
On Approximating Node-Disjoint Paths in Grids
Julia Chuzhoy ∗1 and David H. K. Kim †2

1 Toyota Technological Institute at Chicago
6045 S. Kenwood Ave., Chicago, Illinois 60637, USA
cjulia@ttic.edu

2 Department of Computer Science, University of Chicago
1100 East 58th Street, Chicago, Illinois 60615, USA
hongk@cs.uchicago.edu

Abstract
In the Node-Disjoint Paths (NDP) problem, the input is an undirected n-vertex graph G,

and a collection {(s1, t1), . . . , (sk, tk)} of pairs of vertices called demand pairs. The goal is to
route the largest possible number of the demand pairs (si, ti), by selecting a path connecting
each such pair, so that the resulting paths are node-disjoint. NDP is one of the most basic and
extensively studied routing problems. Unfortunately, its approximability is far from being well-
understood: the best current upper bound of O(

√
n) is achieved via a simple greedy algorithm,

while the best current lower bound on its approximability is Ω(log1/2−δ n) for any constant δ.
Even for seemingly simpler special cases, such as planar graphs, and even grid graphs, no better
approximation algorithms are currently known. A major reason for this impasse is that the
standard technique for designing approximation algorithms for routing problems is LP-rounding
of the standard multicommodity flow relaxation of the problem, whose integrality gap for NDP
is Ω(

√
n) even on grid graphs.

Our main result is an O(n1/4 · logn)-approximation algorithm for NDP on grids. We distin-
guish between demand pairs with both vertices close to the grid boundary, and pairs where at
least one of the two vertices is far from the grid boundary. Our algorithm shows that when all
demand pairs are of the latter type, the integrality gap of the multicommodity flow LP-relaxation
is at most O(n1/4 · logn), and we deal with demand pairs of the former type by other methods.
We complement our upper bounds by proving that NDP is APX-hard on grid graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Node-disjoint paths, approximation algorithms, routing and layout

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In the classical Node-Disjoint Paths (NDP) problem, the input is an undirected n-vertex
graph G = (V,E), and a collection {(s1, t1), . . . , (sk, tk)} of pairs of vertices, called source-
destination, or demand, pairs, that we would like to route. In order to route a pair (si, ti),
we need to select some path P connecting si to ti. The goal is to route the largest possible
number of the demand pairs on node-disjoint paths: that is, every vertex of G may participate
in at most one path in the solution.

NDP is one of the most basic and extensively studied routing problems. When the number
of the demand pairs k is bounded by a constant, Robertson and Seymour [27, 29] have

∗ Supported in part by NSF grant CCF-1318242.
† Supported in part by NSF grant CCF-1318242.

© Julia Chuzhoy and David H. K. Kim;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 On Approximating Node-Disjoint Paths in Grids

shown an efficient algorithm for the problem, as part of their seminal Graph Minors project.
However, when k is a part of the input, the problem is known to be NP-hard [17]. Even
though the NDP problem, together with its many variants, has been extensively studied, its
approximability is still poorly understood. The best currently known upper bound on the
approximation factor is O(

√
n) [22], achieved by the following simple greedy algorithm: start

with graph G and an empty solution. While G contains any path connecting any demand pair,
choose the shortest such path P , add P to the solution, and delete all vertices of P from G.
Surprisingly, this elementary algorithm is the best currently known approximation algorithm
for NDP, even for restricted special cases of the problem, where the input graph G is a planar
graph, or even just a grid. On the negative side, it is known that there is no O(log1/2−δ n)-
approximation algorithm for NDP for any constant δ, unless NP ⊆ ZPTIME(npoly logn) [5, 4].
Perhaps the biggest obstacle in breaking the O(

√
n)-approximation barrier for the problem is

the fact that the integrality gap of the standard multicommodity flow LP-relaxation for NDP
is Ω(

√
n), even in grid graphs. In the LP-relaxation, instead of connecting the demand pairs

by paths, we try to send as much flow as possible between the demand pairs, subject to the
constraint that each vertex carries at most one flow unit. The O(

√
n)-approximation greedy

algorithm described above can be cast as an LP-rounding algorithm for the multicommodity
flow LP, and therefore, the integrality gap of the LP is Θ(

√
n). So far, rounding this LP

relaxation has been the main method used in designing approximation algorithms for a
variety of routing problems, and it appears that new techniques are needed in order to
improve the O(

√
n)-approximation factor for NDP.

In this paper we break the O(
√
n)-barrier on the approximation factor for NDP on

grid graphs 1, by providing an O(n1/4 · logn)-approximation algorithm. Our algorithm
distinguishes between two types of demand pairs: an (si, ti) pair is bad if both si and ti are
close to the grid boundary, and it is good otherwise. Interestingly, the standard integrality
gap examples for the multicommodity flow LP relaxation usually involve a grid graph, and
bad demand pairs. Our algorithm deals with bad and good demand pairs separately, and
in particular it shows that if all demand pairs are good, then the integrality gap of the
LP relaxation becomes O(n1/4 · logn) (but unfortunately it still remains polynomial in n -
see Section 6). We complement these results by showing that NDP is APX-hard even on
grid graphs. We believe that understanding the approximability of NDP on grid graphs is
an important first step towards understanding the approximability of the NDP problem in
general, as grids seem to be the simplest graphs, for which the approximability of the NDP
problem is widely open, and the integrality gap of the multicommodity flow LP is Ω(

√
n).

We hope that some of the techniques introduced in this paper will be helpful in breaking the
O(
√
n)-approximation barrier in general planar graphs.

NDP in grid graphs has been studied in the past, often in the context of VLSI layout.
Aggarwal, Kleinberg and Williamson [1] consider a special case, where the set of the demand
pairs is a permutation — that is, every vertex of the grid participates in exactly one demand
pair. They show that for any permutation, one can route Ω(

√
n/ logn) demand pairs. They

also show that with spacing d, every permutation contains a set of Ω(
√
nd/ logn) pairs that

can be routed on node-disjoint paths. Our algorithm for routing on grids is inspired by their
work.

