′ as before. For every vertex x ∈ (
⋃q
i=1 S(Hi)) ∪

(⋃q′

i′=1 S(H ′i′)
)

, we use

the definition of the value k(x) from Lemma 6.9. The number of paths in Q0, in which x serves as
an endpoint is then precisely k(x), and, from Lemma 6.9, k(x) ∈ {0, . . . , 4}. Recall also that, for all
1 ≤ i ≤ q,

∑
x∈S(Hi)

k(x) = Di, and for all 1 ≤ i′ ≤ q′,
∑

x∈S(H′
i′)
k(x) = D′i′ .

Step 3: Local Routing

Consider some graph Hi ∈ HA. We have defined a set Yi ⊆ S(Hi) of Di vertices of Hi that need to be
routed. For every vertex x ∈ S(Hi), we are also now given a value k(x) ∈ {0, . . . , 4}, which is exactly
the number of paths in Q0 for which vertex x serves as an endpoint. We are also guaranteed that∑

x∈S(Hi)
k(x) = Di. We can then construct four sets Z1

i , Z
2
i , Z

3
i , Z

4
i of vertices of S(X), such that

for every vertex x ∈ S(X), each of the four sets contains at most one copy of x; and the number of
sets in

{
Z1
i , . . . , Z

4
i

}
containing x is exactly k(x). Clearly,

∑4
a=1 |Zai | = Di. We also partition the set

Yi of vertices into four subsets Y 1
i , . . . , Y

4
i arbitrarily, so that, for all 1 ≤ a ≤ 4, |Y a

i | = |Zai |. Since
Yi ⊆ S(Hi), from the fact that graph Hi is (ηj−1, d̃j−1)-well-connected with respect to S(Hi), for all
1 ≤ a ≤ 4, there is a set P̂ai of |Zai | paths in graph Hi, routing every vertex of Y a

i to a distinct vertex
of Zai , such that the length of every path is at most d̃j−1, and the paths cause congestion at most ηj−1

in graph Hi. Let P̂i =
⋃4
a=1 P̂ai . We think of the paths in P̂i as being directed away from vertices of

Yi. Notice that the paths in P̂i route every vertex of Yi to some vertex of S(Hi), such that, for every
vertex x ∈ S(Hi), exactly k(x) paths of P̂i terminate at x. The paths in P̂i cause congestion at most
4ηj−1 in graph Hi, and have length at most d̃j−1 each.

Consider the graph H ′ =
⋃
Hi∈H′ Hi. Recall that we have computed, in Phase 1 of the algorithm, an

embedding P of H ′ into H, where every path in the embedding has length at most d′, and the paths
in P cause congestion at most N128ε2 in H.

Consider now the set P̂ =
⋃

1≤i≤q P̂i of paths in graph H ′. This set of paths routes every vertex of⋃
1≤i≤q Yi to some vertex of

⋃
1≤i≤q S(Hi), such that, for every vertex x ∈

⋃
1≤i≤q S(Hi), exactly k(x)

paths of P̂ terminate at x. Additionally, the length of every path in P̂ is is at most d̃j−1, and the
paths in P̂ cause congestion at most 4ηj−1 in H ′.

We now use the algorithm from Observation 3.1 with the collection P̂ of paths, and the embedding
P of graph H ′ =

⋃
Hi∈H′ Hi into H, in order to compute a set Q1 of paths in graph H, routing every

vertex
⋃

1≤i≤q Yi to some vertex of
⋃

1≤i≤q S(Hi), such that, for every vertex x ∈
⋃

1≤i≤q S(Hi), exactly

k(x) paths of P̂ terminate at x. The algorithm ensures that the length of every path in P̂ is at most
d̃j−1 · d′, and the paths in P̂ cause congestion at most 4ηj−1 ·N128ε2 .

For every index 1 ≤ i′ ≤ q′, we similarly compute a set P̂ ′i′ of paths in graph H ′i′ , that route some

55

vertices of S(Hi′) to vertices of Y ′i′ , so that for every vertex y ∈ Y ′i′ , exactly one path in P̂ ′i′ terminates
at y, and for every vertex x ∈ S(H ′i′), exactly k(x) paths of P ′i′ originate at x. We use the embedding
P of graph H ′ into H exactly as before, in order to compute a set Q2 of paths in graph H, routing
vertices of

⋃
1≤i′≤q′ S(H ′i′) to vertices of

⋃
1≤i′≤q′ Y

′
i′ , such that, for every vertex x ∈

⋃
1≤i≤q S(Hi),

exactly k(x) paths of Q2 originate at x, and for every vertex y ∈
⋃

1≤i′≤q′ Y
′
i′ , exactly one path of Q2

terminates at y. As before, we can ensure that the length of each every path in Q2 is at most d̃j−1 ·d′,
and the paths in Q2 cause congestion at most 4ηj−1 ·N128ε2 in H.

By concatenating the paths of Q1,Q0 and Q2, we obtain the final set P ′′ of paths, that defines a

one-to-one routing between vertices of
⋃q
i=1 Yi and vertices of

⋃q′

i′=1 Y
′
i′ . The length of every path in

P ′′ is bounded by 2d̃j−1 · d′ + d′ ≤ 3d̃j−1 · d′.

Recall that d̃j−1 = 2c(j−1)/ε4 , while d′ < 1
4 · 2

c/ε4 from Inequality 5. Therefore, we get that the length
of every path in P ′′ is at most:

3d̃j−1 · d′ ≤ 2c(j−1)/ε4 · 2c/ε4 = 2cj/ε
4

= d̃j .

The total congestion caused by the paths in P ′′ is bounded by:

4N6 + 8ηj−1 ·N128ε2 = 4N6 + 8 ·N6+256(j−1)ε2 ·N128ε2 ≤ N6+256jε2

2
=
ηj
2
,

since ηj−1 = N6+256(j−1)ε2 , and N is sufficiently large.

This completes the proof of Lemma 6.7

7 APSP in Well-Connected Graphs – Proof of Theorem 2.3

The goal of this section is to prove Theorem 2.3. We do so using the following theorem.

Theorem 7.1 There are large enough constants c′, c′′, and a deterministic algorithm, whose input
consists of:

• a parameter 0 < ε < 1/400;

• a pair N , 1 ≤ j ≤ d1/εe of integers, such that N is sufficiently large, so that Nε4

logN ≥ 2128/ε6

holds;

• a graph H with |V (H)| = N j; and

• a level-j Hierarchical Support Structure for graph H, such that graph H is (ηj , d̃j)-well-connected
with respect to the set S(H) of vertices defined by the Hierarchical Support Structure.

Further, we assume that graph H undergoes an online sequence of less than Λj = N j−8−300jε2 edge
deletions. The algorithm maintains a set S′(H) ⊆ S(H) of vertices of H, called supported vertices,
such that, at the beginning of the algorithm, S′(H) = S(H), and over the course of the algorithm,

vertices can leave S′(H) but they may not join it. The algorithm ensures that |S′(H)| ≥ Nj

16j
holds

over the course of the algorithm, and it supports short-path queries between supported vertices: given
a pair x, y ∈ S′(H) of vertices, return a path P connecting x to y in the current graph H, whose

56

length is at most d∗j = 2c
′j/ε5, in time O(|E(P)|). The total update time of the algorithm is bounded

by 2c′′jN j+3 · 24c′/ε6 + c′′m ·N2 · 24c′/ε6, where m is the number of edges in graph H at the beginning
of the algorithm. (If Λj ≤ 1, then the algorithm only needs to support short-path queries until the first
edge deletion).

It is immediate to verify that Theorem 2.3 follows from Theorem 7.1, by substituting j = 1/ε. In the
remainder of this section we prove Theorem 7.1. The proof is by induction on j.

7.1 Base Case: j ≤ 8

We first consider the base case, where j ≤ 8. In this case, Λj ≤ 1 holds, and so we only need to
support short-path queries until the first edge deletion.

In this case, the level-j Hierarchical Support Structure for graph H defines a set S(H) of vertices,
and, from Claim 5.1, |V (H) \ S(H)| ≤ |V (H)| · 4j

Nε4
. Since j ≤ d1/εe, and N ε4 ≥ 2128/ε5 from the

statement of Theorem 7.1, we get that |S(H)| ≥ |V (H)|/2 = N j/2. We set S′(H) = S(H), and this
set remains unchanged throughout the algorithm.

Recall that are guaranteed that graph H is (ηj , d̃j)-well-connected with respect to S(H), where d̃j =

2cj/ε
4 ≤ 2c

′j/ε5

2 =
d∗j
2 (if c′ > c), and ηj = N6+256jε2 . In particular, for every pair x, y ∈ S′(H) of

supported vertices, there is a path of length at most d∗j/2 connecting x to y in H. We let s ∈ S(H)
be an arbitrary vertex, and we construct a BFS tree τ rooted at vertex s, whose depth is bounded by
d∗j/2. Computing the tree takes time O(|E(H)|). In order to respond to a short-path query between a
pair x, y of vertices of H, we simply compute the unique simple path P connecting x to y in the tree
τ , which can be done in time O(|E(P)|). Since the depth of the tree is bounded by d∗j/2, the length
of the path is at most d∗j .

7.2 Step: j > 8

We assume that we are given a graph H with |V (H)| = N j , together level-j hierarchical support
structure for graph H, whose associated collection of graphs is H = {H1, . . . ,Hr}. Recall that r =

N −
⌈
2N1−ε4

⌉
, and we are guaranteed that graph H is (ηj , d̃j)-well-connected with respect to the

set S(H) =
⋃
Hi∈H S(Hi) of vertices. Additionally, the hierarchical support structure contains an

embedding P of the graph H ′ =
⋃r
i=1Hi into graph H via paths of length at most 264/ε4 , that causes

congestion at most N128ε2 . For every edge e ∈ E(H ′), we denote by P (e) ∈ P the unique path that
serves as the embedding of e in G.

Our algorithm will maintain a set S′(H) ⊆ S(H) of supported vertices, where initially S′(H) = S(H).
While vertices may leave set S′(H) over the course of the algorithm, set S(H) remains unchanged.

Our algorithm recursively applies the algorithm from Theorem 7.1 to each of the graphs in H. When
an edge e ∈ E(H) is deleted, then for all 1 ≤ i ≤ r, for every edge e′ ∈ E(Hi) whose corresponding
embedding path P (e′) contains e, we delete edge e′ from graph Hi. Since the paths in P cause
congestion at most N128ε2 , the deletion of a single edge from graph H may trigger the deletion of up
to N128ε2 edges from graphs H1, . . . ,Hr overall. As the result of these edge deletions, the supported
sets of vertices S′(Hi) that the algorithm from Theorem 7.1 maintains recursively for each of the
graphs Hi ∈ H may need to be updated. Once a graph Hi ∈ H undergoes dΛj−1e edge deletions, we
say that it is destroyed. Once graph Hi is destroyed, the corresponding set S′(Hi) of vertices is set to
∅.

57

Our algorithm maintains a partition of the set H of graphs into three subsets: set HD of destroyed
graphs, set HI of inactive graphs, and set HA of active graphs. Set HD contains all graphs that have
been destroyed so far. Once a graph joins set HD, it remains in HD for the remainder of the algorithm.
We define the sets HI and HA of graphs later. We will ensure that the set HA of active graphs is
decremental, and we will set S′(H) =

⋃
Hi∈HA S

′(Hi) throughout the algorithm. Intuitively, we will

maintain, for every active graph Hi ∈ HA, an ES-Tree data structure that is rooted at the vertices of
S′(Hi). We need the following simple observation bounding the number of graphs in HD.

Observation 7.2 Over the course of the algorithm, |HD| < N/32 always holds.

Proof: Assume otherwise, and consider the first time t during the algorithm when |HD| ≥ N/32 held.
Recall that a graph Hi ∈ H is destroyed once it undergoes dΛj−1e edge deletions. Therefore, at least
N
32 · dΛj−1e edges have been deleted from

⋃
Hi∈HE(Hi) by time t. On the other hand, the deletion

of a single edge from H may trigger the deletion of at most N128ε2 edges from graphs H1, . . . ,Hr.
Therefore, the number of edges that have been deleted from H by time t is at least:

N

32N128ε2
· dΛj−1e =

N1−128ε2

32
·
⌈
N j−9−300(j−1)ε2

⌉
> N j−8−300jε2 = Λj ,

a contradiction.

Consider now a graph Hi ∈ H \ HD at some time during the algorithm’s execution. For every vertex
s ∈ S′(Hi), we denote by G(s) the set of all graphs Hi′ ∈ H\HD, such that S′(Hi′)∩BH(s, d∗j/32) 6= ∅.
In other words, set G(s) contains all graphs Hi′ that have not been destroyed yet, such that some vertex
in the current set S′(Hi′) of supported vertices is sufficiently close to s in the current graph H. Recall
that the set S′(Hi) of vertices is decremental. The following observation will be useful for us.

Observation 7.3 Consider any time t during the algorithm’s execution. Let Hi ∈ H\HD be a graph
that has not been destroyed by time t, and let s ∈ S′(Hi) be any vertex in the current set of supported
vertices for Hi. Then, since the beginning of the algorithm and until time t, the collection G(s) of
graphs has been decremental: that is, graphs may have left it, but no graph may have joined it since
the beginning of the algorithm.

Proof: Assume for contradiction that Hi′ ∈ H is some graph that did not belong to set G(s) at time
t′, but belongs to set G(s) at time t′′, where t′ < t′′ ≤ t.

From the definition, at time t′′, Hi′ ∈ H \ HD held. Since graphs may leave set H \ HD (when they
are destroyed) but they may never join H \ HD over the course of the algorithm, we get that at
time t′, Hi′ ∈ H \ HD held. Furthermore, from the definition, at time t′′, some vertex x ∈ S′(Hi′)
belonged to BH(s, d∗j/32). Since set S′(Hi′) of vertices is decremental, x ∈ S′(Hi′) held at time t′.
Since distances in graph H may only grow over time, x ∈ BH(s, d∗j/32) held at time t′. Therefore,
S′(Hi′) ∩ BH(s, d∗j/32) 6= ∅ must have held at time t′, and graph Hi′ must have belonged to G(s) at
time t′, a contradiction.

Throughout the algorithm, the set HI of inactive graphs will only contain graphs Hi ∈ H that have
not been destroyed yet, for which the following property holds:

P1. For every vertex s ∈ S′(Hi), |G(s)| ≤ 7N/8.

We note that it is possible that some graph Hi ∈ H \ HD has Property P1 but is not added to HI .

The following observation shows that once property P1 holds for some graph Hi, it will continue to
hold until the algorithm terminates or the graph is destroyed.

58

Observation 7.4 Let Hi ∈ H be any graph, and assume that Property P1 holds for Hi at some time
t during the algorithm’s execution. Then Property P1 holds for Hi from time t and until the algorithm
terminates or until Hi is destroyed.

Proof: Assume that Property P1 holds for graph Hi ∈ H at some time t during the algorithm’s
execution, and consider some time t′ > t during the algorithm’s execution. We assume that graph Hi

is not destroyed at time t′, and prove that Property P1 continues to hold for Hi at time t′. Indeed,
consider any vertex s that lies in set S′(Hi) at time t′. Since set S′(Hi) is decremental, vertex s lied
in S′(Hi) at time t. Since Property P1 held for graph Hi at time t, |G(s)| ≤ 7N/8 held at time t.
From Observation 7.3, set G(s) is decremental, so |G(s)| may not grow between time t and time t′.
Therefore, |G(s)| ≤ 7N/8 holds at time t′. We conclude that Property P1 continues to hold for Hi at
time t′.

To summarize, over the course of the algorithm, we maintain a partition of the collection H of graphs
into three subsets: the set HD of destroyed graphs; the set HI of inactive graphs; and the set HA of
all remaining graphs, that are called active graphs. We ensure that every graph in HI has Property
P1. We also ensure that the set HA of active graphs is decremental – graphs may leave it but they
may not join it over time. The following claim bounds the cardinality of the collection HI of graphs.

Claim 7.5 Over the course of the algorithm, |HI | ≤ N/32 always holds.

Proof: Assume otherwise, and consider the first time t during the algorithm when |HI | > N/32 held.
We will construct two large sets T1, T2 of vertices, so that the distance between the vertices of T1 and
the vertices of T2 is large in the current graph H. We will then reach a contradiction by using the
facts that, at the beginning of the algorithm, graph H was well-connected with respect to S(H), and
that the number of edges that were deleted from H is relatively small.

Recall that |H| = r = N−
⌈
2N1−ε4

⌉
≥ 63N/64, since N ε4 ≥ 2128/ε5 from the statement of Theorem 7.1.

Additionally, from Observation 7.2, |HD| < N/32 holds at time t. Therefore, at time t, |H \ HD| ≥
63N
64 −

N
32 ≥

61N
64 . Let H̃ ⊆ H \HD be a collection of graphs that is obtained as follows. We start with

H̃ = H\HD. We then consider the graphs of H̃ one by one, starting with the graphs of HA. If, when
graph Hi is considered, |H̃| >

⌈
61N
64

⌉
holds, then we discard Hi from set H̃. Otherwise, we terminate

the algorithm with the final collection H̃ of graphs, whose cardinality must be
⌈

61N
64

⌉
. Notice that, if

any graph of HA lies in H̃, then HI ⊆ H̃. Recall that, from the induction hypothesis, for every graph
Hi ∈ H \ HD, |S′(Hi)| ≥ Nj−1

16j−1 holds throughout the algorithm. We construct a set T of vertices as

follows. For every graph Hi ∈ H̃, we let S′′(Hi) be an arbitrary collection of
⌈
Nj−1

16j−1

⌉
vertices that lie

in set S′(Hi) at time t. We then let T =
⋃
Hi∈H̃ S

′′(Hi). Clearly:

|T | =
⌈

61N

64

⌉
·
⌈
N j−1

16j−1

⌉
.

Intuitively, we would like to apply Procedure ProcSeparate from Lemma 3.10 to graph H, set T of

terminals, and distance parameters ∆ = 64/ε2 and d =
d∗j

64∆ , in order to compute two large subsets
T1, T2 ⊆ T of vertices with distH(T1, T2) ≥ d. However, the procedure may instead return a single
vertex s ∈ T , for which the ball BH(s, d∗j/64) contains many vertices of T . In the next observation we
show that this is impossible, that is, for every vertex s ∈ T , |BH(s, d∗j/64) ∩ T | is sufficiently small.

Observation 7.6 At time t, for every vertex s ∈ T , |BH(s, d∗j/64) ∩ T | < |T | ·
(
1− 1

256

)
holds.

59

Proof: Consider some vertex s ∈ T , and denote B = BH(s, d∗j/64). Let T ′ =
⋃
Hi∈HI∩H̃ S

′′(Hi).
Assume first that B does not contain any vertex of T ′. Notice that in this case, at least one graph of
HA lies in H̃, and so HI ⊆ H̃. Since we have assumed that |HI | > N

32 , we get that:

|H̃ \ HI | ≤ |H̃| − |HI | ≤
⌈

61N

64

⌉
− N

32
≤
⌈

61N

64

⌉
·
(

1− 1

61

)
≤
⌈

61N

64

⌉
·
(

1− 1

256

)
.

Therefore:

|B ∩ T | ≤ |T | − |T ′| ≤ |H̃ \ HI | ·
⌈
N j−1

16j−1

⌉
≤
⌈

61N

64

⌉
·
(

1− 1

256

)
·
⌈
N j−1

16j−1

⌉
≤ |T | ·

(
1− 1

256

)
.

Assume now that B contains at least one vertex of T ′, and let s′ be any such vertex. Note that B =
BH(s, d∗j/64) ⊆ BH(s′, d∗j/32). Observe that s′ must lie in the current set S′(Hi) of supported vertices

of some graph Hi that currently lies in HI . From Property P1, |G(s′)| ≤ 7N
8 . Let G′(s′) = H \ G(s′),

so |G′(s′)| ≥ N
8 .

From our definitions, for every graph Hi′ ∈ G′(s′), S′(Hi′)∩BH(s′, d∗j/32) = ∅, and therefore, S′(Hi′)∩
B = ∅.

Let H̃′ = H̃ ∩ G′(s′). On the one hand, since |H̃| =
⌈

61N
64

⌉
, and |G′(s′)| ≥ N

8 , while |H| = N , we get

that |H̃′| ≥ 5N
64 ≥

⌈
61N
64

⌉
· 1

256 . On the other hand, the vertices of
⋃
Hi∈H̃′ S

′′(Hi) may not lie in set B.
Therefore:

|B ∩ T | ≤
(
|H̃| − |H̃′|

)
·
⌈
N j−1

16j−1

⌉
≤
⌈

61N

64

⌉
·
(

1− 1

256

)
·
⌈
N j−1

16j−1

⌉
≤ |T | ·

(
1− 1

256

)
.

We apply Algorithm ProcSeparate from Lemma 3.10 to graph H, set T of terminals, distance param-

eters ∆ = 64/ε2, and d =
d∗j

64∆ , and parameter α =
(
1− 1

256

)
. From Observation 7.6, the algorithm

may not return a vertex s ∈ T with |BH(s,∆ · d) ∩ T | = |BH(s, d∗j/64) ∩ T | > α · |T |. Therefore,

it must compute two subsets T1, T2 of vertices with |T1| = |T2|, such that |T1| ≥ |T |1−64/∆

256 , and for
every pair s ∈ T1, s

′ ∈ T2 of terminals, distH(s, s′) ≥ d. We will now exploit the facts that graph H
was well-connected with respect to set S(H) of vertices at the beginning of the algorithm, and that
relatively few edges were deleted from H, in order to reach a contradiction.

Observe first that:

|T1| ≥
|T |1−ε2

256
≥ 1

256
·
(

61 ·N j

4 · 16j

)1−ε2

≥ N j(1−ε2)

1024 · 16j
.

On the other hand:

d =
d∗j

64∆
=

2c
′j/ε5 · ε2

212
> 2cj/ε

4
= d̃j .

Let H(0) denote the graph H at the beginning of the algorithm, and let H(t) denote graph H at time
t. Recall that, at the beginning of the algorithm, graph H(0) was (ηj , d̃j)-well-connected with respect
to the set S(H) =

⋃
Hi∈H S(Hi) of vertices. Since the sets S′(Hi) of vertices for graphs Hi ∈ H are

60

decremental, and since S′(Hi) = S(Hi) at the beginning of the algorithm for each such graph, we get
that T ⊆ S(H) held at the beginning of the algorithm. Therefore, there was a collection P(T1, T2)
of paths in graph H(0), routing every vertex of T1 to a distinct vertex of T2, such that the paths in
P(T1, T2) cause congestion at most ηj = N6+256jε2 , and the length of every path is at most d̃j .

Let E′ be the set of edges that have been deleted from graph H by time t. Note that, in graph H(t),
no path of length at most d̃j connecting a vertex of T1 to a vertex of T2 exists. Therefore, set E′ must
contain at least one edge from every path in P(T1, T2). We conclude that:

|E′| ≥ |T1|
ηj
≥ N j(1−ε2)

1024 · 16j ·N6+256jε2
=
N j−257jε2−6

1024 · 16j
> N j−8−257jε2 ≥ Λj ,

since j ≤ d1/εe, ε ≤ 1/400, and N ε > 28/ε from the statement of Theorem 7.1. This is a contradiction,
since fewer than Λj edges may be deleted from H.

From Observation 7.2 and Claim 7.5, throughout the algorithm, |HI | + |HD| ≤ N/16 holds. Since

|H| = r = N −
⌈
2N1−ε4

⌉
≥ 63N/64, we get that, throughout the algorithm:

|HA| ≥ |H| − |HI | − |HD| ≥ 63N

64
− N

16
≥ 59N

64
. (10)

The set S′(H) that we maintain throughout the algorithm is defined to be: S′(H) =
⋃
Hi∈HA S

′(Hi).

Since, for every graph Hi, set S′(Hi) of vertices is decremental, and since the collection HA of graphs
is decremental, we get that the set S′(H) of vertices is decremental as well. It is also easy to see
that S′(H) = S(H) =

⋃
Hi∈H S(H) hods at the beginning of the algorithm. Since, from Inequality

10, |HA| ≥ 59N
64 holds throughout the algorithm, and since, from the induction hypothesis, for every

graph Hi ∈ HA, |S′(Hi)| ≥ Nj−1

16j−1 holds, we get that, throughout the algorithm:

|S′(H)| ≥ |HA| · N
j−1

16j−1
≥ 59N

64
· N

j−1

16j−1
≥ N j

16j
,

as required.

7.2.1 Data Structures and Initialization

Consider a graph Hi ∈ H. Note that, as part of the level-j hierarchical support structure for H,
we are given a level-(j − 1) hierarchical support structure for Hi, and we are guaranteed that Hi is
(ηj−1, d̃j−1)-well-connected with respect to S(Hi). Therefore, from the induction hypothesis, we can
apply the algorithm from Theorem 7.1 with parameter (j − 1) to graph Hi, and the corresponding
level-(j − 1) hierarchical support structure. Parameters N and ε remain unchanged. We denote the
corresponding data structure by Dj−1(Hi).