Cutler and Shiloach [16] studied NDP in grids in the following three settings. They
assume that all source vertices appear on the top row R1 of the grid, and all destination

1 Since n denotes, by convention, the number of vertices in the input graph, the size of the grid is
(
√

n×
√

n)

J. Chuzhoy and D. Kim 3

vertices appear on some other row R` of the grid, sufficiently far from the top and the
bottom rows (for example, ` = dn/2e). In the packed-packed setting, the sources are a set
of k consecutive vertices of R1, and the destinations are a set of k consecutive vertices of
R`. They show a necessary and a sufficient condition for when all demand pairs can be
routed in the packed-packed instance. The second setting is the packed-spaced setting. Here,
the sources are again a set of k consecutive vertices of R1, but the distance between every
consecutive pair of the destination vertices on R` is at least d. For this setting, the authors
show that if d ≥ k, then all demand pairs can be routed. We extend their algorithm to a
more general setting, where the destination vertices may appear anywhere in the grid, as
long as the distance between any pair of the destination vertices, and any destination vertex
and the boundary of the grid, is at least Ω(k). This extension of the algorithm of [16] is
used as a basic building block in both our algorithm, and the APX-hardness proof. We
note that Robertson and Seymour [28] provided sufficient conditions for the existence of
node-disjoint routing of a given set of demand pairs in the more general setting of graphs
drawn on surfaces, and they provide an algorithm whose running time is poly(n) · f(k) for
finding the routing, where f(k) is at least exponential in k. Their result implies the existence
of the routing on grids, when the destination vertices are sufficiently spaced from each other
and from the grid boundaries. However, we are not aware of an algorithm for finding the
routing, whose running time is polynomial in n and k, and we provide such an algorithm
here. The third setting studied by Cutler and Shiloach is the spaced-spaced setting, where
the distance between any pair of source vertices, and any pair of destination vertices is at
least d. The authors note that they could not come up with a better algorithm for this
setting, than the one provided for the packed-spaced case.

Other Related Work.

A problem closely related to NPD is the Edge-Disjoint Paths (EDP) problem. It is defined
similarly, except that now the paths chosen to the solution are allowed to share vertices,
and are only required to be edge-disjoint. It is easy to show, by using a line graph of the
EDP instance, that NDP is more general than EDP. The approximability status of EDP
is very similar to that of NDP: there is an O(

√
n)-approximation algorithm [13], and it is

known that there is no O(log1/2−δ n)-approximation algorithm for any constant δ, unless
NP ⊆ ZPTIME(npoly logn) [5, 4]. As in the NDP problem, we can use the standard mul-
ticommodity flow LP-relaxation of the problem, in order to obtain the O(

√
n)-approximation

algorithm, and the integrality gap of the LP-relaxation is Ω(
√
n) even on planar graphs.

However, for even-degree planar graphs, Kleinberg [19], building on the work of Chekuri,
Khanna and Shepherd [12, 11], has shown an O(log2 n)-approximation LP-rounding al-
gorithm. Aumann and Rabani [8] showed an O(log2 n)-approximation algorithm for EDP on
grid graphs, and Kleinberg and Tardos [21, 20] showed O(logn)-approximation algorithms
for wider classes of nearly-Eulerian uniformly high-diameter planar graphs, and nearly-
Eulerian densely embedded graphs. Recently, Kawarabayashi and Kobayashi [18] gave an
O(logn)-approximation algorithm for EDP when the input graph is either 4-edge-connected
planar or Eulerian planar. It appears that the restriction of the graph G to be Eulerian, or
near-Eulerian, makes the EDP problem significantly simpler, and in particular improves the
integrality gap of the LP-relaxation. The analogue of the grid graph for the EDP problem is
the wall graph (see Figure 1): the integrality gap of the standard LP relaxation for EDP on
wall graphs is Ω(

√
n), and to the best of our knowledge, no better than O(

√
n)-approximation

algorithm for EDP on walls is known. Our O(n1/4 · logn)-approximation algorithm for NDP
on grids can be extended to the EDP problem on wall graphs (see Section 7).

4 On Approximating Node-Disjoint Paths in Grids

Figure 1 A wall graph.

A variation of the NPD and EDP problems, where small congestion is allowed, has been
a subject of extensive study. In the NDP with congestion (NDPwC) problem, the input is
the same as in the NDP problem, and we are additionally given a non-negative integer c.
The goal is to route as many of the demand pairs as possible with congestion at most c: that
is, every vertex may participate in at most c paths in the solution. EDP with Congestion
(EDPwC) is defined similarly, except that now the congestion bound is imposed on edges and
not vertices. The classical randomized rounding technique of Raghavan and Thompson [25]
gives a constant-factor approximation for both problems, if the congestion c is allowed to be
as high as Θ(logn/ log logn). A recent line of work [12, 24, 3, 26, 14, 15, 10, 9] has lead to an
O(poly log k)-approximation for both NDPwC and EDPwC problems, with congestion c = 2.
For planar graphs, a constant-factor approximation with congestion 2 is known [30]. All
these algorithms perform LP-rounding of the standard multicommodity flow LP-relaxation
of the problem.

Organization.

We start with Preliminaries in Section 2, and show a generalization of the algorithm of Cutler
and Shiloah [16] for routing with well-separated destinations in Section 3. In Section 4 we
provide an O(n1/4 · logn)-approximation algorithm for NDP on grids, and we provide the
APX-hardness proof in Section 5. We discuss the integrality gap of the multicommodity
flow LP-relaxation when all terminals are far from the grid boundary in Section 6, and we
sketch the extension of our O(n1/4 logn)-approximation algorithm to EDP on wall graphs in
Section 7.