As part of the initialization procedure, for every graph Hi ∈ H, we initialize the corresponding data
structure Dj−1(Hi).

Our algorithm also maintains, for every edge e ∈ E(H), a list L(e) of edges e′ ∈
⋃
Hi∈HE(Hi), such

that the path P (e′), contains e. Here, P (e′) is the path in the embedding P of
⋃
H∈HH

′ into H, that
serves as the embedding of edge e′. Together with this list, we maintain a pointer from e to each such
edge e′ in its corresponding graph Hi, and a pointer in the opposite direction. We initialize the lists
L(e) for edges e ∈ E(H) at the beginning of the algorithm.

We also initialize HA = H, HI = HD = ∅, and S′(H) = S(H).

61

Lastly, for every graph Hi ∈ H, we initialize an ES-Tree data structure, whose corresponding tree is
denoted by τi, that, intuitively, is rooted at the set S′(Hi) of vertices. Specifically, in order to construct
data structure τi, we let G̃i be a graph that is obtained from H, after we add a source vertex si to it,
which connects to every vertex in S′(Hi) with an edge. We then let τi be an ES-Tree data structure
in graph G̃i, rooted at vertex si, with depth bound d∗j/8 + 1. When an edge is deleted from H, we

will also delete it from G̃i, and update the ES-Tree data structure τi accordingly. When a vertex s is
deleted from set S′(Hi), we will delete the edge (si, s) from graph G̃i, and update τi accordingly.

We maintain, for every pair of graphs Hi ∈ HA and Hi′ ∈ H \ HD, a counter ni,i′ , that counts the
number of vertices of S′(Hi′) that lie at distance at most d∗j/32 + 1 from si in tree τi. Note that, if
ni,i′ = 0, then for every vertex s ∈ S′(Hi), S

′(Hi′)∩BH(s, d∗j/32) = ∅. In other words, Hi′ 6∈ G(s) holds

for all s ∈ S′(Hi). We also maintain a counter ñi, whose value is the number of graphs Hi′ ∈ H \HD,
with ni,i′ > 0. We can initialize the values ni,i′ for every pair Hi, Hi′ ∈ H of graphs, and the counters in
{ñi}Hi∈H at the beginning of the algorithm. The time that is required in order to do so is subsumed by
the time required to initialize the ES-Tree data structures. We need the following simple observation.

Observation 7.7 Let Hi ∈ H be a graph. Assume that at some time t in the algorithm’s execution,
Hi 6∈ HD holds, and ñi ≤ 7N/8. Then graph Hi has Property P1 at time t.

Proof: Assume otherwise. Then at time t, there is some vertex s ∈ S′(Hi) with |G(s)| > 7N/8. If
Hi′ is a graph that lies in G(s) at time t, then at least one vertex of S′(Hi′) must lie in BH(s, d∗j/32)
at time t, and so ni,i′ > 0 must hold. But then ñi > 7N/8 must hold at time t, a contradiction.

Throughout the algorithm’s execution, whenever, for some graph Hi ∈ HA, the value of counter ñi
becomes at most 7N/8, we move graph Hi from HA to HI . Lastly, we need the following simple
observation.

Observation 7.8 Let Hi, Hi′ be any pair of graphs that lie in set HA at some time t during the
algorithm’s execution. Let s be any vertex that lies in S′(Hi) at time t, and let s′ be any vertex that
lies in S′(Hi′) at time t. Then distH(s, s′) ≤ d∗j/8 at time t.

Proof: Let Gi be the set of all graphs Hi′′ ∈ H \HD with ni,i′′ > 0 at time t. Since Hi ∈ HA at time
t, |Gi| ≥ 7N/8 must hold. Similarly, let Gi′ be the set of all graphs Hi′′ ∈ H \ HD with ni′,i′′ > 0 at
time t. As before, |Gi′ | ≥ 7N/8. Therefore, there is some graph Hi′′ ∈ Gi ∩ Gi′ .

In the remainder of this proof, whenever we refer to vertex sets S′(Hi), S
′(Hi′), S

′(Hi′′), or to graphs
Hi, Hi′ , Hi′′ , H, we mean the corresponding sets of vertices or the corresponding graphs at time t.

Since, at time t, ni,i′′ > 0, there is some vertex x ∈ S′(Hi′′), such that the distance from si to x in tree
τi is at most d∗j/32 + 1. Therefore, there is some vertex x′ ∈ S′(Hi), such that distH(x, x′) ≤ d∗j/32.
Let Q be a path of length at most d∗j/32 connecting x to x′ in H. From a similar reasoning, there is
a pair of vertices y ∈ S′(Hi′′) and y′ ∈ S′(Hi′), such that distH(y, y′) ≤ d∗j/32. Let Q′ be a path of
length at most d∗j/32 connecting y to y′ in H.

From the induction hypothesis, there is a path P1 of length at most d∗j−1 connecting s to x′ in graph
Hi. Recall that we are given an embedding P of the edges of

⋃
Ha∈HE(Ha) into H, where the length

of every path in P is at most 264/ε4 . From Observation 3.1, there is a path P ′1 in graph H, connecting
s to x′, whose length is at most 264/ε4 · d∗j−1.

Using similar reasonings, there is a path P ′2 in graph H connecting x to y of length at most 264/ε4 ·d∗j−1,

and a path P ′3 in graph H connecting y′ to s′, of length at most 264/ε4 · d∗j−1. By concatenating the
paths P ′1, Q, P

′
2, Q

′, P ′3, we obtain a path in graph H, connecting s to s′, whose length is bounded by:

62

d∗j
16

+ 3 · 264/ε4 · d∗j−1 =
d∗j
16

+ 3 · 264/ε4 · 2c′(j−1)/ε5 ≤
d∗j
16

+
2c
′j/ε5

16
≤
d∗j
8

(since d∗j = 2c
′j/ε5).

Next, we describe an algorithm for updating the data structures after each edge deletion, followed
by the analysis of the total update time of the algorithm. We then conclude with an algorithm for
responding to queries.

7.2.2 Maintaining the Data Structures

For each graph Hi ∈ H, our algorithm will only maintain ES-Tree data structure τi, together with the
corresponding counters ñi and ni,i′ for all Hi′ ∈ H \ HD, as long as graph Hi lies in HA. Once graph
Hi is removed from HA, we no longer maintain these data structures.

We now describe an algorithm for updating the data structures following the deletion of an edge e from
graph H. The algorithm, called DeleteEdge(e), is straightforward and it is summarized in Figure 1.

When an edge e is deleted from graph H, we consider every edge e′ ∈ L(e) (that is, edges e′ ∈⋃
Hi∈HE(Hi), whose embedding path P (e′) contains edge e). We assume that e′ ∈ E(Hi), and that

Hi ∈ H \ HD (if Hi ∈ HD, no further action is required for processing edge e′). We then delete edge
e′ from graph Hi and update the corresponding data structure Dj−1(Hi). As a result, we obtain a set
Xi (that may be empty) of vertices that have been deleted from S′(Hi). We also update lists L(e′′) of
edges e′′ ∈ E(H) that contain e′, to remove e′ from these lists.

If the number of edges deleted so far from Hi reaches at least dΛj−1e, then graph Hi is destroyed. We
add the graph to set HD, and we update all counters ni′,i and ñi′ for graphs Hi′ ∈ HA as needed.
Otherwise, we process every vertex s ∈ Xi one by one. If Hi ∈ HA, then we delete edge (si, s) from
graph G̃i, and the corresponding ES-Tree data structure τi. As the result, some distances in tree
τi may have increased, and we need to update all counters in

{
ni,i′

}
Hi′∈H\HD

, as well as counter ñi

accordingly. Additionally, for every graph Hi′ ∈ HA, if the distance from si to s in tree τi was bounded
by d∗j/32 + 1, then we need to decrease ni′,i by 1 (as vertex s no longer lies in S′(Hi)), and if needed,
we need to update counter ñi′ .

Once we finish processing every edge e′ ∈ L(e), we also need to delete edge e from every graph G̃i′ ,
where Hi′ ∈ HA, and the corresponding ES-Tree data structure τi′ . As before, this may increase some
distances in tree τi′ , and we may need to update counters

{
ni′,i′′

}
Hi′′∈H\HD

, ñi′ accordingly. Lastly,

we consider every graph Hi′ ∈ HA in turn. If ñi′ ≤ 7N/8 holds for any such graph, then we move it
from HA to HI .

It is easy to verify that the algoritm maintains all data structures correctly, and, from Observation 7.7,
when graph Hi is added to HI , Property P1 holds for it. From Observation 7.4, once Hi is added to
HI , Property P1 continues to hold for it until the end of the algorithm, or until Hi is added to HD.
From the above discussion, we are guaranteed that, throughout the algorithm, |HA| 6= ∅.

7.2.3 Analysis of Total Update Time

Let m denote the number of edges in graph H at the beginning of the algorithm. Recall that every
edge e ∈ E(H) participates in at most N128ε2 paths in P. Therefore, the length of the list L(e) is
bounded by N128ε2 . Every edge of

⋃
Hi∈HE(Hi) may be added at most once to list L(e) when the

63

Algorithm DeleteEdge(e)

1. For every edge e′ ∈ L(e), such that the graph Hi ∈ H containing e′ lies in H \HD
do:

(a) Delete e′ from Hi and update the corresponding data structure Dj−1(Hi). Let
Xi be the set of vertices that were deleted from S′(Hi) as the result of this
update.

(b) For every edge e′′ ∈ E(H) with e′ ∈ L(e′′), delete e′ from L(e′′).

(c) If the number of edges deleted so far from Hi becomes at least dΛj−1e:
i. Add graph Hi to HD and remove it from the set HA or HI to which it

belonged.

ii. For every graph Hi′ ∈ HA, if ni′,i > 0, set ni′,i to 0 and decrease ñi′ by 1.

(d) Otherwise: for every vertex s ∈ Xi do:

i. If Hi ∈ HA, delete edge (si, s) from graph G̃i and update the ES-Tree τi,
together with counters

{
ni,i′

}
Hi′∈H\HD

, ñi accordingly.

ii. For every graph Hi′ ∈ HA, if distτi′ (si′ , s) ≤ d∗j/32 + 1, decrease ni′,i by
1. If ni′,i decreases from 1 to 0, decrease ñi′ by 1.

2. For every graph Hi′ ∈ HA, delete edge e from graph G̃i′ , and update the ES-Tree
τi′ , together with counters

{
ni′,i′′

}
Hi′′∈H\HD

, ñi′ accordingly.

3. For every graph Hi′ ∈ HA, if ñi′ ≤ 7N/8 holds, move Hi′ from HA to HI .

Figure 1: Algorithm DeleteEdge(e)

64

data structure is initialized, and subsequently it may be deleted at most once from L(e). Therefore,
the total time required to maintain the lists L(e) for all edges e ∈ E(H) is at most O(m ·N128ε2).

Consider now some graph Hi ∈ H, and denote by mi the number of edges in Hi at the beginning of the
algorithm. Recall that, from the definition of the hierarchical support structure, |E(Hi)| ≤ N j−1+32ε2 .
From the induction hypothesis, maintaining data structure Dj−1(Hi) recursively takes time at most:

2c′′(j − 1)N j+2 · 24c′/ε6 + c′′|E(Hi)| ·N2 · 24c′/ε6 ≤ 2c′′(j − 1)N j+2 · 24c′/ε6 + c′′N j+1+32ε2 · 24c′/ε6

≤ c′′(2j − 1)N j+2 · 24c′/ε6 .

Since |H| = N , the total update time needed in order to maintain these data structures for all graphs
Hi ∈ H is bounded by c′′(2j − 1)N j+3 · 24c′/ε5 .

Consider now some graph Hi ∈ H. The total update time that is needed in order to maintain ES-Tree
τi is bounded by:

O(jm · d∗j · logN) ≤ O(jm · 2c′j/ε5 logN) ≤ O(m · 24c′/ε6 logN),

since d∗j = 2c
′j/ε4 and j ≤ d1/εe. We can initialize the counters ni,i′ for all graphs Hi′ ∈ H and ñi

without increasing this asymptotic running time. We can also perform updates to these counters in
Step 1(d)i within the same asymptotic running time. Since |H| = N , this part of the algorithm takes
total update time at most O(N ·m · 24c′/ε6 logN).

Whenever a vertex s is deleted from a set S′(Hi) for any graph Hi ∈ H, we may need to update the
counters ni′,i and ñi′ for some graphs Hi′ ∈ HA. This can be done in time O(N) per vertex. Since a
vertex may be deleted at most once from

⋃
Hi∈H S

′(Hi), these updates can be done in time O(N j+1).

Lastly, every graph Hi ∈ H may be moved to set HD at most once over the course of the algorithm, at
which time we may need to update counters ni′,i and ñi′ for graphs Hi′ ∈ HA. This takes time O(N)
per graph Hi ∈ H, and O(N2) overall.

From the above discussion, the total update time of the algorithm is bounded by:

c′′(2j − 1)N j+3 · 24c′/ε6 +O(N ·m · 24c′/ε6 logN) +O(N j+1) ≤ 2c′′jN j+3 · 24c′/ε6 + c′′m ·N2 · 24c′/ε6 .

7.2.4 Response to Queries

In this subsection we describe an algorithm for responding to a short-path query between a pair
x, y ∈ S′(H) of vertices. Recall that the goal is to return a path P of length at most d∗j connecting x
to y in H, in time O(|E(P)|).

Recall that S′(H) =
⋃
Hi∈HA S

′(Hi). Therefore, there is a pair of graphs Hi, Hi′ ∈ HA (where possibly
Hi = Hi′), with x ∈ S′(Hi) and y ∈ S′(Hi′). From Observation 7.8, distH(x, y) ≤ d∗j/8 must hold. In
particular, if we consider the ES-Tree data structure τi, then y ∈ V (τi) must hold, and the distance
from y to si in the tree must be at most d∗j/8 + 1. Let Q1 be the path connecting y to si in tree
τi. We delete the last vertex on the path, and let x′ ∈ S′(Hi) be the new last vertex of Q1. Using
the induction hypothesis, we can compute a path P ′ in graph Hi connecting x to x′, whose length is
at most d∗j−1. Assume that the sequence of edges on path Q′ is (e1, e2, . . . , ez). For all 1 ≤ z′ ≤ z,
consider the path P (ez′) ∈ P that serves as the embedding of edge z′ into H. Recall that the length

65

of the path is bounded by 264/ε4 . By concatenating the paths P (e1), . . . , P (ez), we obtain a path Q2

in graph H, connecting x to x′, whose length is at most d∗j−1 · 264/ε4 . Lastly, by concatenating paths
Q1 and Q2, we obtain a path P in graph H connecting x to y. The length of the path is bounded by:

d∗j−1 · 264/ε4 +
d∗j
8
≤ 2c

′(j−1)/ε5 · 264/ε4 +
2c
′j/ε5

8
≤ 2c

′j/ε5 = d∗j .

since d∗j = 2c
′j/ε5 . It is easy to see that the algorithm can be implemented in time O(|E(P)|).

8 APSP in Expanders – Proof of Theorem 2.4

This section is dedicated to the proof of Theorem 2.4. We first prove the following lemma, that can
be viewed as a weaker variation of Theorem 2.4, in the sense that it can only withstand a significantly
shorter sequence of edge deletions.

Lemma 8.1 There is a deterministic algorithm whose input consists of an n-vertex graph G with
|E(G)| = m that is a ϕ∗-expander, for some 0 < ϕ∗ < 1, with maximum vertex degree at most ∆,
and a parameter 2

(logn)1/12 < ε < 1
400 , such that 1/ε is an integer. We assume that graph G undergoes

an online sequence of at most n1−20ε(ϕ∗)2

∆2 edge deletions. The algorithm maintains a set U ⊆ V (G) of

vertices, such that, for every integer t > 0, after t edges are deleted from G, |U | ≤ 4∆t
ϕ∗ holds. Vertex

set U is incremental, so vertices may join it but they may not leave it. The algorithm also supports
short-path queries: given a pair of vertices x, y ∈ V (G) \U , return an x-y path P in the current graph

G, of length at most 2O(1/ε6)·∆·logn
ϕ∗ , with query time O(|E(P)|). The total update time of the algorithm

is O
(
n1+O(ε)·∆3

(ϕ∗)2

)
.

The proof of Lemma 8.1 is deferred to Section 8.1. We now complete the proof of Theorem 2.4 using

it. We partition the execution of our algorithm into phases. Let k′ =
⌊
n1−20εϕ2

211·∆4

⌋
. The first phase lasts

as long as the number of edges deleted from G via the input update sequence is at most k′. Once k′

edges are deleted from graph G, the second phase begins. Each subsequent phase similarly lasts as
long as at most k′ edges are deleted since the beginning of the phase, except for the last phase which
may be shorter, if the input update sequence terminates before k′ edges are deleted from G since the
beginning of the phase. For all i ≥ 1, we denote by Σi the sequence of edge deletions that graph G
undergoes as part of the online input sequence of edge deletions in phase i, and we denote by Ei the
set of edges that belong to Σi. Since the total number of edges in the input sequence of edge deletions

is bounded by n·ϕ2

213∆4 , we get that the number of phases is bounded by n·ϕ2

213·∆4·k′ ≤
n20ε

4 .

We define another dynamic graph G′. At the beginning of the algorithm, we set G′ = G. As the
algorithm progresses, we will delete some edges from G′. Specifically, at the end of every phase of the
algorithm, we will define a set of edges to be deleted from graph G′; we do not delete any edges from
G′ as long as a phase progresses. We will run the algorithm from Theorem 3.4 (expander pruning) on
graph G′, and we let Ũ be the set of vertices of G′ that it maintains. We will ensure that the number of
edges that are deleted from G′ over the course of the entire algorithm is bounded by k = ϕn

16∆ . Clearly,

k ≤ ϕ·|E(G)|
10∆ . From Theorem 3.4, we are guaranteed that, throughout the algorithm, |Ũ | ≤ 8k∆

ϕ ≤ n
2

holds.

In order to execute the first phase, we let H1 = G′ = G, and we apply the algorithm from Lemma 8.1
to graph H1, and the online sequence Σ1 of edge deletions. Recall that graph G is a ϕ-expander, and

66

that |Σ1| ≤ k′ =
⌊
n1−20εϕ2

211·∆4

⌋
. Recall that the algorithm maintains an incremental set U ⊆ V (G) of

vertices, that we denote by U1, such that, for every integer t > 0, after t edges are deleted from G,
|U1| ≤ 4∆t

ϕ holds. Throughout the first phase, we let the set U of vertices that our algorithm maintains
be U1. Recall that the algorithm from Lemma 8.1 supports queries short-path queries: given a pair
of vertices x, y ∈ V (G) \ U1, return an x-y path P in the current graph H1 = G, of length at most
2O(1/ε6)·∆·logn

ϕ , with query time O(|E(P)|).

From the above discussion, at the end of the first phase, |U1| ≤ 4∆k′

ϕ ≤ n1−20ε·ϕ
29·∆3 holds. We denote by

Ẽ1 the set of all edges that are incident to the vertices of U1 in the current graph G. We then update
graph G′, by deleting the edges of E1∪ Ẽ1 from it. Therefore, at the end of the first phase, the number
of edges that are deleted from G′ is bounded by:

|E1|+ |Ẽ1| ≤
n1−20ε · ϕ

28 ·∆2
< k.

We denote by Ũ1 the set of vertices that the algorithm from Theorem 3.4 produces at the end of
Phase 1, and the deletion of the edges of E1 ∪ Ẽ1 from G′. We also denote by H2 = G′ \ Ũ1. From
Theorem 3.4, graph H2 is a ϕ/(6∆)-expander. Notice also that, if U1 is the set of vertices that the
algorithm from Lemma 8.1 maintains at the end of the phase, then U1 ⊆ Ũ1 must hold.

The remaining phases are executed similarly, with several minor differences. We let Ũi be the set Ũ
that the algorithm from Theorem 3.4 produces at the end of Phase (i−1), and we denote Hi = G′ \ Ũi.
We will ensure that the total number of edges that are deleted from graph G′ over the course of the
first (i− 1) phases is bounded by:

(i− 1) · n
1−20ε · ϕ
32 ·∆

.

Since the total number of phases is bounded by n20ε

4 , this ensures that the number of edges deleted so
far from G′ is less than n·ϕ

16∆ = k. Therefore, from Theorem 3.4, graph Hi is a ϕ/(6∆)-expander, and

furthermore, |Ũi| ≤ n/2, so |V (Hi)| ≥ n/2. Denote ϕ∗ = ϕ
6∆ , and note that:

k′ =

⌊
n1−20εϕ2

211 ·∆4

⌋
≤ |V (Hi)|1−20ε(ϕ∗)2

∆2

Therefore, we can apply the algorithm from Lemma 8.1 to graph Hi with the sequence Σi of edge
deletions. We denote by Ui the incremental set of vertices of Hi that the algorithm maintains. The
set U of vertices of G that our algorithm maintains over the course of the ith phase is defined to be
Ũi ∪ Ui.

Recall that the total number of edges that are deleted over the course of the first (i− 1) phases of the

algorithm from graph G is (i− 1) · k′ ≥ (i− 1) ·
⌊
n1−20εϕ2

211·∆4

⌋
.

Since the total number of edges deleted from graph G′ over the course of the first (i − 1) phases is

bounded by (i− 1) · n
1−20ε·ϕ
32·∆ , from Theorem 3.4, we get that:

|Ũi| ≤
n1−20ε · (i− 1)

4
.

Consider some integer 0 ≤ t ≤ k′, and the time during the execution of phase i, immediately after

67

the t-th edge of Σi is deleted from graph G in phase i. Then at this time, the total number of edges
deleted from graph G since the beginning of the algorithm is at least:

mi
t = (i− 1) ·

⌊
n1−20εϕ2

211 ·∆4

⌋
+ t.

At the same time:

|U | = |Ũi|+ |Ui| ≤ (i− 1) · n
1−20ε

4
+

4∆t

ϕ∗
= (i− 1) · n

1−20ε

4
+

24∆2t

ϕ
≤ 211∆4

ϕ2
·mi

t.

Notice that, over the course of the ith phase, V (Hi) \ Ui = V (G) \ (Ui ∪ Ũi) = V (G) \ U holds.
Therefore, when short-path query arrives for a pair x, y ∈ V (G) \ U of vertices, it must be the case
that x, y ∈ V (Hi) \ Ui. We can then perform short-path query in the data structure maintained by
the algorithm from Lemma 8.1, to obtain a path P in the current graph Hi ⊆ G, of length at most
2O(1/ε6)·∆·logn

ϕ∗ ≤ 2O(1/ε6)·∆2·logn
ϕ , in time O(|E(P)|). We return this path as the response to the query.

From the above discussion, at every time t during the execution of phase i, if mi
t is the number of

edges deleted so far by the algorithm, and U (t) is the current set U , then:

|U (t)| ≤ 211∆2

ϕ2
·mi

t.

Once all edges of Σi edges are deleted from graph G, we let Ẽi be the set of all edges that are incident
to the vertices in the current set Ui. Observe that:

|Ẽi| ≤ ∆ · |Ui| ≤
4∆2

ϕ∗
· k′ ≤ 24∆3

ϕ
· n

1−20εϕ2

211 ·∆4
≤ n1−20ε · ϕ

64 ·∆
.

since ϕ∗ = ϕ
6∆ and k′ =

⌊
n1−20εϕ2

211·∆4

⌋
.

We delete the edges of Ei ∪ Ẽi from graph G′, and update the data structure maintained by the

algorithm from Theorem 3.4. Since |Ei| ≤ k′ =
⌊
n1−20εϕ2

211·∆4

⌋
, we get that |Ei ∪ Ẽi| ≤ n1−20ε·ϕ

32·∆ . Recall

that we have assumed that, over the course of the first (i−1) phases, the total number of edges deleted

from graph G′ is bounded by (i− 1) · n
1−20ε·ϕ
32·∆ . We then get that, over the course of the first i phases,

the total number of edges deleted from graph G′ is bounded by i · n
1−20ε·ϕ
32·∆ . We let Ũi+1 the set Ũ that

the algorithm from Theorem 3.4 maintains after the edges of Ei ∪ Ẽi are deleted from G′. Since the
vertices of Ui are isolated in graph G′ \ Ẽi, while graph G′ \ Ũi+1 must be a ϕ/(6∆)-expander, we get
that Ui ⊆ Ũi+1. We then let the set U that the algorithm maintains be Ũi+1, and we continue to the
next phase, with the graph Hi+1 = G′ \ Ũi+1.

It is easy to verify that the set U of vertices that the algorithm maintains is incremental. Indeed,
consider some phase i of the algorithm. Throughout the phase, we let U = Ũi ∪ Ui, where Ũi is fixed
over the course of the phase, and Ui is incremental. If we denote by U ′i the set Ui at the end of Phase
i, then we are guaranteed that U ′i ⊆ Ũi+1, and, from Theorem 3.4, Ũi ⊆ Ũi+1. At the beginning of
Phase (i + 1), we set U = Ũi+1, and so Ũi ∪ U ′i ⊆ U at this point. Therefore, set U is incremental
throughout the algorithm.

It now only remains to bound the total update time of the algorithm. The algorithm consists of at
most O(n20ε) phases. In every phase, we run the algorithm from Lemma 8.1, whose total update time

68

is O
(
m1+O(ε)·∆3

(ϕ∗)2

)
≤ O

(
m1+O(ε)·∆5

ϕ2

)
.

Additionally, the total update time of the algorithm from Theorem 3.4, over the course of at most m

deletions of edges from G′, is bounded by Õ
(
m∆2

ϕ2

)
.

Altogether, the total update time of the algorithm is bounded by:

O(n20ε) ·O

(
m1+O(ε) ·∆5

ϕ2

)
+ Õ

(
m∆2

ϕ2

)
≤ O

(
m1+O(ε) ·∆5

ϕ2

)
.

In order to complete the proof of Theorem 2.4, it now remains to prove Lemma 8.1.

8.1 Proof of Lemma 8.1

We start by describing the data structures that the algorithm maintains, together with their initializa-
tion. We then describe an algorithm for maintaining the data structures under the deletion of edges
from G. Finally, we describe an algorithm for responding to short-path query.

Before we do so, we establish some bounds on the parameters that will be useful for us later. All of
these bounds follow from the fact that 2

(logn)1/12 < ε < 1
400 holds, from the statement of Lemma 8.1.

First, since ε > 2
(logn)1/12 , we get that log n ≥ (2/ε)12, and:

n ≥ 2(2/ε)12 ≥ 280012
. (11)

Additionally:

nε
8
> n(2/(logn)1/12)8

= n256/(logn)2/3
> 2(logn)1/3

> log n. (12)

8.1.1 Data Structures and Initialization

We start by applying the algorithm from Corollary 5.3 to graph G, with the set T = V (G) of terminals,

parameter ε given by the statement of Lemma 8.1, and parameters d = 64∆ logm
ϕ∗ and η = 512∆2 logm

(ϕ∗)2 .

We claim that the algorithm may not return a pair T1, T2 ⊆ T of disjoint subsets of terminals, and a set

E′ of edges of G, with |T1| = |T2|, |T1| ≥ n1−4ε3

4 and |E′| ≤ d·|T1|
η , such that for every pair t ∈ T1, t

′ ∈ T2

of terminals, distG\E′(t, t
′) > d. Indeed, assume for contradiction that the algorithm returns a pair

T1, T2 of disjoint subsets of vertices of G with the above properties. Denote ϕ = ϕ∗

∆ , and note that

|E′| ≤ d·|T1|
η = ϕ∗·|T1|

8∆ ≤ ϕ·|T1|
4 . Note also that d = 64∆ logm

ϕ∗ ≥ 32 logm
ϕ . Clearly, we can view (T1, T2, E

′)
as a (δ, d)-distancing in graph G, for some parameter 0 < δ < 1. From Lemma 4.1, there is a cut
(X,Y) in graph G, with T1 ⊆ X and T2 ⊆ Y , such that |EG(X,Y)| ≤ ϕ ·min {|E(X)|, |E(Y)|}. Since
the maximum vertex degree in G is bounded by ∆, |E(X)| < ∆ · |X|, and similarly |E(Y)| < ∆ · |Y |.
Therefore, we are guaranteed that |E(X,Y)| < ϕ·∆·min {|X|, |Y |} = ϕ∗ ·min {|X|, |Y |}, contradicting
the fact that G is a ϕ∗-expander.

We conclude that the algorithm from Corollary 5.3 must return a graph H with V (H) ⊆ V (G),
|V (H)| = N1/ε ≥ n − n1−ε/2 ≥ n/2, where N = bnεc, so that the maximum vertex degree in H is
at most n32ε3 . The algorithm also must return an embedding P of H into G via paths of length at
most d that cause congestion at most η · n32ε3 , and a level-(1/ε) hierarchical support structure for H,

69

such that H is (η′, d̃)-well-connected with respect to the set S(H) of vertices defined by the support
structure, where η′ = N6+256ε, and d̃ = 2c/ε

5
, with c being the constant used in the definition of the

Hierarchical Support Structure. Recall that the running time of the algorithm is:

O
(
n1+O(ε) + |E(G)| · nO(ε3) · (η + d log n)

)
≤ O

(
n1+O(ε) + n1+O(ε3) · ∆3 log2 n

(ϕ∗)2

)
≤ O

(
n1+O(ε) ·∆3

(ϕ∗)2

)
.

(We have used the fact that d = 64∆ logm
ϕ∗ , η = 512∆2 logm

(ϕ∗)2 , and Inequality 12). Let q = 1/ε.

For every edge e′ ∈ E(H), let P (e′) ∈ P be the path embedding edge e′ into G. For every edge
e ∈ E(G), we will maintain a list L(e) of all edges e′ ∈ E(H) with e ∈ E(P (e′)). The list also
contains, for each edge e′ ∈ L(e), a pointer to edge e′ in graph H, and each edge e′ ∈ E(H) maintains
a pointer to every edge in E(P (e′)). Whenever an edge e ∈ E(G) is deleted from graph G, we
will delete every edge e′ ∈ L(e) from graph H. Since the paths in P cause congestion at most

η · n32ε3 = 512∆2·n32ε3 logm
(ϕ∗)2 ≤ ∆2·n33ε3

(ϕ∗)2 in H, every deletion of an edge in G may trigger the deletion of

at most η̃ = ∆2·n33ε3

(ϕ∗)2 edges from H. Let q = 1/ε. Then the total number of edge deletions from graph

H over the course of the algorithm is bounded by:

n1−20ε(ϕ∗)2

∆2
· η̃ = n1−20ε+33ε2 ≤ n1−16ε

2
≤ N q−16qε < N q−8−300qε2 ,

as q = 1/ε and n
2 ≤ N

q.

Note that η′ = N6+256ε = N6+256qε2 = ηq and d̃ = 2c/ε
5

= d̃q, where ηq and d̃q are the parameters
from the definition of Hierarchical Support Structure. We will use the algorithm from Theorem 7.1
in graph H, with parameter j = q, and parameters ε,N remaining unchanged. In order to be able to

use the theorem, we need to verify that Nε4

logN ≥ 2128/ε6 holds. Since N = bnεc, we get that:

N ε4

logN
≥ nε

6

ε · log n
≥ nε6/2 ≥ 2128/ε6 .

(we have used the fact that, from Inequality 12, log n < nε
8
, from Inequality 11, n ≥ 2(2/ε)12

, and
ε < 1/400).

As observed already, the number of edge deletions that graph H undergoes over the course of the
algorithm is bounded less than N q−8−300qε2 = Λq. We will maintain a data structure from Theorem 7.1
in graph H, with parameters ε,N and q as defined above. We denote this data structure by D(H).
At the beginning of the algorithm, we initialize this data structure. Recall that data structure D(H)
maintains a decremental set S′(H) ⊆ S(H) of vertices of H, called supported vertices, such that, at
the beginning of the algorithm, S′(H) = S(H). The algorithm ensures that |S′(H)| ≥ Nq

16q holds over
the course of the algorithm, and it supports short-path queries between supported vertices: given a
pair x, y ∈ S′(H) of vertices, return a path P connecting x to y in the current graph H, whose length
is at most d∗q = 2O(q/ε5) = 2O(1/ε6), in time O(|E(P)|). If m′ ≤ n1+32ε3 is the number of edges in H at
the beginning of the algorithm, then the total update time needed to maintain data structure D(H)
is bounded by:

O
(
qN q+3 · 2O(1/ε6) +m′ ·N2 · 2O(1/ε6)

)
≤ O

(
n1+O(ε) · 2O(1/ε5)

)
≤ O

(
n1+O(ε)

)
70

(We have used the fact that, from Inequality 11, nε ≥ 2(2/ε)12·ε ≥ 2O(1/ε6)).

Lastly, we maintain an ES-Tree data structure τ in graph G, rooted at the set S′(H) of vertices, with
depth parameter d = 64∆ logm

ϕ∗ . Specifically, we maintain a graph G′, that is obtained from graph G by

adding a source vertex s, that connects to every vertex that lies in the current set S′(H) of supported
vertices with an edge. We then let τ be an ES-Tree data structure in graph G′, rooted at s, with
depth d + 1. Whenever a vertex x is deleted from set S′(H), we will delete edge (s, x) from G′, and
update the data structure τ accordingly. Also, whenever an edge e is deleted from graph G, we will
also delete e from graph G′, and update the data structure τ accordingly. Throughout the algorithm,
we let U be the set of all vertices v ∈ V (G), such that v 6∈ V (τ). In other words, distG(S′(H), v) > d.
Clearly, the set U of vertices is incremental: vertices can joint it but they cannot leave it. In the next
claim we bound the cardinality of U .

Claim 8.2 Let t be any time during the algorithm’s execution, let E′t be the set of edges that were

deleted so far from G, and let Ut be the current set U of vertices. Then |Ut| ≤ 4∆|E′t|
ϕ∗ .

Proof: Assume otherwise, and let t be some time during the algorithm’s execution, when |Ut| > 4∆|E′t|
ϕ∗

holds. Denote ϕ = ϕ∗

∆ , so that |E′t| < ϕ · |Ut|/4.

Let S′t be the set S′(H) of vertices at time t. Recall that we are guaranteed that |S′(H)| ≥ Nq

16q ≥
n

24/ε+1

holds throughout the algorithm. Since the total number of the edges deleted from G over the course

of the algorithm is at most n1−20ε(ϕ∗)2

∆2 = n1−20εϕ2 ≤ n1−20ε · ϕ, we get that |E′t| ≤ n1−20ε · ϕ. On the

other hand, from Inequality 11, n20ε ≥ 24/ε+4, and so:

|S′t| ≥
n

24/ε+1
≥ 4n1−20ε ≥ 4|E′t|

ϕ
.

We conclude that |E′t| ≤
ϕ
4 · min {|S′t|, |Ut|}. Denote M = min {|S′t|, |Ut|}. Let X ⊆ S′t, Y ⊆ Ut

be arbitrary subsets of vertices of cardinality M each. Let G0 be the graph G at the beginning of
the algorithm. Clearly, distG0\E′t(X,Y) > d. Recall that d = 64∆ logm

ϕ∗ = 64 logm
ϕ . From Lemma 4.1,

there is a cut (X ′, Y ′) in graph G0, with with X ⊆ X ′ and Y ⊆ Y ′, such that |EG0(X ′, Y ′)| ≤
ϕ ·min {|EG0(X ′)|, |EG0(Y ′)|}. Since |EG0(X ′)| < ∆ · |X ′| and |EG0(Y ′)| < ∆ · |Y ′|, we get that:

|EG0(X ′, Y ′)| < ϕ ·∆ ·min
{
|X ′|, |Y ′|

}
= ϕ∗ ·min

{
|X ′|, |Y ′|

}
,

contradicting the fact that graph G0 is a ϕ∗-expander.

At the beginning of the algorithm, we initialize the ES-Tree data structure τ , and set U = ∅. The

total update time needed in order to maintain τ is bounded by O(md logm) ≤ O
(
m∆ log2m

ϕ∗

)
.

We now bound the running time that is needed to initialize all data structures, and to maintain data
structures D(H), τ , and {L(e)}e∈E(G) over the course of the algorithm. The running time of the

algorithm from Corollary 5.3, from the above discussion, is bounded by O
(
n1+O(ε)·∆3

(ϕ∗)2

)
. The time that

is needed in order to initialize and maintain the lists L(e) for edges e ∈ E(G) is subsumed by this
running time. Additionally, from the above discussion, the total update time of data structure D(H)

is bounded by O
(
n1+O(ε)

)
, and the total update time of data structure τ is bounded by O

(
m∆ log2m

ϕ∗

)
.

The set U of vertices can be maintained within this asymptotic running time. Overall, the total time
needed to initialize all data structures, and to maintain data structures D(H), τ , and {L(e)}e∈E(G)

over the course of the algorithm is bounded by:

71

Algorithm DeleteExpanderEdge(e)

1. For every edge e′ ∈ L(e) do:

(a) Delete e′ from H and update data structure D(H). Let X be the set of
vertices that were deleted from S′(H) as the result of this update.

(b) For every edge e′′ ∈ E(G) with e′ ∈ L(e′′), delete e′ from L(e′′).

(c) for every vertex x ∈ X, delete edge (s, x) from graph G′ and update the
ES-Tree τ with this deletion. Add every vertex that is removed from τ to U .

2. Delete edge e from graph G′ and update data structure τ accordingly. Add every
vertex that is removed from τ to U .

Figure 2: Algorithm DeleteExpanderEdge(e)

O

(
m∆ log2m

ϕ∗

)
+O

(
n1+O(ε) ·∆3

(ϕ∗)2

)
≤ O

(
n1+O(ε) ·∆3

(ϕ∗)2

)
.

8.1.2 Maintaining the Data Structures

Maintaining the data structures under the deletion of edges from G is now straightforward. In Figure 2
we describe algorithm DeleteExpanderEdge(e) that is invoked whenever an edge e is deleted from graph
G. We start by considering every edge e′ ∈ E(H) whose embedding path P (e′) contains edge e – in
other words, all edges of L(e). We delete each such edge e′ from graph H, and update data structure
D(H) with this deletion. As a result, it is possible that some vertices are removed from set S′(H). For
each such vertex x, we delete edge (s, x) from graph G′, and update the data structure τ accordingly.
Finally, we delete edge e from data structure τ . Whenever a vertex leaves the tree τ , we add it to U .

It is easy to verify that the total update time of the algorithm is dominated by the time needed to
initialize the data structures, and to maintain data structures D(H), τ , and {L(e)}e∈E(G). From the

above discussion, the total update time of the algorithm is bounded by O
(
n1+O(ε)·∆3

(ϕ∗)2

)
.

8.1.3 Responding to Short-Path Queries

We assume that we are given a pair of vertices x, y ∈ V (G) \ U , and describe an algorithm for
responding to short-path query between x and y. Recall that our goal is to return an x-y path P in

the current graph G, of length at most 2O(1/ε6)·∆·logn
ϕ∗ , with query time O(|E(P)|).

Using the ES-Tree τ , we compute a path Q connecting x to some vertex x′ ∈ S′(H), and a path Q′

connecting vertex y to some vertex y′ ∈ S′(H), so that the length of each path is bounded by d. Next,
we query data structure D(H) with the pair x′, y′ ∈ S′(H) of vertices. The data structure must return
a path Q̃ connecting x′ to y′ in H, whose length is at most 2O(1/ε6), in time O(|E(Q̃)|). Using the
embedding P of H into G, in which the length of every path is bounded by d, we can compute a path
Q′′ in graph G, connecting x′ to y′, whose length is bounded by |E(Q̃)| · d ≤ 2O(1/ε6) · d. Lastly, by
concatenating the paths Q,Q′′ and Q′, we obtain a path P connecting x to y in graph G, whose length
is at most:

72

2O(1/ε6) · d ≤ 2O(1/ε6) ·∆ · logm

ϕ∗
≤ 2O(1/ε6) ·∆ · log n

ϕ∗
.

It is easy to see that the running time of the algorithm is O(|E(P)|).

9 Advanced Path Peeling – Proof of Theorem 2.5

In this section we prove Theorem 2.5. The main tool in the proof is the following theorem.

Theorem 9.1 There is a large enough constant c∗, and a deterministic algorithm, whose input con-
sists of a connected n-vertex m-edge graph G, a collection M = {(s1, t1), . . . , (sk, tk)} of pairs of vertices
of G, such that M is a matching, and parameters d, η > 0, 0 < α ≤ 1/2 and 2

(logn)1/24 < ε < 1
400 , such

that 1/ε is an integer and 256d < η ≤ d2

2c
∗/ε6 ·logm

holds. The algorithm computes one of the following:

• either a cut (A,B) with |EG(A,B)| ≤ 1024d
η ·min {|EG(A)|, |EG(B)|}, and each of A, B contains

at least αk
8 vertices of set T = {s1, t1, . . . , sk, tk}; or

• a routing P in G of a subset M ′ ⊆ M containing at least (1 − α)k pairs of vertices, such that
every path in P has length at most d, and the total congestion caused by the paths in P is at
most 4η

α .

The running time of the algorithm is bounded by O
(
m1+O(ε)(d2 + ηd)

)
.

The proof of Theorem 2.5 easily follows from Theorem 9.1. Let z =
⌈

1
ε

⌉
, and let ε′ = 1

z . Clearly,
1
ε ≤ z ≤ 2

ε , and so ε
2 ≤ ε′ ≤ ε. Since we have assumed that 4

(logn)1/24 < ε < 1
400 , we get that

2
(logn)1/24 < ε′ < 1

400 . For convenience, in the remainder of the proof we will denote ε′ by ε.

Let c∗ be the constant from Theorem 9.1. We set d = 2c
∗/ε6+10·logm

ϕ and η = 1024d
ϕ = 2c

∗/ε6+20·logm
ϕ2 . It

is immediate to verify that η > 256d. Observe also that:

d2

2c∗/ε6 · logm
=

1024d

ϕ
≥ η.

We start by considering the case where 1
α < log n. In this case, we apply the algorithm from The-

orem 9.1 to graph G, the set M of pairs of its vertices, and parameters d, η, α and ε. Assume first
that the outcome of the algorithm is a cut (A,B) with |EG(A,B)| ≤ 1024d

η ·min {|EG(A)|, |EG(B)|} =

ϕ ·min {|EG(A)|, |EG(B)|}, and |T ∩ A|, |T ∩ B| ≥ αk
8 . In this case, we return the cut (A,B) as the

outcome of the algorithm. Otherwise, the outcome of the algorithm from Theorem 9.1 is a routing
P in G of a subset M ′ ⊆ M containing at least k · (1 − α) pairs of vertices, such that every path in

P has length at most d ≤ 2O(1/ε6)·logn
ϕ , and the total congestion caused by the paths in P is at most

4η
α ≤

2O(1/ε5)·logn
α·ϕ2 . We then return this set of paths as the outcome of the algorithm.

The running time of the algorithm from Theorem 9.1 is bounded by:

O
(
m1+O(ε)(d2 + ηd)

)
≤ O

(
m1+O(ε)

(
2O(1/ε6) · log2 n

ϕ2
+

2O(1/ε6) · log2 n

ϕ3

))
≤ O

(
m1+O(ε)

ϕ3

)
.

73

Next, we consider the case where 1
α > log n. In this case, we perform at most log n iterations. At the

beginning of iteration i, we are given a collection Mi ⊆M of pairs of vertices that have been already
routed, together with their routing Pi in graph G. At the beginning of the algorithm, M1 = ∅ and
P1 = ∅. The iterations continue as long as |Mi| < (1− α)k holds.

We now describe the execution of the ith iteration. Let M ′i = M \Mi, and recall that |M ′i | ≥ αk
must hold. We apply the algorithm from Theorem 9.1 to graph G, the set M ′i of pairs of its vertices,
and parameters d, η, α′ = 1/2 and ε. Assume first that the outcome of the algorithm is a cut (A,B)
with |EG(A,B)| ≤ 1024d

η ·min {|EG(A)|, |EG(B)|} = ϕ ·min {|EG(A)|, |EG(B)|}, and |T ∩A|, |T ∩B| ≥
|M ′i |
16 ≥

αk
16 . In this case, we terminate the algorithm and return the cut (A,B) as the outcome of the

algorithm. Otherwise, the outcome of the algorithm from Theorem 9.1 is a routing P̃i in G of a subset
M̃i ⊆ M ′i containing at least |M ′i |/2 pairs of vertices, such that every path in P̃i has length at most

d ≤ 2O(1/ε6)·logn
ϕ , and the total congestion caused by the paths in P̃i is at most 8η ≤ 2O(1/ε6)·logn

ϕ2 . We

then set Mi+1 = Mi ∪ M̃i, Pi+1 = Pi ∪ P̃i, and continue to the next iteration.

Assume that the last iteration of the algorithm is iteration i. If the algorithm did not terminate with
a cut, then |Mi+1| ≥ (1− α)k must hold. We then return the set M ′ = Mi+1 of pairs of vertices, and
their routing P = Pi+1. It is easy to verify that the cardinality of the set M ′i′ of pairs of vertices that
remains to be routed decreases by at least factor 2 in every iteration, and so the number of iterations in
the algorithm is bounded by log k. Since, for every iteration i′, the congestion caused by the set P̃i′ of

paths is at most 2O(1/ε6)·logn
ϕ2 , the total congestion caused by the set P of paths is at most 2O(1/ε6)·log2 n

ϕ2 .

The running time of a single iteration is bounded by O
(
m1+O(ε)

ϕ3

)
as before, and, since the number of

iterations is O(log n), the total running time of the algorithm remains bounded by O
(
m1+O(ε)

ϕ3

)
.

In the remainder of this section we prove Theorem 9.1. Following is a key lemma that we use in the
proof.

Lemma 9.2 There is a large enough constant c∗, and a deterministic algorithm, whose input consists
of a connected m-edge graph G with |V (G)| ≤ n, a collection M = {(s1, t1), . . . , (sk, tk)} of pairs of
vertices of G, such that M is a matching, and parameters d, η > 0 and 2

(logn)1/24 < ε < 1
400 , such that

1/ε is an integer, and 128d < η ≤ d2

2c
∗/ε6 ·logm

holds. The algorithm computes one of the following:

• either a cut (A,B) with |EG(A,B)| ≤ 64d
η ·min {|EG(A)|, |EG(B)|}, and each of A, B contains

at least k1−ε

16 vertices of set T = {s1, t1, . . . , sk, tk}; or

• a routing P in G of a subset M ′ ⊆ M containing at least z = k1−22ε

d pairs of vertices, such that
every path in P has length at most d, and the total congestion caused by the paths in P is at
most η.

The running time of the algorithm is bounded by O
(
m1+O(ε)(η + d log n)

)
.

We defer the proof of Lemma 9.2 to Section 9.1, after we complete the proof of Theorem 9.1 using it.
Our algorithm iteratively applies the algorithm from Lemma 9.2, while gradually constructing both a
routing of some pairs from M , and a low-conductance cut in G.

Let η′ = 4η
α . Our algorithm consists of two stages. In the first stage, we either construct the desired

routing P of a large subset M ′ ⊆M of pairs of vertices, or compute a collection S of disjoint subsets
of vertices of G with some useful properties. In the former case, we terminate the algorithm and

74

return the resulting routing P, while in the latter case we continue to Stage 2, in which we exploit the
collection S of vertex subsets, in order to construct the desired low-conductance cut (A,B). We now
describe each of the two stages in turn.

Stage 1: Constructing a Routing

Let q′ = 4d · k22ε · log k. Our algorithm in Stage 1 consists of at most q′ iterations. At the beginning
of iteration q, we are given a subset M ′q ⊆M of pairs of vertices with |M ′q| < (1−α) · k, and a routing
Pq of the matching M ′q in graph G. Additionally, we are given a collection Sq of disjoint subsets of
vertices of G, and we denote Aq =

⋃
S∈Sq S. We will ensure that the following invariants hold:

I1. every path in Pq has length at most d;

I2. |Pq| < (1− α)k;

I3. the paths in Pq cause congestion at most η′ in G;

I4. if we denote by E′q the set of all edges that lie on at least η′/2 paths in Pq, then
∣∣∣(⋃S∈Sq δG(S)

)
\ E′q

∣∣∣ ≤
64d
η

∑
S∈Sq |EG(S)|; and

I5. |Aq ∩ T | < αk
2 .

At the beginning of the algorithm, we set P1 = ∅ and S1 = ∅, so A1 = ∅ holds. Clearly, all invariants
hold for this setting. We now describe the execution of the qth iteration, for some q ≥ 1. We assume
that we are given a set M ′q ⊆ M of pairs of vertices, a set Pq of paths routing the pairs in M ′q in G,
and a collection Sq of disjoint subsets of vertices of G, for which invariants I1–I5 hold.

We let Mq be a set of pairs of vertices of G, containing all pairs (si, ti) ∈M \M ′q with si, ti ∈ V (G)\Aq.
We also let Gq be the graph obtained from G, after we delete from it all vertices of Aq, and all edges e ∈
E(G), such that e that belongs to at least η′/2 paths of Pq. In other words, Gq = (G\Aq)\E′q. Denote

kq = |Mq|. Since, from Invariant I5, |Aq ∩T | < αk
2 , while from Invariant I2, |M \M ′q| ≥ k− |Pq| ≥ αk,

we get that kq >
αk
2 must hold. Notice that graph Gq may not be connected. We assume first that

there is some connected component Cq of graph Gq, and a subset M̃q ⊆ Mq containing at least kq/2
pairs, such that all vertices participating in the pairs in M̃q lie in Cq.