2 Preliminaries

We consider the NDP problem in two-dimensional grids: The input is an (N ×N)-grid graph
G = (V,E), and a collectionM = {(s1, t1), . . . , (sk, tk)} of pairs of vertices, called demand,
or source-destination, pairs. The goal is to find a largest cardinality collection P of paths,
where each path in P connects some demand pair (si, ti), and every vertex of G participates
in at most one path in P . The vertices in the set {s1, t1, . . . , sk, tk} are called terminals. By
convention, we denote n = |V |, so n = N2.

We assume that the grid rows are indexed R1, . . . , RN in the top-to-bottom order, and
the columns are indexed C1, . . . , CN in the left-to-right order. We denote by v(i, j) the
unique vertex in Ri ∩ Cj . Given a vertex v ∈ V , let col(v) denote the column, and row(v)
denote the row in which v lies. The boundary of the grid is Γ(G) = R1 ∪ RN ∪ C1 ∪ CN .
We call R1, RN , C1, CN the boundary edges of the grid. Given any integers 1 ≤ i ≤ i′ ≤ N ,
1 ≤ j ≤ j′ ≤ N , we denote by G[i : i′, j : j′] the sub-graph of G, induced by the set
{v(i′′, j′′) | i ≤ i′′ ≤ i′, j ≤ j′′ ≤ j′} of vertices. We sometimes say that G[i : i′, j : j′] is the

J. Chuzhoy and D. Kim 5

sub-grid of G, spanned by rows Ri, . . . , Ri′ and columns Cj , . . . , Cj′ .
Given a path P in G, and a set S of vertices of G, we say that P is internally disjoint

from S, if no vertex of S serves as an inner vertex of P . We will use the following simple
observation.

I Observation 1. Let G be a (h×w)-grid, with w, h > 2, and let k ≤ min {w − 2, h− 2} be
an integer. Then for any pair L,L′ of opposing boundary edges of G, for any pair S ⊆ V (L),
T ⊆ V (L′) of vertex subsets on these boundary edges, with |S| = |T | = k, there is a set P of
k node-disjoint paths, connecting the vertices of S to the vertices of T in G, such that all
paths in P are internally disjoint from V (L ∪ L′). Moreover, the path set P can be found
efficiently.

Proof. Let G′ be the sub-graph of G, obtained by deleting all vertices of (L ∪ L′) \ (S ∪ T)
from G. It is enough to show that there is a set P of k disjoint paths connecting the vertices
of S to the vertices of T in G′.

Assume without loss of generality that L is the top and L′ is the bottom boundary edge of
G. Assume for contradiction that such a set P of paths does not exist. Then from Menger’s
theorem, there is a set Z of at most k − 1 vertices, such that in G′ \ Z, there is no path
from a vertex of S \ Z to a vertex of T \ Z. However, the vertices of S lie on k distinct
columns of G, so at least one such column, say C, does not contain a vertex of Z. Similarly,
there is some column C ′ of G that contains a vertex of T , and V (C ′) ∩ Z = ∅. Finally, since
there are at least k + 2 rows in G, there is some row R 6= R1, Rh, that contains no vertex of
Z. Altogether, (C ∪R ∪ C ′) ∩G′ lie in the same connected component of G′ \ Z, and this
connected component contains a vertex of S and a vertex of T , a contradiction. The set P
of paths can be found efficiently by computing the maximum single-commodity flow between
the vertices of S and the vertices of T in G′, and using the integrality of flow. J

Consider the input grid graph G. The L∞-distance between two vertices v(i, j) and
v(i′, j′) is defined as d∞(v(i, j), v(i′, j′)) = max(|i− i′|, |j − j′|). The distance between a set
S ⊆ V (G) of vertices and a vertex v ∈ V (G) is d∞(v, S) = minu∈S {d∞(v, u)}.

Multicommodity Flow LP Relaxation.

For each demand pair (si, ti) ∈ M, let Pi be the set of all paths connecting si to ti in G,
and let P =

⋃k
i=1 Pi. In order to define the multicommodity flow LP-relaxation of NDP,

every path P ∈ P is assigned a variable f(P) representing the amount of flow that is sent
on P , and for each demand pair (si, ti), we introduce variable xi, whose value is the total
amount of flow sent from si to ti. The LP-relaxation is then defined as follows.

(LP-flow) max
∑k
i=1 xi

s.t.
∑
P∈Pi

f(P) = xi ∀1 ≤ i ≤ k∑
P :v∈P f(P) ≤ 1 ∀v ∈ V
f(P) ≥ 0 ∀1 ≤ i ≤ k,∀P ∈ Pi

Even though this LP-relaxation has exponentially many variables, it can be efficiently
solved by standard techniques, e.g. by using an equivalent polynomial-size edge-based
formulation.

It is well known that the integrality gap of (LP-flow) is Ω(
√
n) even in grid graphs.

Indeed, let G be an (N ×N)-grid, and let k = N − 2. We let the sources s1, . . . , sk appear
consecutively on row R1, starting from v(1, 1) in this order, and the destinations appear

6 On Approximating Node-Disjoint Paths in Grids

consecutively on row RN starting from v(N, 1), in the opposite order: tk, . . . , t1 (see Figure 2).
It is easy to see that there is a solution to (LP-flow) of value k/3 = Ω(N): for each pair
(si, ti), we send 1/3 flow unit on the path Pi, where Pi is an si–ti path lying in the union
of columns Ci, CN−i−1 and row Ri + 1. On the other hand, it is easy to see that the value
of any integral solution is 1, since any pair of paths connecting the demand pairs have to
cross. Since the number of vertices in G is n = N2, this gives a lower bound of Ω(

√
n) on

the integrality gap of (LP-flow).

s1 s2 sk !

tk t1 t2 !

s3

t3

Figure 2 Integrality gap example

3 Routing with Well-Separated Destinations

In this section we generalize the results of Cutler and Shiloach [16], by proving the following
theorem.

I Theorem 2. Let H be the (N ×N)-grid, and let M = {(s1, t1), . . . , (sk, tk)} be a set of
k ≥ 4 demand pairs in H, such that: (i) s1, . . . , sk are all distinct, and they appear on the
first row of H; (ii) for all 1 ≤ i 6= j ≤ k, d∞(ti, tj) > 4k + 4; and (iii) for all 1 ≤ i ≤ k,
d∞(ti, V (Γ(H))) > 4k + 4. Then there is an efficient algorithm that routes all demand pairs
inM in graph H.

The rest of this section is devoted to proving Theorem 2. For each destination vertex
tj , we define a sub-grid Bj of H of size ((2k + 3) × (2k + 3)), centered at tj , that is, if
tj = v(i, i′), then Bj is a sub-grid of G spanned by rows Ri−(k+1), . . . , Ri+(k+1) and columns
Ci′−(k+1), . . . , Ci′+(k+1) of H.

We call the resulting sub-grids B1, . . . , Bk boxes. Notice that all boxes are disjoint from
each other, due to the spacing of the destination terminals. We start with a high-level intuitive
description of our algorithm. For each box Bj , we can associate an interval I(Bj) ⊆ (1, N)
with Bj , as follows: If Ci1 , Ci2 are the columns of H containing the first and the last columns
of Bj , respectively, then I(Bj) = (i1, i2). We say that the resulting set I = {I(Bj)}kj=1 of
intervals is aligned, if for all i 6= j, either I(Bi) = I(Bj), or I(Bi)∩ I(Bj) = ∅. For simplicity,
assume first that all intervals in I are aligned, and let {I1, I2, . . . , Ir} be the set of all distinct
intervals in I, ordered in their natural left-to-right order. For each 1 ≤ h ≤ r, let Bh be the
set of all boxes Bj with I(Bj) = Ih, and let B = {Bj | 1 ≤ j ≤ k}. We define a “snake-like”
ordering of the boxes in B as follows. For all 1 ≤ h < h′ ≤ r, the boxes of Bh appear before
all boxes of Bh′ in this ordering. Within each set Bh, if h is odd, then the boxes of Bh are
ordered in the order of their position in H from top to bottom, and otherwise they are
ordered in the order of their position in H from bottom to top. We then define a set P of

J. Chuzhoy and D. Kim 7

k paths, that start from the sources s1, . . . , sk, and visit all boxes in B in this order (see
Figure 3). We will make sure that when the paths of P traverse any box Bj , the path Pj ∈ P
that originates at sj visits the vertex tj . In order to accomplish this, we need the following
lemma.

Figure 3 Traversing the boxes

I Lemma 3. Let B be the ((2k + 3)× (2k + 3)) grid, t = v(k + 2, k + 2) the vertex in the
center of the grid, and 1 ≤ j ≤ k any integer. Let X = {x1, . . . , xk} be any set of k vertices
on the top boundary edge L of B and Y = {y1, . . . , yk} any set of k vertices on the bottom
boundary edge L′ of B, both sets ordered from left to right. Then we can efficiently find k
disjoint paths P ′1, . . . , P ′k in B, such that for 1 ≤ i ≤ k, path P ′i connects xi to yi; all paths
are internally disjoint from V (L ∪ L′); and path P ′j contains t.

Proof. Let U = {u1, . . . , uk} be any set of k vertices on row Rk+2 of B, ordered from left to
right, such that uj = t. Let B′ ⊆ B be the grid spanned by the top k + 2 rows of B, and
B′′ ⊆ B the grid spanned by the bottom k + 2 rows of B. Note that B′ ∩B′′ = Rk+2.

From Observation 1, there is a set P1 of k node-disjoint paths in B′, connecting the
vertices of X to the vertices of U , and there is a set P2 of k node-disjoint paths in B′′,
connecting the vertices of U to the vertices of Y . Moreover, the paths in P1∪P2 are internally
disjoint from V (Rk+2 ∪ L ∪ L′). By concatenating the paths in P1 and P2, we obtain a set
P ′ of k node-disjoint paths in B, connecting the vertices of X to the vertices of Y , such that
the paths in P ′ are internally disjoint from L ∪ L′. The intersection of each path in P ′ with
the row Rk+2 is exactly one vertex. Since graph B is planar, the paths in P ′ cross the row
Rk+2 in the same left-to-right order in which their endpoints appear on L and L′. Therefore,
for 1 ≤ i ≤ k, the ith path connects xi to yi, and the jth path contains the vertex t. J

Since in general the intervals in I may not be aligned, we need to define the ordering
between the boxes, and the set of paths traversing them more carefully. We start by
defining an ordering of the destination vertices {tj}kj=1, which will define an ordering of their
corresponding boxes.

We draw vertical lines in the grid at every column whose index is an integral multiple
of (3k + 2), and let {V1, V2, . . . } denote the sets of vertices of the resulting vertical strips of
width 3k + 2, that is, for 1 ≤ m ≤ dN/(3k + 2)e,

Vm = {v(j, j′) | (m− 1)(3k + 2) < j′ ≤ min {m(3k + 2), N} ; 1 ≤ j ≤ N} .

We assign every terminal tj to the unique set Vm containing tj . We then define a collection
S of vertical strips of H as follows: For each set Vm, such that at least one terminal is
assigned to Vm, we add H[Vm] to S. We assume that the set of strips S = {S1, . . . , Sp} is

8 On Approximating Node-Disjoint Paths in Grids

indexed in their natural left-to-right order. Abusing the notation, we will denote V (Sm) by
Vm, for 1 ≤ m ≤ p.