We apply the algorithm from Lemma 9.2 to graph Cq, the set M̃q of pairs of vertices, and parameters
d, η, ε that remain unchanged. We now consider two cases. The first case happens if the algorithm from
Lemma 9.2 returns a cut (Xq, Yq) in graph Cq, with |EGq(Xq, Yq)| ≤ 64d

η ·min
{
|EGq(Xq)|, |EGq(Yq)|

}
≤

64d
η · min {|EG(Xq)|, |EG(Yq)|}. Recall that we are also guaranteed that each of Xq, Yq contains at

least
k1−ε
q

32 vertices of set T ′ =
{
si, ti | (si, ti) ∈ M̃q

}
. We say that iteration q is a type-1 iteration.

We assume w.l.o.g. that |Xq ∩ T ′| ≤ |Yq ∩ T ′|. We set Sq+1 = Sq ∪ {Xq}, and we let M ′q+1 = M ′q
and Pq+1 = Pq. It is immediate to verify that Invariants I1–I3 continue to hold for Pq+1. It is also

immediate to verify that E′q+1 = E′q. Therefore,
∣∣∣(⋃S∈Sq δG(S)

)
\ E′q+1

∣∣∣ ≤ 64d
η

∑
S∈Sq |EG(S)|. Let

E∗q =
((⋃

S∈Sq+1
δG(S)

)
\
(⋃

S∈Sq δG(S)
))
\E′q. Then E∗q = EGq(Xq, Yq), and we are guaranteed that

|E∗q | ≤ 64d
η · |EG(Xq)|. Therefore, we get that:

75

∣∣∣∣∣∣
 ⋃
S∈Sq+1

δG(S)

 \ E′q+1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
 ⋃
S∈Sq

δG(S)

 \ E′q+1

∣∣∣∣∣∣+ |E∗q |

≤ 64d

η

∑
S∈Sq

|EG(S)|+ 64d

η
· |EG(Xq)|

≤ 64d

η

∑
S∈Sq+1

|EG(S)|.

Therefore, Invariant I4 continues to hold for Sq+1. If Invariant I5 continues to hold as well, then we
continue to the next iteration. Otherwise, we terminate the first stage, and continue to the second
stage.

Consider now the second case, when the algorithm from Lemma 9.2 returns a routing Rq in Cq of a

subset M∗q ⊆ M̃q containing at least
k1−22ε
q

2d pairs of vertices, such that every path in Rq has length at
most d, and the total congestion caused by the paths in Rq is at most η. In this case, we say that
iteration q is a type-2 iteration. We set Pq+1 = Pq ∪ Rq and M ′q+1 = M ′q ∪M∗q . Clearly, Pq+1 is a
routing of the pairs in M ′q+1 in graph G, and every path in Pq+1 has length at most d. Furthermore,
since the edges of G that participate in at least η′/2 paths in Pq do not lie in graph Gq, and since
η < η′/2, we get that the total congestion that the paths of Pq+1 cause in graph G is at most η′. We
also set Sq+1 = Sq. Since E′q ⊆ E′q+1, it is easy to verify that Invariant I4 continues to hold for Sq+1,
and it is immediate to verify that Invariant I5 holds as well. If |Pq+1| ≥ (1− α)k, then we terminate
the algorithm and return the set M ′ = Mq+1 of pairs of vertices and the set P = Pq+1 of paths. From
the above discussion, the paths in P are a routing of the pairs in M ′; every path in P has length at
most d, and the paths in P cause congestion at most η′. Otherwise, if |Pq+1| < (1 − α)k, then from
the above discussion, all invariants hold for Pq+1 and Sq+1, and we continue to the next iteration.

It remains to consider the case where for every connected component C of graph Gq, the number of
demand pairs (si, ti) ∈ Mq with si, ti ∈ V (C) is less than kq/2. Let C denote the set of all connected
components of Gq, and let T ′ = {si, ti | (si, ti) ∈Mq}, so |T ′| = 2kq. For each component C ∈ C, let
nC = |V (C)∩T ′|. Then for all C ∈ C, nC ≤ 1.5kq must hold. Let (A′, B′) be a partition of V (Gq), that
is computed as follows. We denote C = {C1, C2, . . . , Cr}, where the components are indexed so that
nC1 ≥ nC2 ≥ · · · ≥ nCr . We start with A′ = B′ = ∅, and consider the components of C in the order of
their indices. When component Ci is processed, if |A′ ∩ T ′| ≤ |B′ ∩ T ′|, then we add the vertices of Ci
to A′, and otherwise we add the vertices of Ci to B′. Consider the partition (A′, B′) of the vertices of
V (Gq) that we obtain at the end of the algorithm, and assume w.l.o.g. that |A′ ∩ T ′| ≥ |B′ ∩ T ′|. It is
easy to verify that |A′∩T ′|− |B′∩T ′| ≤ maxi {nCi} ≤ nC1 ≤ 1.5kq. Since |T ′| = 2kq, we then get that

|A′ ∩ T ′|, |B′ ∩ T ′| ≥ kq
4 ≥

αk
8 . We obtain a cut (A,B) in graph G by letting A = A′ ∪Aq and B = B′.

Clearly, |A∩T |, |B∩T | ≥ αk
8 . Next, we show that |EG(A,B)| ≤ 1024d

η ·min {|EG(A)|, |EG(B)|}. Indeed,

it is immediate to verify that EG(A,B) ⊆ E′q. Since the paths in Pq have length at most d each, and

since η′ = 4η
α , we get that |E′q| ≤

2|Pq |·d
η′ ≤ αkd

2η . On the other hand, since graph G is connected,

and since |A| ≥ αk
8 , we get that |EG(A)| + |EG(A,B)| ≥ αk

16 . Similarly, |EG(B)| + |EG(A,B)| ≥ αk
16 .

Altogether, we get that: |E′q| ≤ αkd
2η ≤

8d
η ·min {|EG(A)|, |EG(B)|} + 8d

η |EG(A,B)|. Since η ≥ 128d,
we get that:

|EG(A,B)| ≤ |E′q| ≤
8d

η
·min {|EG(A)|, |EG(B)|}+

|EG(A,B)|
2

,

and so:

76

|EG(A,B)| ≤ 1024d

η
·min {|EG(A)|, |EG(B)|} .

In this case, we terminate the algorithm and return the cut (A,B). We say that the current iteration
is a type-1 iteration.

This completes the description of the first stage of the algorithm. We now show that the number of
iteration in this stage is bounded by q′, and bound the running time of the algorithm.

Observation 9.3 The number of iterations in the algorithm is bounded by q′ = 4d · k22ε · log k.

Proof: We partition the execution of the algorithm into phases. For all i ≥ 1, the ith phase includes
all iterations q, for which k

2i
< |Mq| ≤ k

2i−1 . Clearly, the number of phases is bounded by log k. Next,
we bound the number of iterations in a single phase.

Consider some integer i, and denote by ni = k
2i

. If iteration q is a type-2 iteration that belongs to phase

i, then kq = |Mq| ≥ ni, and, from Lemma 9.2, at least
n1−22ε
i
2d pairs of vertices are routed in iteration q.

Therefore, after 2d ·n22ε
i type-2 iterations, the number of pairs that remain to be routed must decrease

by at least factor 2. We conclude that the ith phase may contain at most 2d · n22ε
i ≤ 2d · k22ε type-2

iterations.

If iteration q is a type-2 iteration in phase i, then we are guaranteed that set Xq contains at least
n1−ε
i
32

terminals that participate in pairs in Mq. Therefore, after 32nεi ≤ 32kε type-1 iterations, the number
of terminals in V (G) \ Aq that remain to be routed (that is, the terminals of Mq), must decrease by
at least factor 4. We conclude that a single phase may contain at most 32kε type-1 iterations.

Overall, a single phase may contain at most 2d ·k22ε+32kε ≤ 3d ·k22ε iterations, and the total number
of iterations in the algorithm is bounded by 3dk22ε log k ≤ q′.

Since the running time of the algorithm from Lemma 9.2 is bounded by O
(
m1+O(ε)(η + d log n)

)
, the

total running time of the first stage of the algorithm algorithm is bounded byO
(
m1+O(ε)(ηd+ d2 log n)

)
≤

O
(
m1+O(ε)(ηd+ d2)

)
, since ε > 2

(logn)1/24 , so nε > n2/(logn)1/24
> 2(logn)3/24

> log n.

Stage 2: Computing the Cut

Assume that the last iteration of the algorithm was iteration q. Let E′ be the set of all edges e ∈ E(G),
such that e belongs to at least η′/2 paths of Pq. Since the paths in Pq have length at most d each,

and since η′ = 4η
α , we get that |E′| ≤ 2|Pq |·d

η′ ≤ αkd
2η . Let G′ = G \ E′. In the second stage, we

will compute a cut (A,B) in graph G′, with |EG′(A,B)| ≤ 512d
η · min {|EG(A)|, |EG(B)|}, so that

each of A,B contains at least αk
8 vertices of T . Assume w.l.o.g. that |EG(A)| ≤ |EG(B)|. Since

graph G is connected, and since |A| ≥ αk
8 , we get that |EG(A)| + |EG(A,B)| ≥ αk

16 . Therefore,

|E′| ≤ αkd
2η ≤

8d
η (|EG(A)|+ |EG(A,B)|). We then get that:

|EG(A,B)| ≤ |EG′(A,B)|+ |E′|

≤ 512d

η
|EG(A)|+ 8d

η
(|EG(A)|+ |EG(A,B)|)

≤ 520d

η
|EG(A)|+ 8d

η
|EG(A,B)|.

77

Since η ≥ 256d, we get that |EG(A,B)| ≤ 1024d
η |EG(A)| = 1024d

η · min {|EG(A)|, |EG(B)|}. In the

remainder of the algorithm, it is enough to compute a cut (A,B) in graph G′, with |EG′(A,B)| ≤
512d
η ·min {|EG(A)|, |EG(B)|}, so that each of A,B contains at least αk

8 vertices of T .

Recall that the last iteration of the algorithm was iteration q, and in iteration q we have computed a cut
(Xq, Yq) of the connected component Cq of the corresponding graph Gq. We denote Y ′q = V (Gq) \Xq,
so Yq ⊆ Y ′q . We have also defined a set Sq+1 of disjoint subsets of vertices, with Xq ∈ Sq+1. Let
S ′ = Sq+1 ∪

{
Y ′q
}

. From the description of the algorithm, it is immediate to verify that the subsets of
vertices in S ′ are all disjoint, and they partition V (G). Since the algorithm terminated at iteration q,
we are guaranteed that |Aq+1∩T | ≥ αk

2 . Additionally, if T ′ denotes the set of all terminals participating

in the demand pairs in M̃q, then at least kq terminals from T ′ lie in Cq. Since we have assumed that

|Xq ∩ T ′| ≤ |Yq ∩ T ′|, we get that |Y ′q ∩ T ′| ≥
kq
2 ≥

αk
4 .

Let E′′ =
⋃
S∈Sq+1

δG′(S) =
(⋃

S∈Sq+1
δG(S)

)
\ E′ =

(⋃
S∈Sq+1

δG(S)
)
\ E′q+1. Recall that we have

established that Invariant I4 holds for Sq+1, so |E′′| ≤ 64d
η

∑
S∈Sq+1

|EG(S)|.

We now consider two cases. The first case happens if |EG(Y ′q)| ≥ η
256d |E

′′|. In this case, we consider

the cut (A,B) in graph G′, where B = Y ′q and A = V (G)\Y ′q . From the above discussion |B∩T | ≥ αk
4 ,

and |A ∩ T | = |Aq+1 ∩ T | ≥ αk
2 . Moreover, |EG′(A,B)| ≤ |E′′| ≤ 64d

η

∑
S∈Sq+1

|EG(S)| ≤ 64d
η |EG(A)|.

Altogether, we get that |EG′(A,B)| ≤ |E′′| ≤ 256d
η ·min {|EG(A)|, |EG(B)|}, as required.

From now on we consider the second case, where |EG(Y ′q)| < η
256d |E

′′|. We compute a partition
(A′, B′) of V (G) \ Y ′q as follows. Assume w.l.o.g. that Sq+1 = {S1, S2, . . . , Sr}, where the sets are
indexed so that |EG(S1)| ≥ |EG(S2)| ≥ · · · ≥ |EG(Sr)|. We start with A′ = B′ = ∅, and then
consider the sets S1, . . . , Sr in this order. When set Si is considered, if |EG(A′)| ≤ |EG(B′)|, then we
add the vertices of Si to A′, and otherwise we add the vertices of Si to B′. Consider the partition
(A′, B′) of V (G) \ Y ′q that we obtain at the end of this algorithm. If |A′ ∩ T | < |B′ ∩ T |, then we set
A = A′ ∪ Y ′q and B = B′. Otherwise, we set A = A′ and B = B′ ∪ Y ′q . We now show that cut (A,B)
has all required properties. Assume w.l.o.g. that |A′ ∩ T | < |B′ ∩ T | (the other case is symmetric).

Then |B ∩ T | = |B′ ∩ T | ≥ |Aq+1∩T |
2 ≥ αk

4 . Also, |A ∩ T | ≥ |Y ′q ∩ T | ≥ αk
2 . We next show that

|E′′| ≤ 512d
η ·min {|EG(A)|, |EG(B)|} in the following claim.

Claim 9.4

|E′′| ≤ 512d

η
·min {|EG(A)|, |EG(B)|} .

Proof: Recall that we have denoted Sq+1 = {S1, . . . , Sr}, where the sets of vertices Si are indexed
in the non-increasing order of the cardinalities of the corresponding sets of edges EG(Si). We use the
following observation.

Observation 9.5
∑r

i=2 |EG(Si)| ≥ η
512d |E

′′|.

We prove Observation 9.5 below, after we complete the proof of Claim 9.4 using it. Since A′ ⊆ A and
B′ ⊆ B, it is enough to prove that |E′′| ≤ 512d

η ·min {|EG(A′)|, |EG(B′)|}. Denote M = η
512d |E

′′|. We
consider two cases. The first case happens if |EG(S1)| ≥M . Our algorithm then adds the vertices of
S1 to A′, and it will keep adding vertices from sets Si to B′ until |EG(B′)| ≥ |EG(A′)| ≥ M holds.
Therefore, we are guaranteed that, at the end of the algorithm, |EG(A′)|, |EG(B′)| ≥ M = η

512d |E
′′|,

and so |E′′| ≤ 512d
η ·min {|EG(A′)|, |EG(B′)|}.

Consider now the second case, where |EG(S1)| < M . Assume for contradiction that |E′′| > 512d
η ·

min {|EG(A′)|, |EG(B′)|}, and assume w.l.o.g. that |EG(A′)| ≤ |EG(B′)|, so |EG(A′)| < η
512d |E

′′|.

78

Recall that, from Invariant I4,
∑

S∈Sq+1
|EG(S)| ≥ η

64d |E
′′|. Since |EG(A′)| < η

512d |E
′′|, it must be the

case that
∑

S∈Sq+1:

S⊆B′
|EG(S)| > η

128d |E
′′|. Let Si ∈ Sq+1 be the set whose vertices were added to B′ last.

Then at the time when the vertices of Si were added to B′, |EG(A′)| < η
512d |E

′′| held. Therefore, from
our algorithm, at the same time |EG(B′)| < η

512d |E
′′| held. Therefore, at the end of the algorithm,∑

S∈Sq+1:

S⊆B′
|EG(S)| ≤ η

512d |E
′′|+ |EG(Si)|. But since |EG(Si)| ≤ |EG(S1)| < M = η

512d |E
′′|, we get that∑

S∈Sq+1:

S⊆B′
|EG(S)| < η

256d |E
′′| holds at the end of the algorithm, a contradiction.

In order to complete the proof of Claim 9.4, it is now enough to prove Observation 9.5.

Proof of Observation 9.5. Let 1 ≤ i1 < i2 < · · · < ir = q be the indices of type-2 iterations. Recall
that for each 1 ≤ j ≤ r, in iteration ij we computed a cut (Xij , Yij) of the connected component Cij
of graph Gij , with |EGij (Xij , Yij)| ≤ 64d

η ·min
{
|EG(Xij)|, |EG(Yij)|

}
.

We can then denote Sq+1 = {Xi1 , Xi2 , . . . , Xir}. For all 1 ≤ j ≤ r, we define a subset Ej ⊆ E′′ of
edges that the set Xij of vertices is responsible for. We let E1 = δG′(Xi1), and for 1 < j ≤ r, we let
Ej = δG′(Xij) \ (E1 ∪ · · · ∪ Ej−1). It is easy to verify that (E1, . . . , Er) is a partition of E′′.

Consider now some index 1 ≤ j ≤ r, and the cut (Xij , Yij) that our algorithm computed in iteration
ij . It is easy to verify that Yij ⊆ Xij+1 ∪ · · · ∪Xir ∪ Y ′q . Moreover, Ej = EGij (Xij , Yij) \ E′, and so,
from the above discussion:

|Ej | ≤
64d

η
·min

{
|EG(Xij)|, |EG(Yij)|

}
.

Assume w.l.o.g. that S1 = Xij∗ . We partition the edges of E′′ into three subsets: set Ê1 =
⋃

1≤j<j∗ Eij ;

set Ê2 = Eij∗ ; and set Ê3 =
⋃
j∗<j≤r Eij . From the discussion so far, we get that:

|Ê1| ≤
64d

η
·
∑

1≤j<j∗
|EG(Xij)|,

|Ê3| ≤
64d

η
·
∑

j∗<j≤q
|EG(Xij)|,

and

|Ê2| ≤
64d

η
· |EG(Yij∗)|.

Recall that Yij∗ ⊆ Xij∗+1∪· · ·∪Xir∪Y ′q . Therefore, for every edge e ∈ EG(Yij∗), either both endpoints
of e lie in one of the sets Xi∗j+1, · · · , Xi∗r , Y

′
q (in which case e ∈ EG(Xij∗+1)∪ · · · ∪EG(Xir)∪EG(Y ′q)),

or the endpoints of e lie in different sets of
{
Xij∗+1, · · · , Xir , Y

′
q

}
. In the latter case, e ∈ Eij∗+1 ∪

· · ·Er ∪ E′ = Ê3 ∪ E′ must hold. Altogether, we get that:

79

|EG(Yij∗)| ≤
∑

j∗<j≤r
|EG(Xij)|+ |EG(Y ′q)|+ |Ê3|+ |E′|

≤
(

1 +
64d

η

)
·
∑

j∗<j≤r
|EG(Xij)|+ |EG(Y ′q)|+ |E′|

≤ 5

4
·
∑

j∗<j≤r
|EG(Xij)|+ |EG(Y ′q)|+ |E′|.

(since η > 256d).

Recall that |E′| ≤ αkd
2η ≤

αk
512 , while |Yq| ≥ |T ∩ Yq| ≥ αk

4 . Since Yq is a set of vertices of a con-

nected component of Gq, |EGq(Yq)| + |EGq(Xq, Yq)| ≥ |Yq |
2 ≥

αk
8 . Moreover, we are guaranteed that

|EGq(Xq, Yq)| ≤ 64d
η · |EGq(Yq)| ≤

|EGq (Yq)|
4 . Therefore, |EG(Y ′q)| ≥ |EG(Yq)| ≥ |EGq(Yq)| ≥ αk

10 , and so

|E′| ≤ αk
512 ≤

|EG(Y ′q)|
50 . Overall, we get that:

|EG(Yij∗)| ≤
5

4
·
∑

j∗<j≤r
|EG(Xij)|+

51|EG(Y ′q)|
50

.

Altogether:

|Ê2| ≤
80d

η

∑
j∗<j≤r

|EG(Xij)|+
80d

η
|EG(Y ′q)|,

and:

|E′′| = |Ê1|+ |Ê2|+ |Ê3| ≤
144d

η

r∑
a=2

|EG(Sa)|+
80d

η
|EG(Y ′q)|.

Recall that we have assumed that |EG(Y ′q)| < η
256d |E

′′|. Therefore, we get that |E′′| ≤ 144d
η

∑r
a=2 |EG(Sa)|+

|E′′|
3 , and so

∑r
a=2 |EG(Sa)| ≥ η

512d |E
′′|.

Since EG′(A,B) ⊆ E′′, we get that, in the second case, |EG′(A,B)| ≤ |E′′| ≤ 512d
η ·min {|EG(A)|, |EG(B)|}

holds. To conclude, we have computed a cut (A,B) in graph G, with |A ∩ T |, |B ∩ T | ≥ αk
8 and

|EG(A,B)| ≤ 1024d
η ·min {|EG(A)|, |EG(B)|}.

Recall that the running time of the first stage of the algorithm is at most O
(
m1+O(ε)(d2 + ηd)

)
, while

the running time of the second stage can be bounded by O(m). Therefore, the total running time
of the algorithm is O

(
m1+O(ε)(d2 + ηd)

)
. In order to prove Theorem 9.1 it now remains to prove

Lemma 9.2, which we do next.

9.1 Proof of Lemma 9.2

We denote T = {s1, t1, . . . , sk, tk}, and for convenience we denote by k̃ = |T | = 2k.

The algorithm consists of two stages. In the first stage, we apply the algorithm from Corollary 5.3
to graph G and the set T of terminals. If the algorithm returns two subsets T1, T2 ⊆ T of terminals

80

and a set E′ of edges (essentially defining a distancing (T1, T2, E
′)), then we will use the algorithm

from Lemma 4.1 in order to convert this distancing into a low-conductance cut (A,B) as required.
Otherwise, the algorithm must embed a large graph H into G, and construct a level-(1/ε) hierarchical
support structure for H, so that H is (η′, d̃)-well-linked with respect to the set S(H) of vertices defined
by the hierarchical support structure. In this latter case, we continue to Stage 2. In Stage 2, we will
initialize an ES-Tree data structure, rooted at the set S(H) of vertices in graph G. Additionally, we
will maintain a data structure from Theorem 7.1 in order to support approximate short-path queries
in graph H, as it undergoes edge deletions. We will use these data structure to iteratively identify
pairs (si, ti) ∈M of vertices, that can be connected via a short path Pi in G. The corresponding path
Pi is then added to the routing P that we are constructing, and every edge of G that currently appears
on η paths in P is deleted from G. Edges of H whose embedding paths have thus been eliminated will
be deleted from H. The algorithm terminates when we can no longer route the remaining paths of P
via short paths. If, by that time |P| ≥ z, then we return the routing in P. Otherwise, we will obtain
a distancing in graph G, that can again be converted into a low-conductance cut. Before we describe
each of the two stages, we need to consider an easier special case where k ≤ nε.

9.1.1 Special Case: k ≤ nε

For all 1 ≤ i ≤ k, let Ai = {si} and Bi = {ti}. We apply Procedure ProcPathPeel from Lemma 3.12
to graph G and the collections A1, B1, . . . , Ak, Bk of subsets of its vertices, and parameters d and
η. Let P1, . . . ,Pk be the collection of paths that the algorithm outputs. Then for all 1 ≤ i ≤ k,
either Pi = ∅, or Pi contains a single path Pi, connecting si to ti in G. Let P =

⋃k
i=1 Pi, and let

M ′ ⊆ M contain all pairs (si, ti) ∈ M , such that some path in P connects si to ti. Clearly, P is a
routing of the pairs in M ′, and we are guaranteed that every path in P has length at most d, and the
paths in P cause congestion at most η. Let E′ be the set of all edges of G that participate in exactly
η paths in P, and let M ′′ = M \M ′. From Property P3, for every pair (si, ti) ∈ M ′′ of vertices,

distG\E′(si, ti) > d. Notice also that |E′| ≤
∑
P∈P |E(P)|

η ≤ d·|P|
η . Recall that the running time of the

algorithm is O(mη +mdk log n) ≤ O(mnO(ε)d+mη) ≤ O
(
m1+O(ε)(η + d log n)

)
.

We now consider two cases. The first case happens if |P| ≥ z. In this case, we return the routing P
of the set M ′ of pairs of vertices.

Consider now the second case, where |P| < z. In this case, |M ′′| ≥ k− z ≥ k/2. Let T ′ ⊆ T be the set
of all vertices that participate in the pairs in M ′′, and let G̃ = G\E′. Since, for every pair (si, ti) ∈M ′′
of vertices, distG̃(si, ti) > d, we get that for every vertex x ∈ T ′, |BG̃(x, d/2)∩T ′| < |T ′|/2. Let ∆ = 64

ε

and d̂ = d
2∆ = dε

128 . We apply Procedure ProcSeparate from Lemma 3.10 to graph G̃, the set T ′ of

terminals, parameters ∆, α = 2/3, and distance parameter d̂ replacing d. Note that the algorithm
may not return a terminal t ∈ T ′ with |BG̃(t,∆ · d̂)∩T ′| = |BG̃(t, d/2)∩T ′| > α|T ′|, since, as observed
above, for each such terminal t, |BG̃(t, d/2) ∩ T ′| < |T ′|/2.

Therefore, the algorithm must return two subsets T1, T2 of terminals, with |T1| = |T2|, such that

|T1| ≥ |T ′|1−64/∆

3 ≥ k1−ε

16 . Moreover, for every pair t ∈ T1, t′ ∈ T2 of terminals, distG̃(t, t′) ≥ d̂ = dε
128 .

Recall that the running time of Procedure ProcSeparate is bounded by O(m·|V (G)|64/∆) ≤ O(m1+O(ε)).

Recall that |E′| ≤ d|P|
η ≤

dz
η = k1−22ε

η ≤ 16d|T1|
η . Clearly, (T1, T2, E

′) is a (δ, d̂)-distancing in graph G,

for some parameter 0 < δ < 1. Let ϕ = 64d
η , so that |E′| ≤ ϕ|T1|

4 . Since η > 128d, we get that ϕ < 1/2.
Notice also that:

d̂ =
dε

256
≥ η logm

2d
=

32 logm

ϕ
,

81

since η ≤ d2

2c
∗/ε6 ·logm

≤ d2ε
256 logm from the statement of Lemma 9.2.

We can now use the algorithm from Lemma 4.1 to compute a cut (A,B) in graph G, with T1 ⊆ A,
T2 ⊆ B, such that |EG(A,B)| ≤ ϕ ·min {|EG(A)|, |EG(B)|} ≤ 64d

η ·min {|EG(A)|, |EG(B)|}. We return
the cut (A,B) as the outcome of the algorithm. From the above discussion, |A ∩ T |, |B ∩ T | ≥ |T1| ≥
k1−ε

16 .

The running time of the algorithm from Lemma 4.1 is bounded by O(m), and so the total running
time in Case 1 is bounded by O

(
m1+O(ε)(η + d log n)

)
.

From now on, we assume that k ≥ nε. The remainder of the algorithm consists of two stages, that we
now describe.

9.1.2 Stage 1: Embedding a Well-Connected Graph

In this stage, we will apply the algorithm from Corollary 5.3 to graph G and the set T of terminals.
In order to be able to do so, we need to ensure that ε > 2

(log k̃)1/12
holds. Recall that k̃ = 2k ≥ 2nε

from our assumption. Therefore:

212

log k̃
≤ 212

log(2nε)
≤ 212

ε · log n
.

From our assumption that ε > 2
(logn)1/24 , we get that log n > 224

ε24 . Therefore:

212

log k̃
≤ ε23

212
.

We conclude that:

ε >
2

(log k̃)1/23
≥ 2

(log k̃)1/12
. (13)

Let d′ = 8d

2c
∗/ε6 and η′ = 8η

2c
∗/ε6 . Since 128d < η ≤ d2

2c
∗/ε6 ·logm

, d′, η′ > 1. We apply the algorithm

from Corollary 5.3 to graph G, set T of terminals, parameters d′, η′, and parameter ε that remains
unchanged. Recall that the running time of the algorithm is:

O
(
k1+O(ε) +m · kO(ε3) · (η′ + d′ logm)

)
≤ O

(
m1+O(ε)(d′ + η′)

)
≤ O

(
m1+O(ε)(d+ η)

)
.

We now consider two cases.

Case 1. The first case happens if the algorithm from Corollary 5.3 returns a pair T1, T2 ⊆ T of disjoint

subsets of terminals, and a set E′ of edges of G, such that |T1| = |T2| and |T1| ≥ k̃1−4ε3

4 ≥ k1−4ε3

4 .
Recall that the algorithm also guarantees for every pair t ∈ T1, t

′ ∈ T2 of terminals, distG\E′(t, t
′) > d′.

Moreover, we are guaranteed that: |E′| ≤ d′·|T1|
η′ = d·|T1|

η . Denote ϕ = 4d
η , so that |E′| ≤ ϕ|T1|

4 holds.

Since η > 128d, we get that ϕ < 1/2. Since η ≤ d2

2c
∗/ε6 ·logm

, we get that:

32 logm

ϕ
=

8η logm

d
≤ 8d

2c∗/ε6
= d′.

82

We can now apply the algorithm from Lemma 4.1, to compute a cut (A,B) in graph G, with T1 ⊆ A,
T2 ⊆ B, such that |EG(A,B)| ≤ ϕ · min {|EG(A)|, |EG(B)|} = 4d

η · min {|EG(A)|, |EG(B)|}. The
running time of this algorithm is bounded by O(m). We return the cut (A,B) as the output of the

algorithm. Clearly, |A ∩ T |, |B ∩ T | ≥ |T1| ≥ k1−4ε3

4 ≥ k1−ε

16 .

Case 2. In the second case, the algorithm from Corollary 5.3 must return a graph H with V (H) ⊆ T ,

|V (H)| = N1/ε ≥ k̃ − k̃1−ε/2, where N =
⌊
k̃ε
⌋

= b(2k)εc, so that the maximum vertex degree in H is

at most k̃32ε3 .

Recall that the algorithm must also return an embedding P∗ of H into G via paths of length at most
d′, that cause congestion at most η′ · k̃32ε3 , and a level-(1/ε) hierarchical support structure for H,
such that H is (η̃, d̃)-well-connected with respect to the set S(H) of vertices defined by the support
structure, where η̃ = N6+256ε, and d̃ = 2c/ε

5
, with c being the constant used in the definition of the

Hierarchical Support Structure. In this case, we continue to Stage 2 of the algorithm.

This completes the description of the first stage of the algorithm. From the above analysis, the running
time of this stage is bounded by O

(
m · nO(ε)(d+ η)

)
.

9.1.3 Stage 2: Computing the Routing

In this stage, we start with P = ∅, and then gradually add paths to P. We also maintain a graph
G̃, where initially G̃ = G. As the algorithm progresses, every edge e ∈ E(G̃) that participates in η
paths of P is deleted from G̃. Therefore, we can think of graph G̃ as a dynamic graph, with edges
deleted from G̃ over time. Whenever an edge e is deleted from graph G̃, for every edge e′ ∈ E(H)
whose embedding path P (e′) ∈ P∗ contains e, we also delete edge e′ from graph H. Therefore, graph
H can also be viewed as a dynamic graph. We will maintain the following data structures throughout
the algorithm.

The first data structure, that we denote by D(H), will be used in order to support approximate
shortest-path queries in graph H. The data structure is maintained using the algorithm from Theo-

rem 7.1. Recall that N =
⌊
k̃ε
⌋
, and that we have established in Inequality 13 that 2

(log k̃)1/12
< ε <

1/400. In order to be able to use Theorem 7.1, we need to verify that Nε4

logN ≥ 2128/ε6 holds. Indeed

observe first that, since ε > 2
(log k̃)1/12

, we get that

k̃ε
8
> k̃(2/(log k̃)1/12)8

= k̃256/(log k̃)2/3
> 2(log k̃)1/3

> log k̃.

Additionally, from the inequality ε > 2
(log k̃)1/12

, we get that log k̃ ≥ (2/ε)12, and:

k̃ ≥ 2(2/ε)12
(14)

Lastly, since N =
⌊
k̃ε
⌋

and ε < 1/400, we get that:

N ε4

logN
≥ k̃ε

6

ε · log k̃
≥ k̃ε6/2 ≥ 2128/ε6 .

We let q = 1/ε. We maintain the data structure from Theorem 7.1 in graph H, with parameters j = q,
and parameters N and ε that remain unchanged. Recall that we are given a level-q hierarchical support

83

structure for H, such that H is (η̃, d̃)-well-connected with respect to the set S(H) of vertices defined
by the support structure, where η̃ = N6+256ε = N6+256qε2 = ηq, and d̃ = 2c/ε

5
= 2cq/ε

4
= d̃q, where ηq

and d̃q are the parameters that are used in the definition of the Hierarchical Support Structure.

We denote the data structure that the algorithm from Theorem 7.1 maintains by D(H). Recall that
this data structure can withstand the deletion of up to Λq = N q−8−300qε2 = N q−8−300ε edge deletions
from graph H. As long as fewer than Λq edges are deleted from H, the algorithm maintains a

decremental set S′(H) ⊆ V (H) of vertices, with |S′(H)| ≥ Nq

16q = |V (H)|
16q ≥ k

28/ε .

The algorithm supports short-path queries between vertices of S′(H): given a pair x, y ∈ S′(H)
of vertices, return a path P connecting x to y in the current graph H, whose length is at most
d∗q = 2O(q/ε5) = 2O(1/ε6), in time O(|E(P)|).

If we denote by m′ the number of edges in H at the beginning of the algorithm, then the total update
time of the algorithm is bounded by:

O
(
qN q+3 · 2O(1/ε6) +m′ ·N2 · 2O(1/ε6)

)
.

Recall that N ≤ k̃ε ≤ nε, and maximum vertex degree in H is at most nO(ε3). Recall also that N q ≤ n,
and q = 1/ε. Furthermore, as established in Inequality 14, n ≥ k̃ ≥ 2(2/ε)12

, and so 2O(1/ε6) ≤ nO(ε).
It is then easy to verify that the running time of the algorithm is bounded by O

(
n1+O(ε)

)
.

The second data structure is, intuitively, an ES-Tree in G that is rooted at the set S′(H) of vertices,
and whose depth parameter is d/2. Specifically, we maintain a graph G′, that is defined as follows.
Initially, we obtain graph G′ from G, by adding a source vertex s, that connects to every vertex
v ∈ S(H) with an edge. As the algorithm progresses and new paths are added to the set P of paths
that we construct, whenever some edge e ∈ E(G) appears in η paths of P, we delete e from G′. For
every edge e′ ∈ E(H), whose embedding path P (e′) ∈ P∗ contains edge e, we also delete e′ from H,
and update data structure D(H) accordingly. If, as the result of this update, some vertex x is deleted
from set S′(H), then we also delete edge (s, x) from graph G′. We maintain an ES-Tree data structure
in graph G′, rooted at vertex s, with depth bound d/2 + 1. We denote the data structure, and the
corresponding tree, by τ . The total update time that is needed in order to maintain the ES-Tree data
structure τ is bounded by O(md log n).

Lastly, for every edge e ∈ E(G), we maintain a list L(e) of all edges e′ ∈ E(H), such that the
embedding path P (e′) ∈ P∗ contains e. We also maintain a pointer from e to every edge in L(e) and
back. Recall that the embedding P∗ causes congestion at most η′ · k̃32ε3 , so the length of each such
list is bounded by η′ · k̃32ε3 . Moreover, the deletion of an edge e ∈ E(G) from graph G′ may trigger
the deletion of at most η′ · k̃32ε3 edges from graph H. We will ensure that |P| ≤ z holds throughout
the algorithm, and that every path in P has length at most d. Therefore, if we denote by E′ ⊆ E(G)
the collection of all edges that participate in η paths in P, the we are guaranteed that throughout the
algorithm:

|E′| ≤
∑

P∈P |E(P)|
η

≤ |P| · d
η
≤ zd

η
.

Therefore, the total number of edges that may be deleted from graph H over the course of the algorithm
is bounded by:

84

zd

η
· η′ · k̃32ε3 ≤ k̃1−22ε · k̃32ε3

≤ k̃1−21ε

≤ N q · 2q

N21εq

< N q−9 < Λq

(For the first inequality, we have used the fact that z = k1−22ε

d , k ≤ k̃, and η′ = 8η

2c
∗/ε6 ≤ η. For the

third inequality we used the fact that N =
⌊
k̃ε
⌋
, and q = 1/ε, so N q ≤ k̃ ≤ N q · 2q holds. The fourth

inequality follows since 2q = 21/ε <
(
k̃ε

2

)9
≤ N9 from Inequality 14.)

If (si, ti) is a pair of vertices in M , then we say that si is a mate of ti, and ti is a mate of si. Throughout
the algorithm, we will also maintain a subset S′′(H) ⊆ S′(H) containing all vertices x ∈ S′(H), such
that no path in P has x as its endpoint, and the mate of x still lies in the tree τ . We also maintain,
for every edge e ∈ E(G), a counter n(e), counting the number of paths in P that contain e.

We are now ready to describe our algorithm. The algorithm consists of at most z iterations, and they
are performed as long as |P| < z and S′′(H) 6= ∅ hold.

In order to perform a single iteration, we let x be any vertex in set S′′(H). Assume w.l.o.g. that
x = si, and that its mate is ti. Since x ∈ S′′(H), vertex ti currently lies in the tree τ . Using the tree,
we can compute a path Q in graph G′, that connects ti to some vertex y ∈ S(H ′), so that the length
of the path is bounded by d/2, and the path does not contain any vertices of S′(H) \ {y}. This can
be done in time O(|E(Q)|). Next, using data structure D(H), we compute a path Q̃′ connecting y
to si in graph H, such that the length of the path is bounded by 2O(1/ε6). This can be done in time
O(|E(Q̃′)|). Lastly, by replacing every edge e′ on path Q̃′ with its embedding path P (e′) ∈ P∗, we
obtain a path Q′ in graph G, connecting y to si, whose length is bounded by:

2O(1/ε6) · d′ ≤ d/2,

since d′ = 8d

2c
∗/ε6 , and we can assume that c∗ is a large enough constant. By combining the paths Q

and Q′, we obtain a path P , connecting si to ti in graph G, whose length is at most d. If path P is
not simple, then we convert it into a simple path, in time O(d). This can be done, for example, by
traversing the vertices of P in the order of their appearance on the path, and marking every vertex
that has been traversed in an array of length n. Whenever we attempt to mark a vertex v that was
already marked before, we recognize that we closed a simple cycle C ⊆ P . We can then retrace this
cycle and un-mark all its vertices except for v. We delete all vertices of C \ {v} from P , and continue
the traversal of P starting from v. Since every vertex on P may be traversed at most twice (once when
we visit it for the first time, and the second time when we remove a cycle on which that vertex lies),
this algorithm takes time O(d), assuming that we are provided an empty array of length n, that can
be used in order to mark and un-mark the vertices of P . At the end of this procedure, we un-mark
every vertex of P , so the array can be reused in the next iteration. We denote the resulting simple
path P by Pi, and we add Pi to the set P of paths that we maintain.

Next, we consider every edge e ∈ E(Pi) one by one. For each such edge e, we increase the counter
n(e) by 1. If n(e) = η holds, then we delete e from graph G′, and update data structure τ accordingly.
Additionally, for every edge e′ ∈ L(e), we delete e′ from graph H, updating the data structure D(H)

85

accordingly, and we update all lists L(e′′) of edges e′′ ∈ E(G) with e′ ∈ L(e′′), by deleting e′ from
L(e′′).

As the result of these updates to data structure D(H), we may have deleted some vertices from set
S′(H). Let Y be the set of all such vertices. For every vertex v ∈ S′(H), we delete the edge (s, v)
from graph G′, and update the data structure τ accordingly. We also delete v from set S′′(H) if it
belongs to this set.

Lastly, whenever a vertex u leaves tree τ , if either u or its mate u′ lie in S′′(H), then we delete both
vertices from S′′(H). We also delete si and ti from S′′(H). This completes the description of an
iteration. Besides the time that is needed in order to maintain data structures D(H), τ, S′′(H), and
{L(e), n(e)}e∈E(G), the additional time that is needed in order to execute an iteration is bounded by
O(d).

We now consider two cases. In the first case, the algorithm terminates with |P| ≥ z. In this case, we
return the set P of paths as the algorithm’s outcome, together with the collection M ′ ⊆ M of pairs
of vertices, containing every pair (si, ti) ∈ M for which some path connecting si to ti lies in P. It is
easy to verify that the set P of paths has all required properties.

Consider now the second case, when |P| < z = k1−22ε

d < k
216/ε (from Inequality 14). In this case, the

algorithm must have terminated because S′′(H) = ∅ holds. Since the number of vertices that serve as
endpoints of paths in P is bounded by 2z < 2k

216/ε , while we are guaranteed that |S′(H)| ≥ k
28/ε , there

must be a set X ⊆ S′(H) of at least |S
′(H)|
2 ≥ k

216/ε vertices, such that, for every vertex x ∈ X, no
path in P has x as its endpoint, and the mate of x does not belong to the tree τ . Therefore, if we
denote by X ′ the set of vertices that are mates of the vertices of X, then, in the current graph G′,
distG′(X,X

′) > d/2. Clearly, X ′ ∩X = ∅, and |X ′| = |X|. Let E′ be the set of all edges of graph G

that belong to η paths of P. Then |E′| ≤ |P|·dη ≤ d
η · |X|. Moreover, distG\E′(X,X

′) > d/2. Therefore,

(X,X ′, E′) is a (δ, d/2)-distancing in graph G, for some parameter 0 < δ < 1.

We denote ϕ = 4d
η , so that |E′| ≤ ϕ|X|

4 holds. Notice that: 32 logm
ϕ = 8η logm

d < d
2 , since η ≤ d2

2c
∗/ε6 ·logm

from the statement of Lemma 9.2. We can now apply the algorithm from Lemma 4.1, to compute
a cut (A,B) in graph G, with X ⊆ A, X ′ ⊆ B, and |EG(A,B)| ≤ ϕ · min {|EG(A)|, |EG(B)|} =
4d
η ·min {|EG(A)|, |EG(B)|}. Recall that |X|, |X ′| ≥ k

216/ε ≥ k1−ε

16 , since 216/ε ≤ 16kε from Inequality
14. We then return the cut (A,B) as the output of the algorithm. The running time of the algorithm
from Lemma 4.1 is O(m).

It now remains to analyze the running time of the algorithm. The running time of Stage 1 is bounded
by O

(
m1+O(ε)(d+ η)

)
, as shown already.

In order to analyze the running time of Stage 2, recall that the total update time for maintaining
data structure D(H), as established already, is bounded by O(n1+O(ε)), and the total update time for
maintaining data structure τ is bounded by O(md log n). Since the paths in P∗ cause congestion at
most η′ ·kO(ε3), maintaining the lists {L(e)}e∈E(G) takes total time O(m·η′ ·kO(ε3)) ≤ O(mηkO(ε3)). The
time required for additional computation in every iteration (that is, computing the path P , converting
it into a simple path, and reducing the counters n(e) for all edges e ∈ E(P)) is bounded by O(d). The
number of iterations is bounded by O(k). The running time required for the remaining calculations
that the algorithm performs (such as, for example, applying the algorithm from Lemma 4.1 to compute
a low-conductance cut at the end of the algorithm if |P| < z) is subsumed by the above running times.
The total running time is then bounded by:

O
(
m1+O(ε)(d+ η)

)
+O(n1+O(ε)) +O(md log n) +O(m · η · kO(ε3)) ≤ O

(
m1+O(ε)(d+ η)

)
.

86

10 An Algorithm for the Cut Player in the Cut-Matching Game –
Proof of Theorem 2.6

In this section we provide an algorithm for the Cut Player in the Cut-Matching Game, proving The-
orem 2.6. The algorithm consists of a number of phases. At the beginning of phase q, we are given a

partition (Xq, Yq) of V (G), with |Xq| ≥ 3n
4 , and |EG(Xq, Yq)| ≤ |Yq |100 . At the beginning of the algorithm,

we use the partition (X1, Y1) of V (G), with X1 = V (G) and Y1 = ∅. We now describe the execution
of Phase q.

Let Gq = G[Xq]. Assume first that, for every connected component C of graph Gq, |V (C)| ≤ 5n/8.
Let C be the largest connected component of Gq. If |V (C)| ≥ n/4, then we return a cut (A,B) in
graph G with A = V (C) and B = V (G)\V (C). Clearly, |A| ≥ n/4, and, since |A| ≤ 5n/8, we get that

|B| ≥ n/4 as well. Moreover, EG(A,B) ⊆ EG(Xq, Yq), and so |EG(A,B)| ≤ |Yq |
100 ≤

n
100 . Otherwise,

if |V (C)| < n/4, then we compute a partition (A,B) of V (G) as follows. We start with A = ∅ and
B = Yq, and then process every connected component C ′ of Gq one by one. When a component C ′ is
processed, if |A| ≤ |B| holds, then we add the vertices of C ′ to A, and otherwise we add them to B.
Since every connected component of Gq contains at most n/4 vertices, and |Yq| ≤ n/4, it is easy to
verify that at the end of the algorithm, |A|, |B| ≥ n/4 holds. As before, EG(A,B) ⊆ EG(Xq, Yq), and

so |EG(A,B)| ≤ |Yq |100 ≤
n

100 . We terminate the algorithm and return the cut (A,B).

We assume from now on that there is a connected component G′q of graph Gq with |V (G′q)| ≥ 5n/8.
We denote nq = |V (G′q)|. We use algorithm ConstructExpander from Theorem 3.3 to construct
a graph Hq, with |V (Hq)| = nq, such that Hq is an α0-expander, and maximum vertex degree in Hq

is at most 9. The running time of this algorithm is O(nq) ≤ O(n). It will be convenient for us to
identify the vertices of Hq with the vertices of G′q. In other words, we assume that V (Hq) = V (G′q),
by arbitrarily mapping every vertex of Hq to a distinct vertex of G′q.

Using a simple standard greedy algorithm, we compute, in time O(n), a partition M1,M2, . . . ,M19

of the set E(Hq) of edges, so that, for each 1 ≤ i ≤ 19, Mi is a matching. We use a parameter
ρ = n

2ĉ/ε
6 ·∆3·log2 n

, where ĉ is a large enough constant.

Next, we perform 19 iterations. For 1 ≤ i ≤ 19, in the ith iteration, we use the algorithm for advanced
path peeling from Theorem 2.5 in order to embed the edges of Mi into graph G′q with low congestion.
If we successfully embed all but at most ρ edges of Mi, then we partition the set Mi of edges into two
subsets: set M ′i containing all edges that we managed to embed, and set Fi containing all remaining
edges. We say that the ith iteration ended with a routing, and continue to the next iteration. If we
failed to embed a large enough subset of Mi into G′q, then we will compute a sparse cut in graph
G′q, that will allow us to update the partition (Aq, Bq) of V (G). We then say that the ith iteration
ended with a cut, and terminate the current phase. If every one of the 19 iterations ended with a
routing, then, by letting G′′q be the graph that is obtained from G′q by adding to it a set

⋃19
i=1 Fi of

fake edges, we obtain an embedding of Hq into G′′q with low congestion. We can then use Algorithm
AlgExtractExpander from Lemma 3.5, to extract a large enough expander graph G∗ ⊆ G′q. We now
describe the execution of a single iteration.

Consider an index 1 ≤ i ≤ 19. If |Mi| ≤ ρ, then we let M ′i = ∅, Pi = ∅, Fi = Mi, and continue to the
next iteration. From now on we assume that |Mi| > ρ.

We apply the algorithm from Theorem 2.5 to graph G′q and the set Mi of pairs of its vertices, with

parameters ε, ϕ = 1
100∆ , and α = ρ

2|Mi| , so 0 < α ≤ 1
2 holds. Recall that 2

(logn)1/25 < ε < 1
400 , and so

log n >
(

2
ε

)25
. Since nq > n/2, we get that log(nq) ≥ log n − 1 ≥

(
2
ε

)24
. Therefore, the condition of

Theorem 2.5 that 2
(logn)1/24 < ε < 1

400 holds. We denote by Ti the set of all vertices of G′q that serve

87

as endpoints of the edges of Mi, so |Ti| = 2|Mi| ≥ 2ρ.

We now consider two cases. In the first case, the algorithm from Theorem 2.5 returns a cut (Aq, Bq) in

G′q, with |EG′q(Aq, Bq)| ≤ ϕ ·min {|EG(Aq)|, |EG(Bq)|}, such that |Aq ∩ Ti|, |Bq ∩ Ti| ≥ α·|Mi|
16 ≥ ρ

32 . In
this case we say that iteration i ended with a cut. Since maximum vertex degree in G is at most ∆, we
get that |EG(Aq)| ≤ ∆ · |Aq| and |EG(Bq)| ≤ ∆ · |Bq|, and since ϕ = 1

100∆ , we get that |EG′q(Aq, Bq)| ≤
1

100∆ min {|EG(Aq)|, |EG(Bq)|} ≤ 1
100 · min {|Aq|, |Bq|}. Assume w.l.o.g. that |Aq| ≥ |Bq|. Since we

have assumed that |V (G′q)| ≥ 5n
8 , we get that |Aq| ≥ 5n

16 ≥
n
4 . We set Xq+1 = Aq and Yq+1 = V (G)\Aq.

Clearly, (Xq+1, Yq+1) is a partition of V (G), and, from our discussion, |Xq+1| ≥ n
4 . Moreover, we can

think of the cut (Xq+1, Yq+1) as obtained from cut (Xq, Yq), by moving all vertices of V (Gq) \Aq from
Xq to Yq. Therefore, |EG(Xq+1, Yq+1)| ≤ |EG(Xq, Yq)|+ |EG(Aq, Bq)| ≤ 1

100 |Yq|+
1

100 |Bq| ≤
1

100 |Yq+1|.
If |Xq+1| ≥ 3n

4 , then we terminate the current phase and continue to Phase (q + 1). Otherwise, we
return the cut (A,B) = (Xq+1, Yq+1). In the latter case, we are guaranteed that |A|, |B| ≥ n

4 , and
|EG(A,B)| ≤ 1

100 |Yq+1| ≤ n
100 .