Consider some vertical strip Sm, and let ti, tj ∈ Vm, for j 6= i. Then the horizontal
distance between ti and tj , | col(ti)− col(tj)| ≤ 3k + 2, and since d∞(ti, tj) > 4k + 4, ti and
tj must be at a vertical distance at least 4k + 4. Therefore, we can order the destination
terminals assigned to the same vertical strip in the increasing or decreasing row index. We
define the ordering of all destination terminals as follows: (1) for every 1 ≤ m < m′ ≤ p,
every terminal ti ∈ Vm precedes every terminal tj ∈ Vm′ ; and (2) for ti, tj ∈ Vm, with
row(tj) > row(ti), if m is odd then ti precedes tj , and if m is even, then tj precedes ti. Let
B = {Bj | 1 ≤ j ≤ k} be the set of boxes corresponding to the destination vertices. The
ordering of the destination vertices now imposes an ordering on B. We re-index the boxes Bj
according to this ordering, and we denote by t(Bj) the unique destination terminal lying in
Bj . We will say that a box Bj belongs to strip Sm iff the corresponding terminal t(Bj) ∈ Vm.
(Note that Bj is not necessarily contained in Sm). The following observation is immediate.

I Observation 4. If box Bj belongs to strip Sm, then at least k + 2 vertices from the top
boundary of Bj, and at least k + 2 vertices from the bottom boundary of Bj belong to Vm.

In order to complete the construction of the set P of paths routing all demand pairs, we
define, for 1 ≤ i ≤ k, a set Pi of k disjoint paths, with the following properties:

P1. Paths in P1 connect {si}ki=1 to some set of k vertices on the top boundary of B1;
P2. For i > 1:

if Bi−1 and Bi belong to the same strip Sm, and m is odd, then paths in Pi connect
k vertices on the bottom row of Bi−1 to k vertices on the top row of Bi;
if Bi−1 and Bi belong to the same strip Sm, and m is even, then paths in Pi connect
k vertices on the top row of Bi−1 to k vertices on the bottom row of Bi;
if Bi−1 belongs to strip Sm and Bi to strip Sm+1, and m is odd, then paths in Pi
connect k vertices on the bottom row of Bi−1 to k vertices on the bottom row of Bi;
if Bi−1 belongs to strip Sm and Bi to strip Sm+1, and m is even, then paths in Pi
connect k vertices on the top row of Bi−1 to k vertices on the top row of Bi; and

P3. All paths in
⋃k
i=1 Pi are disjoint from each other, and each path is internally disjoint

from
⋃
B∈B V (B).

I Theorem 5. There is an efficient algorithm to find the collections P1, . . . ,Pk of paths with
properties (P1)–(P3).

We prove Theorem 5 below, and we first complete the proof of Theorem 2 here. Assume
that we are given the path sets P1, . . . ,Pk with properties (P1)–(P3). For each box Bj ,
let Xj ⊆ V (Bj) be the set of k vertices that serve as endpoints of the paths of Pj , and let
Yj ⊆ V (Bj) be the set of k vertices that serve as endpoints of the paths in Pj+1. (For j = k,
we choose the set Yk of k vertices on the top or the bottom boundary of Bk (opposing the
boundary edge where the vertices of Xk lie) arbitrarily). We construct the set P of paths
gradually, by starting with P = P1, and performing k iteration. We assume that at the
beginning of iteration i, set P contains k disjoint paths, connecting the k source vertices
to the vertices of Xi. This is clearly true at the beginning of the first iteration. The ith
iteration is executed as follows. Assume that t(Bi) = tr, and let u ∈ Xi be the vertex where
the path of P originating at sr terminates. From Lemma 3, we can find a set Qi of paths

J. Chuzhoy and D. Kim 9

Sm

Bj−1

Bj

Zt
j

Zb
j

Zbb
j

Ztt
j

k + 2

k + 2

k + 2

k + 1

k

k + 1

Figure 4 Graphs Zb
j , Zt

j , Zbb
j and Ztt

j

inside Bi, connecting the vertices of Xi to the vertices of Yi, that are internally disjoint from
the top and the bottom boundary edges of Bi, such that the path originating at u contains
the vertex tr. We then concatenate the paths in P with the paths in Qi, and, if i < k, with
the paths in Pi+1, to obtain the new set P of paths, and continue to the next iteration. After
k iterations, we obtain a collection of k node-disjoint paths that traverse all boxes Bj , such
that for each 1 ≤ i ≤ k, the path originating from si contains the vertex ti. It now remains
to prove Theorem 5.

Proof Theorem 5: For each box Bj , for 1 ≤ j ≤ k, we define four sub-graphs of H,
Ztj , Z

b
j , Z

tt
j , Zbbj , that will be used in order to route the sets Pj , Pj+1 of paths.

Consider some box Bj , and assume that it belongs to strip Sm. Let C`, Cr be the columns
of H that serve as the left and the right boundaries of Sm, respectively. Let Rt, Rb be the
rows of H containing the top and the bottom row of Bj , respectively. Intuitively, Ztj is the
sub-grid of strip Sm, containing the k+ 1 rows immediately above row Rt, in addition to the
row Rt, and Zbj is defined similarly below Bj . Formally, Ztj is the sub-grid of H spanned by
columns C`, . . . , Cr, and rows Rt−k−1, . . . , Rt, so Ztj contains k+ 2 rows and 3k+ 2 columns.
Similarly, Zbj is the sub-grid of H spanned by columns C`, . . . , Cr, and rows Rb, . . . , Rb+k+1,
so Zbj contains k + 2 rows and 3k + 2 columns (see Figure 4).

We now turn to define the grids Zttj and Zbbj . Graph Zttj is defined as follows. Assume
w.l.o.g. that m is odd (recall that Sm is the strip containing t(Bj)). If Bj is not the topmost
box that belongs to Sm, then let Ra be the row of H containing the bottom row of Zbj−1;
otherwise let Ra = R2k+1 if j > 1 and Ra = Rk+1 if j = 1. Let Ra′ be the row of H
containing the top row of Ztj . We would like Zttj to be the grid containing the segments of
the middle k columns of Sm, between rows Ra and Ra′ . Formally, we let Zttj be the sub-grid
of H spanned by rows Ra, . . . , Ra′ , and columns C`+k+2, . . . , C`+2k+1.

We define the graph Zbbj similarly. If Bj is not the bottommost box of Sm, then let Rc
be the row of H containing the top row of Ztj+1, and otherwise let Rc = RN−k−1. Let Rc′
be the row of H containing the bottom row of Zbj . Graph Zbbj is the sub-grid of H spanned
by rows Rc′ , . . . , Rc, and columns C`+k+2, . . . , C`+2k+1.