In the second case, the algorithm from Theorem 2.5 computes a routing Pi in G′q of a subset M ′i ⊆Mi

containing at least (1− α)|Mi| = |Mi| − ρ
2 pairs of vertices, such that the total congestion caused by

the paths in Pi is at most 2O(1/ε6)·log2 n
ϕ2 ≤ 2O(1/ε6) · ∆2 · log2 n. In this case, we say that iteration i

ended with a routing. For every edge e ∈M ′i , we let P (e) ∈ Pi be the embedding path of edge e. We
set Fi = Mi \M ′i , so |Fi| ≤ ρ

2 , and we continue to the next iteration. This concludes the description
of the ith iteration. We now complete the description of Phase q.

If any iteration in Phase q ended with a cut, then the phase is terminated as described above. We
assume therefore from now on that every iteration in Phase q ended with a routing. Let F =

⋃19
i=1 Fi.

Recall that, for all 1 ≤ i ≤ 19, |Fi| ≤ ρ, so |F | ≤ 19ρ. Consider the graph G′′q = G′q ∪ F , where we
treat the edges of F as fake edges. For every fake edge e ∈ F , we let P (e) = {e} be a path that
embeds the edge e into itself in graph G′′q . Note that the maximum vertex degree in G′′q is at most
∆ + 19 ≤ 19∆. We have also now obtained an embedding P ′′ = {P (e) | e ∈ E(Hq)} of Hq into G′′q ,

such that the paths in P ′′ cause congestion η, where η ≤ 2O(1/ε6) ·∆2 · log2 n.

For convenience, we denote the maximum vertex degree of G′′q by ∆G ≤ 19∆, the maximum vertex
degree of Hq by ∆H ≤ 9, and ψ = α0. Notice that:

ψ · nq
32∆Gη

≥ α0 · n
2O(1/ε6) ·∆3 · log2 n

≥ n

2O(1/ε6) ·∆3 · log2 n
≥ 20ρ ≥ |F |,

since ρ = n

2ĉ/ε
6 ·∆3·log2 n

, and ĉ is a large enough constant. We can then use the algorithm AlgExtractExpander

from Lemma 3.5 to compute a subgraph G∗ ⊆ G′q, such that G∗ is a ψ′-expander, for ψ′ ≥ ψ
6∆G·η ≥

1

2O(1/ε6)·∆3·log2 n
. Moreover, since |F | ≤ ψ·nq

32∆Gη
, we get that 4|F |η

ψ ≤ nq
8∆G

, and so |V (G∗)| ≥ nq − 4|F |η
ψ ≥

15nq
16 . Since nq ≥ 5n

8 , we get that |V (G∗)| ≥ n
2 . We return the set S = V (G∗) of vertices and terminate

the algorithm.

We now bound the running time of a single phase. A phase has at most 19 iterations, and in every

iteration we use the algorithm from Theorem 2.5, whose running time is bounded by O
(
m1+O(ε)

ϕ3

)
≤

O
(
m1+O(ε) ·∆3

)
. Additionally, the running time of the algorithm from Lemma 3.5 is bounded by

Õ(|E(G)|∆G · η/ψ) ≤ Õ
(
n ·∆4 · 2O(1/ε6)

)
≤ O

(
n1+O(ε) ·∆4

)
(since ε > 2

(logn)1/25 , so n ≥ 2(2/ε)25
).

Overall, the running time of a single phase is bounded by O
(
m1+O(ε) ·∆4

)
.

Next, we bound the number of phases. Note that in every phase, the cardinality of the set Yq of
vertices grows by at least ρ

32 ≥
n

2Θ(1/ε6)·∆3·log2 n
. Therefore, the number of phases is bounded by

88

2O(1/ε6) ·∆3 · log2 n, and so the total running time of the algorithm is bounded by:

O
(
m1+O(ε) ·∆7 · 2O(1/ε6)

)
≤ O

(
m1+O(ε) ·∆7

)
.

11 Further Applications

In this section we provide our improved deterministic approximation algorithms for Sparsest Cut,
Lowest Conductance Cut, Minimum Balanced Cut, and Most-Balanced Sparse Cut. We also provide
a new algorithm for expander decompositions. Several (but not all) of these results are obtained in
the same manner as their weaker counterparts from [CGL+20], by plugging in our stronger algorithm
for the Cut Player in the Cut-Matching Game from Theorem 2.6 instead of its weaker analogue from
[CGL+20]. Some of the proofs in this section are therefore essentially identical to the proofs from
[CGL+20], and are only provided here for completeness. We point out explicitly when this is the case.
We start by introducing some technical tools that will be useful for us.

11.1 Main Technical Tools

In this subsection we introduce two main technical tools that will be used in order to obtain improved
algorithms for Minimum Balanced Cut, Sparsest Cut, Lowest Conductance Cut, and Expander Decom-
position. Both these tools - degree reduction and a faster algorithm for basic path peeling - appeared
in [CGL+20], and we do not make any changes to them.

11.1.1 Degree Reduction

Some of our algorithms are easier to describe, and provide better guarantees, when the maximum
vertex degree of the input graph is low. However, in general, an input graph may have an arbitrarily
large maximum vertex degree. We describe here a standard algorithm for transforming a general graph
into a low-degree graph, by replacing every vertex of the input graph with an expander of appropriate
size. The algorithm is identical to that from [CGL+20], and similar algorithms have been used in the
past extensively.

We now turn to describe a deterministic algorithm, that we call ReduceDegree. The algorithm
is given as input an arbitrary graph G = (V,E), and transforms it into a bounded-degree graph Ĝ.
Throughout, we denote |V | = n and |E| = m. For convenience, we denote V = {v1, . . . , vn}. For
every vertex vi ∈ V , we denote by d(vi) the degree of vi in G, and we let

{
e1(vi), . . . , ed(vi)(vi)

}
be the

set of edges incident to v, indexed in an arbitrary order. For every vertex vi ∈ V , we use Algorithm
ConstructExpander from 3.3 to construct a graph Hi, whose vertex set Vi =

{
u1(vi), . . . , ud(vi)(vi)

}
contains d(vi) vertices, such that Hi is an α0-expander, and the maximum vertex degree in Hi is at
most 9. Recall that the running time of the algorithm for constructing Hi is bounded by O(d(vi)).

In order to obtain the final graph Ĝ, we start with a disjoint union of all graphs in {Hi | vi ∈ V }. All
edges lying in such graphs Hi are called type-1 edges. Additionally, we add to Ĝ a collection of type-2
edges, defined as follows. Consider any edge e = (v, v′) ∈ E, and assume that e = ej(v) = ej′(v

′)
(that is, e is the jth edge incident to v and it is the j′th edge incident to v′). We then let ê be the
edge (uj(v), uj′(v

′)). For every edge e ∈ E, we add the corresponding new edge ê to graph Ĝ as a

type-2 edge. This concludes the construction of the graph Ĝ, that we denote by Ĝ = (V̂ , Ê). Note
that the maximum vertex degree in Ĝ is at most 10, and |V̂ | = 2m. Moreover, the running time of
the algorithm for constructing the graph Ĝ is O(m).

89

We say that a set S ⊆ V̂ of vertices of Ĝ is canonical if, for every vertex vi ∈ V , either Vi ⊆ S, or
Vi ∩ S = ∅. Similarly, we say that a cut (X,Y) in a subgraph of Ĝ is canonical, if each of X,Y is a
canonical subset of V̂ . The following lemma, that was proved in [CGL+20] allows us to convert an
arbitrary sparse balanced cuts in a subgraph of Ĝ into a canonical one.

Lemma 11.1 (Lemma 5.4 from [CGL+20]) Let α0 > 0 be the constant from Theorem 3.3. There
is a deterministic algorithm, that we call MakeCanonical, that, given a subgraph Ĝ′ ⊆ Ĝ, where
V (Ĝ′) is a canonical vertex set, together with a cut (A,B) in Ĝ′, computes a canonical cut (A′, B′)
in Ĝ′, such that |A′| ≥ |A|/2, |B′| ≥ |B|/2, and moreover, if |EĜ(A,B)| ≤ α0

2 · min {|A|, |B|}, then
|EĜ(A′, B′)| ≤ O(|EĜ(A,B)|). The running time of the algorithm is O(m),

11.1.2 Faster Basic Path Peeling

The following theorem provides a more efficient algorithm for basic Path Peeling. The theorem was
proved in [CGL+20]; a similar result appeared in [NS17] (see Lemma B.18).

Theorem 11.2 (Theorem 7.1 from [CGL+20]) There is a deterministic algorithm, that we call
MatchOrCut, whose input consists of an m-edge graph G = (V,E), two disjoint subsets A,B of its
vertices with |A| ≤ |B|, and parameters z ≥ 0 and 0 < ϕ < 1/2. The algorithm computes one of the
following:

• either a matching M ⊆ A×B with |M | > |A|−z, such that there exists a set P = {P (a, b) | (a, b) ∈M}
of paths in G, where for each pair (a, b) ∈ M , path P (a, b) connects a to b, and the paths in P
cause congestion at most O

(
logn
ϕ

)
; or

• a cut (X,Y) in G, with |X|, |Y | ≥ z/2, and |EG(X,Y)| ≤ ϕ ·min {|X|, |Y |}.

The running time of the algorithm is O
(
m1+o(1)

)
.

We note that the algorithm from Theorem 11.2 does not compute the set P of paths explicitly, as even
listing all paths in the set may take time that is greater than m1+o(1), if parameter ϕ is sufficiently
small. It only guarantees that set P of paths with the above properties exists.

11.2 Most-Balanced Sparse Cut

Recall that, given a cut (X,Y) in a graph G, the sparsity of the cut is |EG(X,Y)|
min{|X|,|Y |} . We sometimes

refer to min {|X|, |Y |} as the size of the cut (X,Y).

In the Most Balanced Sparse Cut problem, the input is an n-vertex graph G, and a parameter 0 < ϕ ≤ 1.
The goal is to compute a cut (X,Y) in G of sparsity at most ϕ, while maximizing the size min {|X|, |Y |}
of the cut. An (α, β)-bicriteria approximation algorithm for the problem, given parameters 0 < ϕ < 1
and z ≥ 1, must either compute a cut (X,Y) in G of sparsity at most ϕ and size at least z; or correctly
establish that every cut (X ′, Y ′) whose sparsity is at most ϕ/α has size at most β · z.

In [CGL+20] (see Lemma 7.3), an (α, β)-bicriteria deterministic approximation algorithm was obtained
for the Most Balanced Sparse Cut problem, with α = (log n)O(1/ε) and β = (log n)O(1/ε), in time

O
(
m1+O(ε)+o(1) · (log n)O(1/ε2)

)
for any 1

c logn ≤ ε ≤ 1, for some fixed constant c. By using our

algorithm for the Cut Player from Theorem 2.6, we immediately obtain the following stronger bicriteria
approximation algorithm for the problem. The proof is essentially identical to the proof of Lemma

90

7.3 in [CGL+20]; the only difference is that we use the stronger algorithm for the Cut Player from
Theorem 2.6. We provide the proof here for completeness.

Theorem 11.3 There is a constant c0, and a deterministic algorithm, that, given an n-vertex and
m-edge graph G = (V,E) and parameters 0 < ϕ ≤ 1, 0 < z ≤ n, and parameter 4

(logn)1/25 < ε < 1
400 :

• either returns a cut (X,Y) in G with |EG(X,Y)| ≤ ϕ ·min {|X|, |Y |} and |X|, |Y | ≥ z;

• or correctly establishes that, for every cut (X ′, Y ′) in G with |EG(X ′, Y ′)| ≤ ϕ
α ·min {|X ′|, |Y ′|},

min {|X ′|, |Y ′|} < α′ · z holds, for α = 2c0/ε
6 · log7 n and α′ = 2c0/ε

6 · log6 n.

The running time of the algorithm is O
(
m1+O(ε)+o(1)

)
.

Proof: The algorithm employs the Cut-Matching Game. We will maintain a set F of fake edges that
are added to graph G. Initially, F = ∅. We assume that n is an even integer; otherwise we add a new
isolated vertex v0 to G, and we add a fake edge connecting v0 to an arbitrary vertex of G to F . We
also maintain a graph H, that initially contains the set V of vertices and no edges. We then perform
a number of iterations, that correspond to the Cut-Matching Game. In every iteration i, we will add
a matching Mi to graph H. We will ensure that the number of iterations is bounded by O(log n),
so the maximum vertex degree in H is always bounded by ∆H ≤ O(log n). At the beginning of the
algorithm, graph H contains the set V of vertices and no edges. We now describe the execution of the
ith iteration.

In order to execute the ith iteration, we apply the algorithm from Theorem 2.6 to the current graph
H, with parameter ε remaining unchanged. Assume first that the output of the algorithm from
Theorem 2.6 is a cut (Ai, Bi) in H with |Ai|, |Bi| ≥ n/4 and |EH(A,B)| ≤ n/100. We treat this
partition as the move of the Cut Player. Assume w.l.o.g. that |Ai| ≤ |Bi|. Next, we compute
an arbitrary partition (A′i, B

′
i) of V (G) with |A′i| = |B′i|, such that Ai ⊆ A′i. We apply Algorithm

MatchOrCut from Theorem 11.2 to the sets A′i, B
′
i of vertices, a sparsity parameter ϕ′ = ϕ/2 and

parameter z′ = 4z. If the algorithm returns a cut (X,Y) in G, with |X|, |Y | ≥ z′/2 ≥ 2z, and
|EG(X,Y)| ≤ ϕ′ · min {|X|, |Y |}, then we terminate the algorithm and return the cut (X,Y), after
we delete the extra vertex v0 from it (if it exists). It is easy to verify that |X|, |Y | ≥ z and that
|EG(X,Y)| ≤ ϕ ·min {|X|, |Y |}. Otherwise, the algorithm from Theorem 11.2 computes a matching
M ′i ⊆ A′i×B′i with |M ′i | ≥ |A′i|−4z, such that there exists a set P ′i = {P (a, b) | (a, b) ∈M ′i} of paths in
G, where for each pair (a, b) ∈M ′i , path P (a, b) connects a to b, and the paths in P ′i cause congestion

at most O
(

logn
ϕ

)
. We let A′′i ⊆ A′i, B

′′
i ⊆ B′i be the sets of vertices that do not participate in the

matching M ′i , and we let M ′′i be an arbitrary perfect matching between these vertices. We define a
set Fi of fake edges, containing the edges of M ′′i , and an embedding P ′′i = {P (e) | e ∈ Fi} of the edges
in M ′′i , where each fake edge is embedded into itself. Lastly, we set Mi = M ′i ∪M ′′i . We view the
matching Mi as the response of the matching player in the Cut-Matching Game. We add the edges of
Mi to H, and continue to the next iteration. Notice that |Fi| ≤ 4z.

We perform the iterations as described above, until the algorithm from Theorem 2.6 returns a subset

S ⊆ V of at least n/2 vertices, such that graph H[S] is ϕ∗-expander, for ϕ∗ ≥ Ω

(
1

2O(1/ε6)·∆3
H ·log2 n

)
≥

Ω
(

1

2O(1/ε6)·log5 n

)
. Recall that Theorem 3.6 guarantees that this must happen after at most O(log n)

iterations. We then perform one last iteration, whose index we denote by q.

We let Bq = S and Aq = V (G) \ S, and apply Algorithm MatchOrCut from Theorem 11.2 to
the sets Aq, Bq of vertices, a sparsity parameter ϕ′ = ϕ/2 and parameter z′ = 4z. As before, if the

91

algorithm returns a cut (X,Y) in G, with |X|, |Y | ≥ z′/2 ≥ 2z and |EG(X,Y)| ≤ ϕ′ ·min {|X|, |Y |},
then we terminate the algorithm and return the cut (X,Y), after we delete the extra vertex v0 from
it (if it exists). As before, we get that |X|, |Y | ≥ z and |EG(X,Y)| ≤ ϕ ·min {|X|, |Y |}. Otherwise,
the algorithm from Theorem 11.2 computes a matching M ′q ⊆ A′q × B′q with |M ′q| ≥ |Aq| − 4z, such
that there exists a set P ′q =

{
P (a, b) | (a, b) ∈M ′q

}
of paths in G, where for each pair (a, b) ∈ M ′q,

path P (a, b) connects a to b, and the paths in P ′q cause congestion at most O
(

logn
ϕ

)
. We let A′q ⊆ Aq,

B′q ⊆ Bq be the sets of vertices that do not participate in the matching M ′q, and we let M ′′q be an
arbitrary matching that connects every vertex of A′q to a distinct vertex of B′q (such a matching must
exist since |Aq| ≤ |Bq|). As before, we define a set Fq of fake edges, containing the edges of M ′′q , and
an embedding P ′′q = {P (e) | e ∈ Fq} of the edges in M ′′q , where each fake edge is embedded into itself.
Lastly, we set Mq = M ′q ∪M ′′q , and we add the edges of Mq to graph H.

From now on we assume that the algorithm never terminated with a cut (X,Y) with |X|, |Y | ≥ z and
|EG(X,Y)| ≤ ϕ ·min {|X|, |Y |}. Note that, from Observation 3.2, the final graph H is a ψ-expander,

for ψ ≥ ϕ∗

2 ≥ Ω
(

1

2O(1/ε6)·log5 n

)
. Moreover, we are guaranteed that there is an embedding of H into

G + F with congestion O
(

log2 n
ϕ

)
, where F =

⋃r
i=1 Fi is a set of O(z log n) fake edges. Notice that,

in the embedding that we constructed, every edge of H is either embedded into a path consisting of
a single fake edge, or it is embedded into a path in the graph G; every fake edge in F serves as an
embedding of exactly one edge of H.

We now claim that there is a large enough universal constant c0, such that, if we let α = 2c0/ε
6 · log7 n

and α′ = 2c0/ε
6 · log6 n, then for every cut (X ′, Y ′) in G with |EG(X ′, Y ′) ≤ ϕ

α · min {|X ′|, |Y ′|},
min {|X ′|, |Y ′|} < α′ · z holds.

Indeed, consider any cut (X ′, Y ′) in G with |X ′|, |Y ′| ≥ α′ · z. We assume w.l.o.g. that |X ′| ≤ |Y ′|. It

is enough to show that |EG(X ′, Y ′)| > ϕ·|X′|
α .

Notice that (X ′, Y ′) also defines a cut in graph H, and, since H is a ψ-expander, |EH(X ′, Y ′)| ≥
ψ · |X ′| ≥ ψ · α′ · z ≥ ψ · z · 2c0/ε6 · log6 n. Since ψ ≥ 1

2O(1/ε6)·log5 n
, assuming that c0 is a large enough

constant, we get that |EH(X ′, Y ′)| ≥ c0z log n.

We partition the set EH(X ′, Y ′) of edges into two subsets. The first subset, E1, is the set of edges
corresponding to the fake edges (so each edge e ∈ E1 is embedded into a path P (e) = {e} in G+ F),
and E2 contains all remaining edges (each of which is embedded into a path of G). Recall that the
total number of the fake edges, |F | ≤ O(z log n), while |EH(X ′, Y ′)| ≥ c0z log n. Therefore, by letting
c0 be a large enough constant, we can ensure that |E1| ≤ |EH(X ′, Y ′)|/2.

The embedding of H into G + F defines, for every edge e ∈ E2 a corresponding path P (e) in G,
that must contribute at least one edge to the cut EG(X ′, Y ′). Since the embedding causes congestion

O
(

log2 n
ϕ

)
, we get that:

92

|EG(X ′, Y ′)| ≥ Ω

(
|EH(X ′, Y ′)| · ϕ

log2 n

)
≥ Ω

(
ϕ · ψ · |X ′|

log2 n

)
≥ Ω

(
ϕ · |X ′|

2O(1/ε6) · log7 n

)
>

ϕ · |X ′|
2c0/ε6 · log7 n

=
ϕ|X ′|
α

,

(we have used the fact that c0 is a large enough constant). We note that we have ignored the extra
vertex v0 that we have added to G if |V (G)| is odd, but the removal of this vertex can only change the
cut sparsity and the cardinalities of X ′ and Y ′ by a small constant factor that can be absorbed in c0.

Lastly, we bound the running time of the algorithm. The algorithm consists of O(log n) iterations. Ev-
ery iteration employs the algorithm from Theorem 2.6, whose running time is O

(
|E(H)|1+O(ε) ·∆7

H

)
≤

O
(
n1+O(ε)

)
, since ∆H ≤ O(log n), and log8 n < n4ε (the latter follows from the assumption that

ε > 2
(logn)1/25 , and since, from the inequality 2

(logn)1/25 < ε < 1
400 , n must be large enough). Addition-

ally, in every iteration we use Algorithm MatchOrCut from Theorem 11.2, whose running time is
O
(
m1+o(1)

)
. Therefore, the total running time is O

(
m1+O(ε)+o(1)

)
.

We also immediately obtain the following analogue of Lemma 7.4 from [CGL+20].

Theorem 11.4 There is a constant c0 and a deterministic algorithm, that, given an n-vertex and
m-edge graph G = (V,E) and parameters 0 < ϕ ≤ 1 and 4

(logn)1/25 < ε < 1
400 :

• either returns a cut (X,Y) in G with |EG(X,Y)| ≤ ϕ ·min {|X|, |Y |};

• or correctly establishes that G is a ϕ′-expander, for ϕ′ = ϕ

2c0/ε
6 ·log7 n

.

The running time of the algorithm is O
(
m1+O(ε)+o(1)

)
.

Proof: The proof is almost identical to the proof of Theorem 11.3. The only difference is that we set
the parameter z that is used in the calls to Algorithm MatchOrCut from 11.2 to 1. This ensures
that no fake edges are introduced.

11.3 Sparsest Cut and Lowest-Conductance Cut – Proof of Theorem 2.7

In this section we prove Theorem 2.7. Theorem 11.4 immediately gives a deterministic
(

2O(1/ε6) · log7 n
)

-

approximation algorithm for the Sparsest Cut problem with running time O
(
m1+O(ε)+o(1)

)
, for all

ε ≥ 4
(logn)1/25 . Indeed, let G be the input m-edge graph. For 1 ≤ i ≤ dlogme, let ϕi = 1/2i. For 1 ≤

i ≤ dlogme, we apply the algorithm from Theorem 11.4 to graph G, with the parameter ϕi. Let i be the
smallest integer, for which the algorithm returned a cut (X,Y) with |EG(X,Y)| < ϕi ·min {|X|, |Y |}.
Then, when applied to G with parameter ϕi+1 = ϕi/2, the algorithm correctly established that G is
a ϕ′-expander, for ϕ′ = ϕi

2O(1/ε6)·log7 n
. In other words, the sparsity of the sparsest cut in G is at least

93

ϕ′. Therefore, (X,Y) is an O(2O(1/ε6) · log7 n)-approximate sparsest cut. The running time of the
algorithm remains O

(
m1+O(ε)+o(1)

)
. By setting ε = (1/c log log log n)1/6, for a large enough constant

c, we obtain a factor-O(log7 n log logn)-approximation, in time O
(
m1+o(1)

)
.

We now show that we can obtain an algorithm with similar guarantees for the Lowest Conductance
Cut problem. The algorithm follows easily from the algorithm for the Sparsest Cut problem, and is
identical to that of [CGL+20]. The only difference is that we are using the stronger algorithm for
Sparsest Cut that we obtained. Let G = (V,E) be an input to the Lowest Conductance Cut problem,
with |V | = n and |E| = m. Let 4

(logn)1/25 < ε < 1
400 be a parameter. We start by obtaining a

factor-
(

2O(1/ε6) · log7 n
)

-approximation algorithm with running time O
(
m1+O(ε)+o(1)

)
.

Denote by ψ the conductance of the lowest-conductance cut in G. We can assume without loss of
generality that ψ < 1

2c/ε
6 ·log7 n

for some large enough constant c, since otherwise we can let v be a

lowest-degree vertex in G, and return the cut ({v} , V \{v}), whose conductance is 1. We use Algorithm
ReduceDegree from Section 11.1.1, in order to construct, in time O(m), a graph Ĝ, whose maximum
vertex degree is bounded by 10, and |V (Ĝ)| = 2m.

Note that, if we denote ϕ the value of the sparsest cut in Ĝ, then ϕ ≤ ψ must hold. This is since
every cut (A,B) in G naturally defines a cut (A′, B′) in Ĝ, with |A′| = VolG(A), |B′| = VolG(B),
and |EĜ(A′, B′)| = |EG(A,B)|. We use our approximation algorithm for the Sparsest Cut problem

in graph Ĝ, to obtain a cut (X ′, Y ′) of Ĝ, whose sparsity is at most
(

2O(1/ε6) · log7 n
)
· ϕ, in time

O
(
m1+O(ε)+o(1)

)
.