Notice that if Bj is not the topmost box of Sm, then Zttj = Zbbj−1, and if Bj is not the

10 On Approximating Node-Disjoint Paths in Grids

bottommost box of Bm, then Zbbj = Zttj+1. We need the following observation.

I Observation 6. For all 1 ≤ q ≤ k, Bq ∩ Zttj , Bq ∩ Zbbj = ∅. Moreover, if q 6= j, then
additionally Bq ∩ Zbj , Bq ∩ Ztj = ∅.

Proof. We prove for Ztj and Zttj . The proofs for Zbj and Zbbj are symmetric.
Consider some box Bq with q 6= j, and assume for contradiction that Bq ∩ Ztj 6= ∅. Then

the vertical distance between t(Bq) and t(Bj) is less than 4k + 4, and so the horizontal
distance between them must be greater than 4k + 4. However, t(Bj) lies in the strip Sm,
and, since Bq intersects Ztj , the horizontal distance between t(Bq) and the left or the right
column of Sm is at most k + 1, and so the total horizontal distance between t(Bq) and t(Bj)
is at most 4k + 4, a contradiction.

Consider now some box Bq, for 1 ≤ q ≤ k, and assume for contradiction that Bq∩Zttj 6= ∅.
If Bj is the topmost box in Sm, then Bq cannot belong to Sm. If Bj is not the topmost box
of Sm, then Bq cannot belong to Sm due to the definition of Zttj . Therefore, t(Bq) lies in
either Sm+1 or Sm−1. But since Bq is a box of width 2k + 3, with t(Bq) lying in (k + 2)th
column of Bq, it is impossible for Bq to intersect Zttj . J

We are now ready to define the sets Pi of paths. In order to do so, we define a collection
{H1, . . . ,Hk} of disjoint sub-graphs of H, and each such sub-graph Hi will be used to route
the set Pi of paths. We start by letting H1 be the union of three graphs, Zt1, Ztt1 , and the
sub-grid of H spanned by the top k + 1 rows of H. We denote this latter graph by H ′1.
Recall that the terminal t(B1) lies in strip S1. Let A1 be the set of k vertices on the top
boundary of Ztt1 , A2 the set of k vertices on the bottom row of Ztt1 , and let A3 be any set of
k vertices on the top row of B1, that lie in S1 (from Observation 4, such a set exists). From
Observation 1, we can construct three sets of paths: set P ′1 in H ′1, connecting each source
vertex to some vertex of A1; set P ′′1 in Ztt1 connecting the vertices of A1 to the vertices of A2
(the paths in P ′′1 are just the columns of Ztt1), and set P ′′′1 in Zt1, connecting the vertices of
A2 to the vertices of A3. We let P1 be obtained by concatenating the paths in P ′1,P ′′1 , and
P ′′′1 .

Consider now some index 1 < j ≤ k, and assume that Bj−1 belongs to some strip Sm.
We assume w.l.o.g. that m is odd (the case where m is even is dealt with similarly), and we
show how to construct the set Pj of paths. We consider two cases. The first case is when
Bj also lies in Sm. We then let Hj be the union of Zbj−1, Z

bb
j−1 and Ztj . The set Pj of paths

will be contained in Hj , and it is defined as follows. Let A1 be any set of k vertices on the
bottom row of Bj−1, that lie in Vm (this set exists due to Observation 4); let A2 and A3
be the vertices of the top and the bottom rows of Zbbj−1, respectively, and let A4 be any set
of k vertices on the top row of Bj that lie in Vm. As before, using Observation 1, we can
construct three sets of paths: set P ′j in Zbj−1, connecting each vertex of A1 to some vertex of
A2; set P ′′j in Zbbj−1 connecting the vertices of A2 to the vertices of A3 (the paths in P ′′j are
just the columns of Zbbj−1), and set P ′′′j in Ztj , connecting the vertices of A3 to the vertices of
A4. We let Pj be obtained by concatenating the paths in P ′j ,P ′j , and P ′′′j .

Finally, assume that Bj belongs to Sm+1. Let C` and Cr be the columns of H that serve
as the left boundary of Sm and the right boundary of Sm+1, respectively. Let H ′j be the
sub-grid of H, spanned by columns C`, . . . , Cr, and rows RN−k−1, . . . , RN . We let Hj be
the union of Zbj−1, Z

bb
j−1, H

′
j , Z

b
j and Zbbj . Using methods similar to those described above, it

is easy to find a set Pj of k disjoint paths in Hj , connecting k vertices on the bottom row of
Bj−1 to k vertices on the bottom row of Bj .

The case where m is even is dealt with similarly. The only difference is that in the
case where Bj belongs to Sm+1, we use rows Rk+2, . . . , R2k+1 to define H ′j , instead of rows

J. Chuzhoy and D. Kim 11

RN−k+1, . . . , RN , to avoid collision with the graph H ′1.
From the construction of the graphs Hi, it is easy to see that all such graphs are mutually

disjoint, and therefore we obtain the desired sets P1, . . . ,Pk of paths with properties (P1)–
(P3). J

4 An Õ(n1/4)-Approximation Algorithm

We assume that we are given the (N × N) grid graph G = (V,E), so n = |V | = N2, and
a collection M = {(si, ti)}ki=1 of demand pairs. We say that a demand pair (si, ti) is bad
if both d∞(si,Γ(G)), d∞(ti,Γ(G)) ≤ 4

√
N + 4, and we say that it is good otherwise. Let

M′,M′′ ⊆ M denote the sets of the good and the bad demand pairs in M, respectively.
We find an approximate solution to each of the two sub-problems, defined byM′ andM′′,
separately, and take the better of the two solutions. The following two subsections describe
these two algorithms.

4.1 Routing the Good Pairs

Our first algorithm provides an O(n1/4 logn)-approximation for the special case when all
demand pairs are good. We start with a high-level overview of the algorithm. The algorithm
is based on LP-rounding of (LP-flow), and so it proves that the integrality gap of (LP-flow)
for this special case is O(n1/4 logn). The first step of the algorithm is to reduce the problem
to the following special case: We are given a grid A of size (Θ(m)×Θ(m)), where m ≤ N/8
is some integer, and two disjoint sub-grids Q,Q′ of A, of size (m×m) each, such that the
minimum L∞-distance between a vertex in Q and a vertex in Q′ is Ω(m). We are also given
a setM(Q,Q′) of demand pairs, where for each pair (s, t) ∈M(Q,Q′), s ∈ Q, t ∈ Q′, and
d∞(s,Γ(Q)) > 4

√
N + 4 (where N is the size of the side of our original grid G). We refer

to the resulting routing problem as 2-square routing. We show that an α-approximation
algorithm to the 2-square routing problem immediately implies an O(α logn)-approximation
to the original problem. We note that a similar reduction to the 2-square routing problem has
been used in the past, e.g. in [1]. It is now enough to design an O(

√
m) = O(

√
N) = O(n1/4)-

approximation algorithm for the 2-square routing problem. Let OPT′ be the optimal solution
to this problem, and letM∗ ⊆M(Q,Q′) be the subset of the demand pairs routed in OPT′.
Notice that |OPT′| ≤ 4m, since each path in the optimal solution must contain at least one
vertex of Γ(Q). We define a partition X of Q into sub-squares of size (Θ(

√
m)×Θ(

√
m)),

and show an efficient algorithm to find a subset M̃ ⊆M(Q,Q′) of Ω(|OPT′|/
√
m) demand

pairs, with |M̃| ≤
√
m, so that the following holds. Let S′ and T ′ denote the sets of the

source and the destination vertices, participating in the pairs in M̃, respectively. Then (i) for
each square X ∈ X , |V (X) ∩ S′| ≤ 1; (ii) all vertices in T ′ can be simultaneously routed to
Γ(Q′) \ Γ(G) on node-disjoint paths; and (iii) every vertex of A participates in at most one
demand pair. Set M̃ is found by setting up an appropriate instance of the maximum flow
problem. It is then easy to route all vertices in T ′ to Γ(Q) on paths that are node-disjoint
and internally disjoint from Q. We then use Theorem 2 to complete the routing inside Q.
We now turn to describe the algorithm more formally.

Let (f, x) be the optimal solution to the linear program (LP-flow) on instance (G,M′),
and let OPTLP be its value. We show an algorithm that routes Ω(OPTLP/(n1/4 · logn))
demand pairs. The algorithm consists of two steps. In the first step, we reduce the problem
to routing between two square sub-grids of G. We note that a similar reduction has been used

12 On Approximating Node-Disjoint Paths in Grids

in prior work, e. g. by Aggarwal et al. [1]. In the second step, we show an approximation
algorithm for the resulting sub-problem.

Reduction to the 2-Square Problem.

In this step, we reduce the problem of routing on G with a general setM′ of good demand
pairs, to a problem where we are given two disjoint sub-grids (or squares) Q1, Q2 of G, and
every demand pair (sj , tj) has sj ∈ Q1 and tj ∈ Q2, or vice versa.

We start by partitioning the setM′ of the demand pairs into dlogNe subsets,M1, . . . ,MdlogNe,
where

Mh =
{

(sj , tj) ∈M′ | 2h−1 ≤ d∞(sj , tj) < 2h
}
.

For each 1 ≤ h ≤ dlogNe, let Fh =
∑

(sj ,tj)∈Mh
xj , where xj is the amount of flow

sent from sj to tj in the solution to (LP-flow). We let h∗ be the index maximizing Fh∗ , so
Fh∗ ≥ OPTLP/ dlogNe. From now on, we focus on routing the pairs inMh∗ , and we will
route Ω(Fh∗/n1/4) such pairs.

Assume first that h∗ ≤ 6. In this case, we partition the grid into sub-grids of size
at most (256 × 256) with a random offset, as follows. Select an integer 0 ≤ z < 256
uniformly at random, and use the set C = {Cz+256i}b(N−z)/256c

i=0 of columns and the set
R = {Rz+256i}b(N−z)/256c

i=0 of rows to partition the grid into sub-grids. Let Q be the resulting
collection of sub-grids. We define a new LP-solution as follows: start with the original
LP-solution; for every demand pair (sj , tj) 6∈ Mh∗ , set xj = 0, and f(P) = 0 for all paths
P ∈ Pj . For every demand pair (sj , tj) ∈Mh∗ , if sj or tj lie on a row of R or a column of
C, or if they belong to different sub-grids in Q, set xj = 0 and f(P) = 0 for all paths P ∈ Pj .
Since for each pair (sj , tj) ∈Mh∗ , d∞(sj , tj) < 64, it is easy to see that the expected value
of the resulting LP-solution is W = Ω(Fh∗) = Ω(OPTLP/ logN) = Ω(OPTLP/ logn). By
trying all possible values 0 ≤ z < 256, we can find a partition Q of G, and a corresponding
LP-solution, whose value is at least W . Notice that for each sub-grid Q ∈ Q, the number of
vertices of Q is bounded by 2562, and so the total amount of flow routed between the demand
pairs contained in Q is bounded by 2562. For each sub-grid Q ∈ Q, if there is any demand
pair (sj , tj) ∈Mh∗ with sj , tj ∈ Q, and a non-zero value xj in the current LP-solution, we
select any such pair and route it via any path P contained in Q, which is disjoint from
the boundary of Q. It is easy to see that the total number of the demand pairs routed is
Ω(W) = Ω(OPTLP/ logn). From now on, we assume that h∗ > 6.