Using Algorithm MakeCanonical from Lemma 11.1, we obtain a cut (X ′′, Y ′′) of Ĝ, with |X ′′| ≥
|X ′|/2, |Y ′′| ≥ |Y ′|/2, and |EĜ(X ′′, Y ′′)| ≤ O(|EĜ(X ′, Y ′)|) ≤

(
2O(1/ε6) · log7 n

)
·ϕ ·min {|X ′|, |Y ′|} ≤(

2O(1/ε6) · log7 n
)
· ψ · min {|X ′′|, |Y ′′|}, such that both X ′′ and Y ′′ are canonical vertex sets. This

cut naturally defines a cut (X,Y) in G, with VolG(X) = |X ′′|, VolG(Y) = |Y ′′|, and |EG(X,Y)| =
|EĜ(X ′′, Y ′′)|. Therefore:

|EG(X,Y)| = |EĜ(X ′′, Y ′′)|

≤
(

2O(1/ε6) · log7 n
)
· ψ ·min

{
|X ′′|, |Y ′′|

}
≤
(

2O(1/ε6) · log7 n
)
· ψ ·min {VolG(X),VolG(Y)} .

We conclude that cut (X,Y) is a factor (2O(1/ε6) · log7 n)-approximate solution to instance G of
Lowest Conductance Cut. Since the running time of Algorithm MakeCanonical is O(m), the
running time of the whole algorithm remains bounded by O

(
m1+O(ε)+o(1)

)
. As before, by set-

ting ε = (1/c log log log n)1/6, for a large enough constant c, we obtain a factor-O(log7 n log logn)-
approximation for Lowest Conductance Cut, in time O

(
m1+o(1)

)
.

11.4 Minimum Balanced Cut – Proof of Theorems 2.8 and 2.9

In this section we prove Theorem 2.8 and Theorem 2.9. Our proof is somewhat more involved than
that of [CGL+20], who iteratively used the algorithm for Most Balanced Sparse Cut from (the weaker
version of) Theorem 11.3. The reason is that, while our bounds for the parameters α and α′ are
better than those obtained by Theorem 11.3, they are still super-logarithmic. Therefore, if we follow

94

the framework of [CGL+20], who apply the algorithm from Theorem 11.3 over the course of O(1/ε)
iterations, we will still accumulate an approximation factor that is at least as high as (log n)Θ(1/ε).

The proofs of Theorem 2.8 and Theorem 2.9 are very similar to each other, and we start with presenting
the part that is common to both proofs. Recall that we are given as input a graph G with |V (G)| = n,
|E(G)| = m and a parameter 0 < ψ ≤ 1. We can assume w.l.o.g. that both m and n are greater than
a large enough constant, since otherwise we can use the algorithm of [CGL+20], whose running time
can now be bounded by O(m).

We use a parameter ε = 1/(log log logm)1/25. It is easy to verify that mε = 2O(logn/(log log logn)1/25) >
log4 n must hold. We can also assume that ψ < 1/(2c/ε

6
log8 n) for a large enough constant c, since

otherwise we can compute an arbitrary partition (A,B) of V (G) with VolG(A),VolG(A) ≥ Vol(G)/3
(since for every vertex v ∈ V (G), degG(v) < Vol(G)/2, such a partition can be computed by a simple
greedy algorithm, that iteratively adds each vertex to a set of {A,B}, whose current volume is smaller).

Clearly, |EG(A,B)| ≤ m ≤ Vol(G)
2 ≤ ψ · 2c/ε6 · (log8 n) · Vol(G) ≤ ψ · (log n)8+o(1) · Vol(G). Therefore,

from now on we assume that ψ < 1/(2c/ε
6

log8 n) for a large enough constant c.

As in the algorithm of [CGL+20], we start by applying Algorithm ReduceDegree from Section 11.1.1
to graph G, in order to construct, in time O(m), a graph Ĝ whose maximum vertex degree is bounded
by 10, and |V (Ĝ)| = 2m. Denote V (G) = {v1, . . . , vn}. Recall that graph Ĝ is constructed from graph
G by replacing each vertex vi with an α0-expander H(vi) on degG(vi) vertices, where α0 = Θ(1).
For convenience, we denote the set of vertices of H(vi) by Vi. Therefore, V (Ĝ) = V1 ∪ V2 ∪ · · · ∪ Vn.
Denote |V (Ĝ)| = n̂. Consider now some subset S of vertices of Ĝ. As before, we say that S is a
canonical set of vertices if, for all 1 ≤ i ≤ n, either Vi ⊆ S or Vi ∩ S = ∅ holds. Our starting point is
the following lemma, that is an easy application of the Cut-Matching Game, combined with Algorithm
MakeCanonical from Lemma 11.1. The proof is included in Section B of Appendix.

Lemma 11.5 There is a deterministic algorithm, whose input consists of a canonical set V ′ ⊆ V (Ĝ)
of vertices of Ĝ, with |V ′| ≥ 2n̂/3, and parameters 0 < ϕ < 1 and ρ ≥ log n. The algorithm computes
one of the following:

• either a partition (X,Y) of V ′, where both X,Y are canonical subsets of V (Ĝ), |X|, |Y | ≥ ρ,
and |EĜ(X,Y)| ≤ ϕ ·min {|X|, |Y |};

• or a ϕ∗-expander graph H with V (H) = V ′ and maximum vertex degree O(log n), where ϕ∗ ≥
Ω
(

1

2O(1/ε6)·log5 n

)
, together with a set F of at most O(ρ · log n) edges of H, such that there exists

an embedding P of H \ F into Ĝ[V ′] with congestion at most O
(

log2 n
ϕ

)
.

The running time of the algorithm is O
(
m1+O(ε)+o(1)

)
.

We emphasize that the algorithm from the above lemma does not compute the embedding P ex-
plicitly, and instead it only guarantees its existence. We obtain the following immediate corollary of

Lemma 11.5. The corollary uses the parameter ϕ∗ ≥ Ω
(

1

2O(1/ε6)·log5 n

)
from Lemma 11.5.

Corollary 11.6 There is a deterministic algorithm, that, given a parameter ρ ≥ log n, and a param-
eter c′ > 1, computes a cut (X∗, Y ∗) in graph Ĝ, such that both X∗ and Y ∗ are canonical sets of

vertices, |X∗| ≥ |Y ∗|, and |EĜ(X∗, Y ∗)| ≤ c′ψ log3 n
ϕ∗ · n̂. Moreover, if |Y ∗| < n̂/3, then the algorithm

also computes a ϕ∗-expander graph H with V (H) = X∗ and maximum vertex degree O(log n), together
with a set F of at most O(ρ log n) edges of H, such that there exists an embedding P of H \ F into

Ĝ[X∗] with congestion η ≤ O
(

ϕ∗

c′ψ logn

)
.The running time of the algorithm is O

(
m2+O(ε)+o(1)·

ρ

)
.

95

Proof: The proof easily follows by iteratively applying the algorithm from Lemma 11.5. Let ϕ =
c′ψ log3 n

ϕ∗ . Our algorithm consists of at most r = n̂
ρ iterations. For all 1 ≤ i ≤ r, at the beginning

of iteration i, we are given a partition (Xi, Yi) of V (Ĝ), such that both Xi, Yi are canonical sets,
|Xi| ≥ 2n̂

3 , and |EĜ(Xi, Yi)| ≤ ϕ · |Yi|. At the beginning of the algorithm, we use the partition (X1, Y1)

of V (Ĝ), with X1 = V (Ĝ) and Y1 = ∅. We now describe the execution of the ith iteration.

In order to execute the ith iteration, we apply the algorithm from Lemma 11.5 to set V ′ = Xi of
vertices of Ĝ, and parameters ρ and ϕ, that remain unchanged. We now consider two cases.

Assume first, that the algorithm returned a partition (X ′, Y ′) ofXi, with |X ′|, |Y ′| ≥ ρ, and |EĜ(X ′, Y ′)| ≤
ϕ · min {|X ′|, |Y ′|}, such that both X ′ and Y ′ are canonical sets of vertices. Assume w.l.o.g. that
|X ′| ≥ |Y ′|. We then construct a new cut (Xi+1, Yi+1) in Ĝ, by letting Xi+1 = X ′ and Yi+1 =
V (Ĝ) \ X ′ = Y ′ ∪ Yi. Note that cut (Xi+1, Yi+1) can be obtained from cut (Xi, Yi) by moving the
vertices of Y ′ from Xi to Yi. Therefore, EĜ(Xi+1, Yi+1) ⊆ EĜ(Xi, Yi) ∪ EĜ(X ′, Y ′), and:

|EĜ(Xi+1, Yi+1)| ≤ |EĜ(Xi, Yi)|+ |EĜ(X ′, Y ′)| ≤ ϕ · |Yi|+ ϕ · |Y ′| ≤ ϕ · |Yi+1|.

If |Xi+1| ≥ 2n̂/3 holds, then we continue to the next iteration. Otherwise, since |Xi| ≥ 2n̂/3, we get
that |Xi+1| ≥ |Xi|/2 ≥ n̂/3. Therefore, we obtain a partition (Xi+1, Yi+1) of V (Ĝ) with |Xi+1|, |Yi+1| ≥
n̂/3, and |EĜ(Xi+1, Yi+1)| ≤ ϕ·|Yi+1| ≤ ϕ·n̂ = c′ψ log3 n

ϕ∗ ·n̂. We then return cut (X∗, Y ∗) = (Xi+1, Yi+1)
and terminate the algorithm.

Next, we assume that the algorithm from Lemma 11.5 returned a ϕ∗-expander graph H with V (H) =
Xi and maximum vertex degree O(log n), together with a set F of at most O(ρ · log n) edges of H, such

that there exists an embedding P of H\F into Ĝ[Xi] with congestion at most O
(

log2 n
ϕ

)
≤ O

(
ϕ∗

c′ψ logn

)
.

In this case, we return the cut (X∗, Y ∗) = (Xi, Yi), graph H, and set F of edges.

It now remains to bound the running time of the algorithm. Notice that in every iteration, the
cardinality of the set Yi of vertices grows by at least ρ, and, since |V (Ĝ)| = 2m, the number of
iterations is bounded by 2m/ρ. In each iteration we use the algorithm from Lemma 11.5, whose
running time is at most O

(
m1+O(ε)+o(1)

)
. Overall, the running time of the algorithm is bounded by

O
(
m2+O(ε)+o(1)

ρ

)
.

We are now ready to complete the proofs of Theorem 2.8 and Theorem 2.9.

11.4.1 Proof of Theorem 2.8

We first consider a special case, where ψ < log4 m
m . In this case, our algorithm simply repeatedly

cuts off low-conductance cuts from graph G. Specifically, we perform a number of iterations, and we
maintain a vertex-induced subgraph G′ ⊆ G. We also maintain a cut (A,B) in G, with A = V (G′) and
B = V (G) \ V (G′). Initially, we set G′ = G, A = V (G), and B = ∅. The algorithm continues as long
as VolG(A) ≥ 2 Vol(G)/3. Let α = O(log7 n log log n) be the approximation factor that the algorithm
for the Lowest Conductance Cut problem from Theorem 2.7 achieves. Throughout the algorithm, we
will ensure that |EG(A,B)| ≤ α · ψ ·VolG(B) holds.

In order to execute a single iteration, we apply the approximation algorithm for the Lowest Conductance
Cut problem from Theorem 2.7 to the current graph G′. Let (X,Y) be the cut that the algorithm

returns, and let ψ′ =
|EG′ (X,Y)|

min{VolG′ (X),VolG′ (Y)} be the conductance of the cut. Assume first that ψ′ > αψ.

Then we are guaranteed that graph G′ has conductance at least ψ. We return the cut (A,B) and
terminate the algorithm. Since |EG(A,B)| ≤ α ·ψ ·VolG(B) ≤ ψ · (log n)7+o(1) ·Vol(G), this is a valid

96

output for the algorithm.

Assume now that ψ′ ≤ αψ, and assume w.l.o.g. that VolG(X) ≥ VolG(Y). Then |EG′(X,Y)| ≤ ψ′ ·
VolG′(Y) ≤ αψVolG(Y). Consider a new cut (A′, B′) in G, where A′ = X and B′ = V (G)\X = B∪Y .
It is then easy to verify that:

|EG(A′, B′)| ≤ |EG(A,B)|+ |EG′(X,Y)| ≤ αψVolG(A) + αψVolG(Y) ≤ αψVolG(B′).

If VolG(A′) = VolG(X) ≥ 2 Vol(G)/3, then we replace cut (A,B) with cut (A′, B′), and continue
to the next iteration. Otherwise, VolG(A′) ≥ VolG(A)/2 ≥ Vol(G)/3 must hold, and VolG(B′) ≥
Vol(G)−VolG(A′) ≥ Vol(G)/3 holds as well. We return cut (A′, B′) and terminate the algorithm. As
before, since |EG(A′, B′)| ≤ α · ψ · VolG(B′) ≤ ψ · (log n)7+o(1) · Vol(G), this is a valid output of the
algorithm.

It now remains to analyze the running time of the algorithm. The number of iterations in the algorithm
is bounded by O(m), and the running time of a single iteration is dominated by the running time of
the algorithm from Theorem 2.7, which is bounded by O

(
m1+o(1)

)
. Therefore, the running time of

the algorithm is bounded by O
(
m2+o(1)

)
≤ O

(
m1+o(1)/ψ

)
, since we have assumed that ψ < log4m

m .

In the remainder of the proof, we assume that ψ ≥ log4m
m . We start by computing a graph Ĝ exactly as

described above, and then applying the algorithm from Corollary 11.6 to it, with parameter ρ = ψm
c̃2 logn

,

where c̃ is a large constant, whose value we set later, and parameter c′, that is a large enough constant,

whose value we set later. Since ψ ≥ log4m
m , and m is large enough, we get that ρ > log n. Let (X∗, Y ∗)

be the outcome of the algorithm.

Recall that both X∗ and Y ∗ are canonical sets of vertices, |X∗| ≥ |Y ∗|, and |EĜ(X∗, Y ∗)| ≤ c′ψ log3 n
ϕ∗ ·n̂.

Notice that cut (X∗, Y ∗) in Ĝ naturally defines a cut (A,B) in G: for every vertex vi ∈ V (G), we
add vi to A if Vi ⊆ X∗, and we add it to B otherwise. It is immediate to verify that VolG(A) = |X∗|,
VolG(B) = |Y ∗|, and |EG(A,B)| = |EĜ(X∗, Y ∗)| ≤ c′ψ log3 n

ϕ∗ · n̂ ≤ ψ · 2O(1/ε6) · (log8 n) · Vol(G) ≤

ψ · (log n)8+o(1) ·Vol(G), since ϕ∗ ≥ Ω
(

1

2O(1/ε6)·log5 n

)
and ε = 1/(log log logm)1/25.

Consider first the case that |Y ∗| ≥ n̂/3. Then, from the above discussion, VolG(A),VolG(B) ≥ n̂/3 =
Vol(G)/3. In this case, we return cut (A,B) as the outcome of the algorithm.

We assume from now on that |Y ∗| < n̂/3, and so the algorithm from Corollary 11.6 computed a
ϕ∗-expander graph H with V (H) = X∗ and maximum vertex degree O(log n), together with a set F
of at most O(ρ log n) edges of H, such that there exists an embedding P of H \ F into Ĝ[X∗] with

congestion at most η, where η ≤ O
(

ϕ∗

c′ψ logn

)
. Since ρ = ψm

c̃2 logn
, and c̃ is a sufficiently large constant,

we get that |F | ≤ ψm
c̃ . Let Ĝ′ be the graph that is obtained from Ĝ[X∗], by adding the edges of F to

it. We need the following simple observation.

Observation 11.7 Graph Ĝ′ is a ϕ′-expander, for ϕ′ = Ω(c′ψ log n).

Proof: Consider any partition (A′, B′) of V (Ĝ′), with |A′| ≤ |B′|. It is enough to prove that
|EĜ′(A

′, B′)| ≥ ϕ′ · |A′|. Recall that the set P of paths defines an embedding of H \F into Ĝ[X∗] with
congestion at most η. By embedding every edge of F into itself, we can augment the set P of paths
to obtain an embedding of H into Ĝ′ = Ĝ[X∗] ∪ F , with congestion at most η.

Notice that cut (A′, B′) in Ĝ′ also defines a cut in graph H. Since graph H is a ϕ∗-expander, if we
denote by E′ = EH(A′, B′), then |E′| ≥ ϕ∗ · |A′|. Consider now the set P ′ = {P (e) | e ∈ E′} of paths,
where for each edge e ∈ E′, P (e) is the path of P that serves as an embedding of the edge e. Then

97

every path in P ′ must contain an edge of EĜ′(A
′, B′), and the paths in P ′ cause congestion at most

η. Therefore, |EĜ′(A
′, B′)| ≥ |E

′|
η ≥

ϕ∗·|A′|
η ≥ Ω(c′ψ|A′| log n) = ϕ′ · |A′|, since η ≤ O

(
ϕ∗

c′ψ logn

)
.

Recall that we have used the cut (X∗, Y ∗) in Ĝ to define a cut (A,B) in G, with VolG(A) = |X∗|,
VolG(B) = |Y ∗|, and |EG(A,B)| = |EĜ(X∗, Y ∗)| ≤ ψ · (log n)8+o(1) ·Vol(G). Consider now a graph G′,
that, intuitively, is obtained from G[A], by adding the edges of F to it. Formally, in order to obtain
graph G′, we start from graph G[A], and the consider the edges e ∈ F one by one. Let e = (x, y)
be any such edge, and let vi, vj ∈ A be the vertices with x ∈ Vi and y ∈ Vj . If i 6= j, then we add
edge e′ = (vi, vj) to graph G′, and we think of e′ as a copy of edge e. Notice that graph G′ can be
equivalently obtained from graph Ĝ′ by contracting, for every vertex vi ∈ A, all vertices of Vi into a
single node. Next, we use the following easy observation:

Observation 11.8 Graph G′ has conductance at least 24ψ.

Proof: Consider any cut (X,Y) in G′. We can naturally define a corresponding cut (X̂, Ŷ) in
graph Ĝ′: for every vertex vi ∈ X, we add all vertices of Vi to X̂, and for every vertex vi ∈ Y ,
we add all vertices of Vi to Ŷ . It is easy to verify that |X̂| = VolG(X). Since every vertex of X∗

is incident to at most c∗ log n edges of F , for some constant c∗ (as maximum vertex degree in H is
O(log n)), it is easy to verify that, for every vertex vi ∈ A, degG′(vi) ≤ (c∗ log n) degG(vi). Therefore,

VolG′(X) ≤ (c∗ log n) VolG(X), and so |X̂| ≥ VolG′ (X)
c∗ logn . Using similar reasoning, |Ŷ | ≥ VolG′ (Y)

c∗ logn .

Lastly, since, from Observation 11.7, graph Ĝ′ is a ϕ′-expander, for ϕ′ = Ω(c′ψ log n), we get that

|EG′(X,Y)| = |EĜ′(X̂, Ŷ)| ≥ ϕ′ · min
{
|X̂|, |Ŷ |

}
≥ Ω

(
c′ψ
c∗

)
· min {VolG′(X),VolG′(Y)}. Since c∗

is a fixed constant, and we can set c′ to be a large enough constant, we get that |EG′(X,Y)| ≥
24ψ ·min {VolG′(X),VolG′(Y)}. We conclude that the conductance of graph G′ is at least 24ψ.

Next, we use the following pruning theorem of [SW19], that works with graph conductance instead of
expansion.

Theorem 11.9 (Restatement of Theorem 1.3 from [SW19]) There is a deterministic algorithm,
that, given access to adjacency list of a graph G = (V,E) that has conductance ψ, for some 0 < ψ ≤ 1,
and a collection E′ ⊆ E of k ≤ ψ|E|/10 edges of G, computes a subgraph G′ ⊆ G \ E′, that has con-
ductance at least ψ/6. Moreover, if we denote A = V (G′) and B = V (G) \ A, then |EG(A,B)| ≤ 4k,
and VolG(B) ≤ 8k/ψ. The running time of the algorithm is Õ(k/ψ2).

We apply the algorithm from Theorem 11.9 to graph G′, conductance parameter 24ψ, and the set
E′ = F of edges. Since we have assumed that |Y ∗| < n̂/3 = Vol(G)/3, we get that |X∗| ≥
2n̂/3 ≥ 2 Vol(G)/3. At the same time, |EG(X∗, Y ∗)| < ψ · 2O(1/ε6) · (log8 n) · Vol(G) < Vol(G)/10,
since we have assumed that ψ < 1

2c/ε
6 ·(log8 n)

for a large enough constant c. Therefore, |E(G′)| ≥
VolG(X∗)−|EG(X∗,Y ∗)|

2 ≥ Vol(G)
4 ≥ m

2 . Recall that |F | ≤ ψm
c̃ holds, where c̃ is a large enough constant.

Therefore, |F | ≤ 24ψ|E(G′)|
10 .

The algorithm must then return a partition (Z,Z ′) of V (G′) = A, such that graph G[Z] has conduc-

tance at least 24ψ
6 ≥ ψ, and VolG′(Z

′) ≤ 8|F |
24ψ ≤

m
3c̃ , while |EG(Z,Z ′)| ≤ 4|F | ≤ 4ψm

c̃ ≤ O(ψ) ·Vol(G).

We construct a cut (A∗, B∗) in graph G, by letting A∗ = Z and B∗ = Z ′ ∪ B. Notice that
|EG(A∗, B∗)| ⊆ |EG(A,B)|+ |EG(Z,Z ′)| ≤ ψ · (log n)8+o(1) ·Vol(G). Additionally, we get that:

VolG(A∗) = VolG(Z) ≥ VolG(A)−VolG(Z ′) ≥ 2 Vol(G)

3
− m

3c̃
≥ 7 Vol(G)

12
.

98

If VolG(B∗) ≥ Vol(G)/3, then we get that VolG(A∗),VolG(B∗) ≥ Vol(G)/3. Otherwise, we are guar-
anteed that VolG(A∗) ≥ 2 Vol(G)/3, and that the conductance of graph G[A∗] is at least ψ.

It now remains to bound the running time of the algorithm. The running time of the algorithm from

Corollary 11.6 is bounded byO
(
m2+O(ε)+o(1)

ρ

)
≤ O

(
m1+o(1)

ψ

)
, since ρ = ψm

c̃2 logn
and ε = 1/(log log logm)1/25.

The running time of the algorithm from Theorem 11.9 is Õ
(
|F |
ψ2

)
≤ Õ

(
m
ψ

)
. Therefore, the total run-

ning time of the algorithm is bounded by O
(
m1+o(1)

ψ

)
.

11.4.2 Proof of Theorem 2.9

The proof is very similar to the proof of Theorem 2.8. The main difference is that we set ρ = m1−2ε,
and that we do not employ Theorem 11.9.

We start by computing a graph Ĝ exactly as before, and then applying the algorithm from Corol-
lary 11.6 to it, with parameter ρ = m1−2ε, and c′ a large constant whose value we set later. Let
(X∗, Y ∗) be the outcome of the algorithm. Recall that both X∗ and Y ∗ are canonical sets of vertices,

|X∗| ≥ |Y ∗|, and |EĜ(X∗, Y ∗)| ≤ c′ψ log3 n
ϕ∗ · n̂ ≤ (log n)8+o(1) ·Vol(G), since ϕ∗ ≥ Ω

(
1

2O(1/ε6)·log5 n

)
and

ε = 1
(log log logn)1/25 . We use cut (X∗, Y ∗) in Ĝ in order to define a cut (A,B) in G exactly as before. As

before, VolG(A) = |X∗|, VolG(B) = |Y ∗|, and |EG(A,B)| = |EĜ(X∗, Y ∗)| ≤ ψ · (log n)8+o(1) · Vol(G).
As before, if |Y ∗| ≥ n̂/3, then VolG(A),VolG(B) ≥ n̂/3 = Vol(G)/3, and we return cut (A,B) as the
outcome of the algorithm.

We assume from now on that |Y ∗| < n̂/3, and so the algorithm from Corollary 11.6 computed a ϕ∗-
expander graph H with V (H) = X∗ and maximum vertex degree O(log n), together with a set F of at
most O(ρ log n) edges of H, such that there exists an embedding P of H \F into Ĝ[X∗] with congestion

at most η, where η ≤ O
(

ϕ∗

c′ψ logn

)
. Notice that in this case, VolG(A) ≥ |X∗| ≥ 2n̂/3 = 2 Vol(G)/3

holds.

Consider any partition (Z,Z ′) of A, with |EG(Z,Z ′)| < ψ ·Vol(G), and assume w.l.o.g. that VolG(Z) ≤
VolG(Z ′). We claim that VolG(Z) < Vol(G)/100 holds. Indeed, assume otherwise. Consider a cut
(Ẑ, Ẑ ′) in graph H, obtained as follows: for every vertex vi ∈ Z, we add all vertices of Vi to Ẑ, and
for every vertex vj ∈ Z ′, we add all vertices of Vj to Ẑ ′. Clearly, |Ẑ| = VolG(Z) ≥ Vol(G)/100, and

similarly |Ẑ ′| ≥ Vol(G)/100. Since graph H is a ϕ∗-expander, |EH(Ẑ, Ẑ ′)| ≥ ϕ∗ · min
{
|Ẑ|, |Ẑ ′|

}
≥

ϕ∗·Vol(G)
100 . Denote E′ = EH(Ẑ, Ẑ ′). Recall that ϕ∗ ≥ Ω

(
1

2O(1/ε6)·log5 n

)
, and so |E′| ≥ Ω

(
m

2O(1/ε6)·log5 n

)
.

On the other hand, |F | ≤ O(ρ log n) ≤ O(m1−2ε · log n). From our choice of ε = 1
(log log logn)1/25 , we get

that |F | < |E′|/2, and so |E′ \ F | ≥ ϕ∗·Vol(G)
200 . Since there exists an embedding of H \ F into Ĝ[X∗]

with congestion at most η, and η ≤ O
(

ϕ∗

c′ψ logn

)
, we get that:

|EĜ(Ẑ, Ẑ ′)| ≥ |E
′|

2η
≥ Ω(c′ψVol(G) log n).

Since |EG(Z,Z ′)| = |EĜ(Ẑ, Ẑ ′)|, we reach a contradiction to our assumption that |EG(Z,Z ′)| <
ψ · Vol(G). We conclude that for every partition (Z,Z ′) of A with VolG(Z),VolG(Z ′) ≥ Vol(G)/100,
|EG(Z,Z ′)| ≥ ψ ·Vol(G) must hold.

The running time of the algorithm is asymptotically bounded by the running time of the algorithm

from Corollary 11.6, which is in turn bounded by O
(
m2+O(ε)+o(1)

ρ

)
≤ O

(
m1+O(ε)+o(1)

)
≤ O(m1+o(1)),

99

since ρ = m1−2ε and ε = 1/(log log logm)1/25.

11.5 Expander Decomposition – Proof of Theorem 2.10

In this section we prove Theorem 2.10. The proof is essentially identical to the proof of Corollary 6.1
from [CGL+20]. The only difference is that we use our algorithm from Theorem 2.8 instead of the
algorithm of [CGL+20].

We maintain a collection H of disjoint vertex-induced subgraphs of G that we call clusters, which is
partitioned into two subsets, set HA of active clusters, and set HI of inactive clusters. We ensure
that for every inactive cluster H ∈ HI , the conductance of H is at least ψ. We also maintain a set
E′ of “deleted” edges, that are not contained in any cluster in H. At the beginning of the algorithm,
we let H = HA = {G}, HI = ∅, and E′ = ∅. The algorithm proceeds as long HA 6= ∅, and consists
of iterations. For convenience, we denote α = (log n)8+o(1), so that the algorithm from Theorem 2.8,
when applied to an n-vertex graph G and some parameter ψ′, is guaranteed to return a cut (A,B) in
G with |EG(A,B)| ≤ ψ′ · α · Vol(G). We set ψ = δ

cα·logn , where c is the constant from the theorem

statement. Clearly, ψ = Ω
(

δ
(logn)9+o(1)

)
.

In every iteration, we apply the algorithm from Theorem 2.8 to every graph H ∈ HA, with the
parameter ψ. Consider the cut (A,B) in H that the algorithm returns, with |EH(A,B)| ≤ αψ ·
Vol(H) ≤ δ·Vol(H)

c logn . We add the edges of EH(A,B) to set E′. If VolH(A),VolH(B) ≥ Vol(H)/3, then

we replace H with H[A] and H[B] in H and in HA. Otherwise, we are guaranteed that VolH(A) ≥
2 Vol(H)/3, and graph H[A] has conductance at least ψ. Then we remove H from H and HA, add
H[A] to H and HI , and add H[B] to H and HA.

When the algorithm terminates, HA = ∅, and so every graph in H has conductance at least ψ. Notice
that in every iteration, the maximum volume of a graph in HA must decrease by a constant factor.
Therefore, the number of iterations is bounded by O(logm). It is easy to verify that the number of

edges added to set E′ in every iteration is at most α · ψ · Vol(G) ≤ δ·Vol(G)
c logm . Therefore, by letting c

be a large enough constant, we can ensure that |E′| ≤ δ · Vol(G). The output of the algorithm is the
partition Π = {V (H) | H ∈ H} of V . From the above discussion, we obtain a valid (δ, ψ)-expander

decomposition, for ψ = Ω
(

δ
(logm)9+o(1)

)
.

It remains to analyze the running time of the algorithm. The running time of a single iteration is
bounded by O(m1+o(1)/ψ), and, since the number of iterations is O(logm), the total running time of
the algorithm is bounded by O(m1+o(1)/ψ) ≤ O(m1+o(1)/δ).

100

A Proof of Lemma 4.1

The proof uses a standard ball-growing technique. Let H = G \ E′. Let S be any set of vertices of
H, such that not all vertices of S are isolated in H. We define L0 = S, and, for integers i > 0, we
define Li = BH(S, i). We refer to the sets L0, L1, . . . of vertices as BFS layers defined with respect to
S. For an index 1 ≤ i < bd/2c, we say that layer Li is acceptable if |δH(Li)| < ϕ

2 · |EH(Li)|. We use
the following simple claim:

Claim A.1 Let B = BH(S, d), and assume that |EH(B)| < |E(H)|. Then there is an index 1 ≤ i <
bd/2c − 1, such that layer Li is acceptable.

Proof: Assume otherwise. Then for all 1 ≤ i < bd/2c − 1, layer Li is not acceptable, and so
|δH(Li)| ≥ ϕ

2 · |EH(Li)|. Therefore, |EH(Li+1)| ≥
(
1 + ϕ

2

)
|EH(Li)|. Since not all vertices of S are

isolated in H, we get that |EH(L1)| ≥ 1. Overall, we get that:

|EH(Lbd/2c−1)| ≥
(

1 +
ϕ

2

)bd/2c−2
≥
(

1 +
ϕ

2

)(8 logm)/ϕ
≥ e2 logm > m,

(we have used the fact that for all k > 1,
(
1 + 1

k

)k+1
> e). This is impossible, so there must be an

index 1 ≤ i < bd/2c − 1 for which layer Li is acceptable.

We are now ready to complete the proof of Lemma 4.1. We denote the BFS layers in graph H
defined with respect to X by L′0, L

′
1, . . ., and BFS layers defined with respect to Y by L′′0, L

′′
1, We

run two algorithms in parallel. The first algorithm performs a BFS search in H starting from X to
compute layers L′0, L

′
1, . . . one by one. When a layer L′i is computed, the algorithm checks whether

it is acceptable. The second algorithm similarly performs a BFS search starting from Y to compute
layers L′′0, L

′′
1, . . . one by one, and, when a layer L′′i is computed, the algorithm checks whether it is

acceptable. The two algorithms run in parallel, so that at every time point both algorithms have
explored the same number of edges of H. The moment one of the two algorithms finds an acceptable
layer, we terminate both algorithms.

Assume w.l.o.g. that the first acceptable layer that was computed by either algorithm is L′i. We then
set X ′ = L′i and Y ′ = V (G) \X ′. Note that, from Claim A.1, i < d/2 must hold, so X ′ ∩ Y = ∅ (as
distH(X,Y) ≥ d). Clearly, X ⊆ X ′ and Y ⊆ Y ′. From the definition of an acceptable layer, we are
guaranteed that |EH(X ′, Y ′)| = |δH(X ′)| < ϕ

2 · |EH(L′i)| = ϕ
2 · |EH(X ′)|. Since we ensured that the

number of edges that the two BFS searches explore at every time point is the same, we are guaranteed
that |EH(X ′)| ≤ |E(Y ′)|. The running time of the algorithm is bounded by O(|EH(X ′)|+ |δH(X ′)|+
n) ≤ O(|EH(X ′)|+ n) ≤ O(|EG(X ′)|+ n).

Lastly, observe that |EG(X ′)| ≥ |EH(X ′)| and |EG(Y ′)| ≥ |EH(Y ′)|. Furthermore:

|EG(X ′, Y ′)| ≤ |E′|+|EH(X ′, Y ′)| ≤ ϕ

4
|X|+ϕ

2
·min

{
|EH(X ′)|, |EH(Y ′)|

}
≤ ϕ·min

{
|EG(X ′)|, |EG(Y ′)|

}
,

since |X| = |Y |, and graph G is connected, so |X| ≤ 2 min {|EG(X ′)|, |EG(Y ′)|} .

B Proof of Lemma 11.5

The proof of the lemma is a simple application of the Cut-Matching Game. Let G′ = Ĝ[V ′], and let
n′ = |V (G′)|. If n′ is an odd integer, then we add an extra vertex v0 to G′, and connect it with an
edge to an arbitrary vertex of G′. We let H be a graph with V (H) = V (G′) and E(H) = ∅.

101

We will execute the Cut-Matching Game on graph H, while simultaneously computing an embedding
of H into G′. Some of the edges of H will be designated as fake edges and added to the set F of fake
edges. These edges do not need to be embedded into G′. Initially, F = ∅.

We perform a number of iterations, that correspond to the Cut-Matching Game. In every iteration
i, we will add a matching Mi to graph H, and a set Fi ⊆ Mi of fake edges to set F . We will also
implicitly maintain embedding Pi of the set Mi \ Fi of edges into G′ (in other words, the paths in Pi
are not computed explicitly, but are only guaranteed to exist). We will ensure that the number of
iterations is bounded by O(log n′) ≤ O(log n), so the maximum vertex degree in H is always bounded
by ∆H ≤ O(log n). At the beginning of the algorithm, graph H contains the set V [G′] of vertices and
no edges. We now describe the execution of the ith iteration.

In order to execute the ith iteration, we apply Algorithm from Theorem 2.6 to the current graph H,
with parameter ε remaining unchanged. Notice that, since ε = 1

(log log logn)1/25 , and m is large enough,

ε > 8
(logm)1/25 holds. Since |V (G′)| ≥ 2n̂

3 ≥ m, we are guaranteed that ε > 2
(logn′)1/25 , so that condition

of Theorem 2.6 holds.

Assume first that the output of the algorithm from Theorem 2.6 is a cut (Ai, Bi) in H with |Ai|, |Bi| ≥
n′/4 and |EH(A,B)| ≤ n′/100. We treat this partition as the move of the Cut Player. Assume w.l.o.g.
that |Ai| ≤ |Bi|. Next, we compute an arbitrary partition (A′i, B

′
i) of V (G′) with |A′i| = |B′i| and

A′i ⊆ Ai. We apply Algorithm MatchOrCut from Theorem 11.2 to graph G′, the sets A′i, B
′
i of

vertices, a sparsity parameter ϕ′ = ϕ/c, where c is a large enough constant, and parameter z = 8ρ.
Next, we consider two cases. The first case happens if the algorithm returns a cut (X,Y) in G′, with
|X|, |Y | ≥ z/2 ≥ 4ρ, and |EG′(X,Y)| ≤ ϕ′ · min {|X|, |Y |} = ϕ

c · min {|X|, |Y |}. Once we delete the
extra vertex v0 (if it exists), we obtain a cut (X ′, Y ′) in the original graph G′, with |X ′|, |Y ′| ≥ 2ρ and
|EG′(X ′, Y ′)| ≤ 2ϕ

c ·min {|X ′|, |Y ′|}. Next, we apply Algorithm MakeCanonical from Lemma 11.1,
to compute a canonical cut (X ′′, Y ′′) in G′, such that: |X ′′| ≥ |X ′|/2 ≥ ρ, |Y ′′| ≥ |Y ′|/2 ≥ ρ, and:

|EĜ(X ′′, Y ′′)| ≤ O(|EĜ(X ′, Y ′)|)
= O(|EG′(X ′, Y ′)|)

≤ O
(ϕ
c
·min

{
|X ′|, |Y ′|

})
≤ ϕ ·min

{
|X ′′|, |Y ′′|

}
,

if c is sufficiently large. We then terminate the algorithm and return the partition (X ′′, Y ′′) of V ′.
From the above discussion, it has all required properties.

Consider now the second case, where the algorithm from Theorem 11.2 computes a matching M ′i ⊆
A′i × B′i with |M ′i | ≥ |A′i| − z = |A′i| − 8ρ, such that there exists a set P ′i = {P (a, b) | (a, b) ∈M ′i}
of paths in G′, where for each pair (a, b) ∈ M ′i , path P (a, b) connects a to b, and the paths in P ′i
cause congestion at most O

(
logn
ϕ

)
. We let A′′i ⊆ A′i, B

′′
i ⊆ B′i be the sets of vertices that do not

participate in the matching M ′i , and we let Fi be an arbitrary perfect matching between these vertices.
Lastly, we set Mi = M ′i ∪ Fi. We view the matching Mi as the response of the matching player in the
Cut-Matching Game. We add the edges of Mi to H, and continue to the next iteration. Notice that
|Fi| ≤ 8ρ.

We perform the iterations as described above, until the algorithm from Theorem 2.6 returns a
subset S ⊆ V (G′) of at least |V (G′)|/2 vertices, such that graph H[S] is ϕ∗-expander, for ϕ∗ ≥

Ω

(
1

2O(1/ε6)·∆3
H ·log2 n

)
≥ Ω

(
1

2O(1/ε6)·log5 n

)
. Recall that Theorem 3.6 guarantees that this must happen

after at most O(log n) iterations. We then perform one last iteration, whose index we denote by q.

102

We let Bq = S and Aq = V (G) \ S, and apply Algorithm MatchOrCut from Theorem 11.2 to the
sets Aq, Bq of vertices, a sparsity parameter ϕ′ = ϕ/c and parameter z = 8ρ. As before, we consider
two cases. The first case happens if the algorithm returns a cut (X,Y) in G, with |X|, |Y | ≥ z/2 ≥ 4ρ
and |EG′(X,Y)| ≤ ϕ′ ·min {|X|, |Y |}. In this case, we compute a partition (X ′′, Y ′′) of V (G′) \ {v0}
exactly as before, so that both X ′′, Y ′′ are canonical sets of vertices of cardinality at least ρ each,
and |EĜ(X ′′, Y ′′)| ≤ ϕ · min {|X ′′|, |Y ′′|}. We return the cut (X ′′, Y ′′) and terminate the algorithm.
In the second case, the algorithm from Theorem 11.2 computes a matching M ′q ⊆ A′q × B′q with
|M ′q| ≥ |Aq| − z = |Aq| − 8ρ, such that there exists a set P ′q =

{
P (a, b) | (a, b) ∈M ′q

}
of paths in G′,

where for each pair (a, b) ∈M ′q, path P (a, b) connects a to b, and the paths in P ′q cause congestion at

most O
(

logn
ϕ

)
. As before, we let A′q ⊆ Aq, B

′
q ⊆ Bq be the sets of vertices that do not participate

in the matching M ′q, and we let Fq be an arbitrary matching that connects every vertex of A′q to a
distinct vertex of B′q (such a matching must exist since |Aq| ≤ |Bq|). We then set Mq = M ′q ∪M ′′q , and
we add the edges of Mq to graph H.

From now on we assume that the algorithm never terminated with a partition (X ′′, Y ′′) of V (G′)\{v0},
where both X ′′, Y ′′ are canonical sets of vertices of cardinality at least ρ each, and |EĜ(X ′′, Y ′′)| ≤
ϕ · min {|X ′′|, |Y ′′|}. Note that, from Observation 3.2, the final graph H is a ϕ∗/2-expander, for

ϕ∗ ≥ Ω
(

1

2O(1/ε6)·log5 n

)
. Let F =

⋃
i Fi. Since, for all i, |Fi| ≤ 8ρ, and since, from Theorem 3.6, the

number of iterations is bounded by O(log n), we get that |F | ≤ O(ρ log n). Lastly, consider the set
P =

⋃
i Pi of paths in graph G′. It is immediately to verify that the paths in P embed graph H \F into

G′. Since every set Pi of paths causes congestion at most O
(

logn
ϕ

)
, the paths in P cause congestion

at most O
(

log2 n
ϕ

)
in G′.

One remaining subtlety is that graph H, as well as current graph G′ may contain the extra vertex
v0, that needs to be removed from both graphs. Recall that the degree of v0 in graph H is at most
O(log n). Let u1, . . . , ur denote the neighbor vertices of v0 in H. Let H ′ be obtained from graph H
by deleting vertex v0 from it, and adding, for every pair uj , uj′ of neighbor vertices of v0, and edge
(uj , uj′) connecting them. Each such new edge is added to the set F of fake edges. It is easy to verify
that H ′ remains a ϕ∗/2-expander. Since ρ ≥ log n, while the degree of v0 in H is at most O(log n),
|F | ≤ O(ρ log n) continues to hold, and all vertex degrees in H ′ are at most O(log n). Since vertex v0

has degree 1 in G′, we can assume that it does not lie on any path in {P (e) | e ∈ E(H ′) \ F}, and so
v0 can be safely deleted from G′ as well. The output of the algorithm in this case is graph H ′ and set
F of its edges.

Lastly, we bound the running time of the algorithm. The algorithm consists of O(log n) iterations. Ev-
ery iteration employs the algorithm from Theorem 2.6, whose running time is O

(
|E(H)|1+O(ε) ·∆7

H

)
≤

O
(
n1+O(ε)

)
, since ∆H ≤ O(log n), and log8 n < n4ε (since, as we have observed, n2ε ≥ mε > log4 n).

Additionally, in every iteration we use Algorithm MatchOrCut from Theorem 11.2, whose running
time is O

(
m1+o(1)

)
, and Algorithm MakeCanonical from Lemma 11.1, whose running time is O(m).

Therefore, the total running time is O
(
m1+O(ε)+o(1)

)
.

References

[ABF22] Amir Abboud, Karl Bringmann, and Nick Fischer. Stronger 3-sum lower bounds for
approximate distance oracles via additive combinatorics. arXiv preprint arXiv:2211.07058,
2022.

[ABKZ22] Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approximation

103

in p via short cycle removal: Cycle detection, distance oracles, and beyond. arXiv preprint
arXiv:2204.10465, 2022.

[ACL07] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Using pagerank to locally partition
a graph. Internet Mathematics, 4(1):35–64, 2007.

[ADK22] Daniel Agassy, Dani Dorfman, and Haim Kaplan. Expander decomposition with fewer
inter-cluster edges using a spectral cut player. arXiv preprint arXiv:2205.10301, 2022.

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embed-
dings and graph partitioning. J. ACM, 56(2), 2009.

[BGS22] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Determin-
istic decremental sssp and approximate min-cost flow in almost-linear time. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1000–1008.
IEEE, 2022.

[CGL+20] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. A deterministic algorithm for balanced cut with applications to dynamic
connectivity, flows, and beyond. In 2020 IEEE 61st Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 1158–1167. IEEE, 2020. Full version at
arXiv:1910.08025.

[Chu21] Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear time.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 626–639, 2021. Full version at arXiv:2109.05621.

[CK19] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source short-
est paths with applications to vertex-capacitated flow and cut problems. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 389–400,
2019.

[CKL+22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. arXiv
preprint arXiv:2203.00671, 2022.

[CS19] Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition
and nearly optimal triangle enumeration. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 -
August 2, 2019., pages 66–73, 2019.

[CS21] Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algorithms for decremental
shortest paths via layered core decomposition. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2478–2496. SIAM, 2021.

[CZ22] Julia Chuzhoy and Ruimin Zhang. A new deterministic algorithm for fully dynamic all-
pairs shortest paths, 2022. Manuscript.

[DHZ00] Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM J.
Comput., 29(5):1740–1759, 2000.

[Din06] Yefim Dinitz. Dinitz’ algorithm: The original version and Even’s version. In Theoretical
computer science, pages 218–240. Springer, 2006.

104

[DJWW22] Mina Dalirooyfard, Ce Jin, Virginia Vassilevska Williams, and Nicole Wein. Approxi-
mation algorithms and hardness for n-pairs shortest paths and all-nodes shortest cycles.
arXiv preprint arXiv:2204.03076, 2022.

[ES81] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journal of the ACM
(JACM), 28(1):1–4, 1981.

[Fle00] Lisa Fleischer. Approximating fractional multicommodity flow independent of the number
of commodities. SIAM J. Discrete Math., 13(4):505–520, 2000.

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. J.
Comput. Syst. Sci., 22(3):407–420, 1981. announced at FOCS’79.

[GK98] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In 39th Annual Symposium on Foundations of
Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages
300–309, 1998.

[GLN+19] Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. Deterministic graph cuts in subquadratic time: Sparse,
balanced, and k-vertex. arXiv preprint arXiv:1910.07950, 2019.

[GVY95] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)-cut
theorems and their applications. SIAM Journal on Computing, 25:235–251, 1995.

[HHG22] Bernhard Haeupler, Jonas Huebotter, and Mohsen Ghaffari. A cut-matching game for
constant-hop expanders. arXiv preprint arXiv:2211.11726, 2022.

[HK95] Monika Rauch Henzinger and Valerie King. Fully dynamic biconnectivity and transitive
closure. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium
on, pages 664–672. IEEE, 1995.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the forty-seventh annual ACM sympo-
sium on Theory of computing, pages 21–30, 2015.

[HRG22] Bernhard Haeupler, Harald Räcke, and Mohsen Ghaffari. Hop-constrained expander de-
compositions, oblivious routing, and distributed universal optimality. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1325–1338,
2022.

[HWZ20] Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for completion
times of multiple unicasts. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 494–505. IEEE, 2020.

[Kar08] George Karakostas. Faster approximation schemes for fractional multicommodity flow
problems. ACM Trans. Algorithms, 4(1):13:1–13:17, 2008.

[KKOV07] Rohit Khandekar, Subhash Khot, Lorenzo Orecchia, and Nisheeth K Vishnoi. On a cut-
matching game for the sparsest cut problem. Univ. California, Berkeley, CA, USA, Tech.
Rep. UCB/EECS-2007-177, 6(7):12, 2007.

105

[KMP12] Jonathan A. Kelner, Gary L. Miller, and Richard Peng. Faster approximate multicom-
modity flow using quadratically coupled flows. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 1–18, 2012.

[KRV09] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single
commodity flows. Journal of the ACM (JACM), 56(4):19, 2009.

[LR99] F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46:787–832, 1999.

[Mad10] Aleksander Madry. Faster approximation schemes for fractional multicommodity flow
problems via dynamic graph algorithms. In Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010,
pages 121–130, 2010.

[Mar73] G. A. Margulis. Explicit construction of concentrators. Problemy Peredafi Iqfiwmacii,
9(4):71–80, 1973. (English translation in Problems Inform. Transmission (1975)).

[NS17] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-
case update time: adaptive, Las Vegas, and O(n1/2−ε)-time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1122–1129, 2017.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In STOC, pages 81–90. ACM,
2004.

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2616–2635, 2019.

[Wul17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1130–1143,
2017.

106

	Introduction
	Algorithmic Tools for Well-Connected Graphs.
	Applications to Other Algorithmic Tools.
	Applications to Static Graphs.
	Applications to Dynamic Graphs: All-Pairs Shortest Paths (in Expanders).

	Overview of Our Results and Techniques
	The Distanced Matching Game and Related Algorithmic Toolkit.
	Decremental APSP in Expanders.
	Advanced Path Peeling and Deterministic Algorithm for the Cut Player in the Cut-Matching Game.
	Sparsest Cut and Lowest Conductance Cut.
	Minimum Balanced Cut and Expander Decomposition.

	Preliminaries
	Dynamic Algorithms
	Cuts, Flows, Sparsity, Conductance and Expanders.
	Embeddings with Fake Edges and Expansion.
	The Cut-Matching Game.
	Graph Cutting and Partitioning.
	Procedure ProcCut.
	Procedure ProcPartition.
	Procedure ProcSeparate.

	Basic Path Peeling.

	The Distanced Matching Game
	Hierarchical Support Structure
	Algorithm for the Distancing Player – Proof of thm: construct HSS
	Phase 1: Construction of Smaller Well-Connected Graphs
	Description of Iteration q

	Phase 2: Distancing or Well-Connectedness
	Proof of lem: certificate

	APSP in Well-Connected Graphs – Proof of thm: APSP in HSS full
	Base Case: j8
	Step: j>8
	Data Structures and Initialization
	Maintaining the Data Structures
	Analysis of Total Update Time
	Response to Queries

	APSP in Expanders – Proof of thm: APSP on expanders main
	Proof of lem: APSP on expanders one phase
	Data Structures and Initialization
	Maintaining the Data Structures
	Responding to Short-Path Queries

	Advanced Path Peeling – Proof of thm: main main advanced path peeling
	Proof of lem: inner advanced path peeling
	Special Case: kn
	Stage 1: Embedding a Well-Connected Graph
	Stage 2: Computing the Routing

	An Algorithm for the Cut Player in the Cut-Matching Game – Proof of thm: new cut player
	Further Applications
	Main Technical Tools
	Degree Reduction
	Faster Basic Path Peeling

	Most-Balanced Sparse Cut
	Sparsest Cut and Lowest-Conductance Cut – Proof of thm: sparsest and lowest cond
	Minimum Balanced Cut – Proof of Theorems 2.8 and 2.9
	Proof of thm: balanced cut high cond
	Proof of thm: balanced cut low cond

	Expander Decomposition – Proof of thm:expander decomp

	Proof of lem: distancing to sparse cut
	Proof of lem: single stage new