For convenience, we denote h∗ by h from now on. Let m = 2h/16. We partition the
grid into a collection Q = {Qp,q | 1 ≤ p ≤ bN/mc , 1 ≤ q ≤ bN/mc} of disjoint sub-grids, or
squares, as follows. First, partition G into bN/mc disjoint vertical strips V1, . . . , VbN/mc,
each containing m consecutive columns of G, except for the last strip, that may contain
between m and 2m− 1 columns. Next, partition each vertical strip Vp into bN/mc disjoint
sub-grids, where each sub-grid contains m consecutive rows of Vp, except possibly for the
last sub-grid, that may contain between m and 2m− 1 rows. The width and the hight of
each such sub-grid is then between m and 2m− 1, where m ≤ N/16. Notice that for each
such grid Qp,q ∈ Q, if L is the left boundary edge of Qp,q, and L′ is the left boundary edge
of G, then either L ⊆ L′, or L and L′ are separated by at least m− 1 columns. The same
holds for the other three boundary edges. We need the following observation.

I Observation 7. Let (sj , tj) ∈ Mh be a demand pair, and assume that sj ∈ Qp,q and
tj ∈ Qp′,q′ . Then:

5 ≤ |p− p′|+ |q − q′| ≤ 34.

J. Chuzhoy and D. Kim 13

Proof. We first show that |p− p′|+ |q − q′| ≥ 5. Indeed, assume otherwise. Then both the
horizontal and the vertical distances between sj and tj are less than 8m = 8 · 2h/16 = 2h−1,
while d∞(sj , tj) ≥ 2h−1, a contradiction.

Assume now for contradiction that |p− p′|+ |q − q′| > 34. Then d∞(sj , tj) > 16m = 2h,
contradicting the fact that d∞(sj , tj) < 2h. J

We say that a pair (Qp,q, Qp′,q′) of squares in Q is interesting iff 5 ≤ |p−p′|+ |q−q′| ≤ 34.
Let Z be the set of all interesting pairs of squares in Q. We associate an NDP instance with
each such pair Z = (Qp,q, Qp′,q′), as follows. LetM(Z) ⊆Mh be the set of all demand pairs
(sj , tj) ∈ Mh where sj ∈ Qp,q and tj ∈ Qp′,q′ , or vice versa. We also define a box A(Z),
that contains Qp,q ∪Qp′,q′ , and adds a margin of m around them, if possible. More precisely,
let ` be the smallest integer, such that R` ∩ (Qp,q ∪ Qp′,q′) 6= ∅, and let `′ be the largest
integer, such that R`′ ∩ (Qp,q ∪Qp′,q′) 6= ∅. Similarly, let b and b′ be the smallest and the
largest integers, respectively, such that Cb ∩ (Qp,q ∪ Qp′,q′), Cb′ ∩ (Qp,q ∪ Qp′,q′) 6= ∅. We
then let A(Z) be the sub-grid of G spanned by rows Rmax{1,`−m}, . . . , Rmin{`′+m,N}, and by
columns Cmax{1,b−m}, . . . , Cmin{b′+m,N}. For every interesting pair of squares Z ∈ Z, we now
define an instance of the NDP problem on graph A(Z), with the setM(Z) of demand pairs.
Let F (Z) be the total amount of flow routed between the demand pairs in M(Z) in the
current LP-solution Fh to our original problem (notice that in our LP-solution, the fractional
routing of the demand pairs inM(Z) is not necessarily contained in A(Z)). From the above
discussion,

∑
Z∈Z F (Z) = Ω(OPTLP/ logN). We will show an algorithm that routes, for

each Z ∈ Z, Ω(F (Z)/n1/4) demand pairs inM(Z) integrally, in graph A(Z). However, it is
possible that for two pairs Z,Z ′ ∈ Z, A(Z) ∩A(Z ′) 6= ∅, and the two routings may interfere
with each other. We resolve this problem in the following step.

From Observation 7, it is easy to see that for each interesting pair of squares Z ∈ Z, the
number of pairs Z ′ ∈ Z with A(Z)∩A(Z ′) 6= ∅ is bounded by some constant c. We construct
a graph H, whose vertex set is V (H) = {vZ | Z ∈ Z}, and there is an edge (vZ , vZ′) iff
A(Z) ∩A(Z ′) 6= ∅. As observed above, the maximum vertex degree in this graph is bounded
by some constant c, and so we can color H with c+ 1 colors. Let Ui ⊆ V (H) be the set of
vertices of color i. We select a color class i∗, maximizing the value F i∗ =

∑
vZ∈Ui∗

F (Z).
Clearly, F i∗ = Ω(OPTLP / logN). For every pair vZ , vZ′ of vertices in Ui∗ , we now have
A(Z) ∩ A(Z ′) = ∅. In order to obtain an O(n1/4 logn)-approximation algorithm for the
special case where all demand pairs are good, it is now enough to prove the following theorem.

I Theorem 8. There is an efficient algorithm, that, for every interesting pair Z ∈ Z of
squares, routes Ω(F (Z)/n1/4) demand pairs ofM(Z) inside the grid A(Z).

The Rounding Algorithm.

From now on we focus on proving Theorem 8. We assume that we are given an interesting
pair Z = (Q,Q′) of squares, where the width and the height of each square is bounded by
2m − 1. We are also given a collection M(Z) of demand pairs, that, for convenience, we
denote byM from now on. For each demand pair (sj , tj) ∈M, we can assume without loss
of generality that sj ∈ Q and tj ∈ Q′. Recall that we have a fractional solution (f, x) that
routes F ∗ = F (Z) flow units between the demand pairs inM, in the grid G. Additionally,
we are given a square A = A(Z), containing Q and Q′, as defined above. Recall that for any
pair v ∈ Q, v′ ∈ Q′ of vertices, d∞(v, v′) ≥ 5m.

From our definition of good demand pairs, it is possible that for a pair (sj , tj) ∈ M,
d∞(sj ,Γ(G)) ≤ 4

√
N + 4, or d∞(tj ,Γ(G)) ≤ 4

√
N + 4, but not both. We say that (sj , tj)

is a type-1 pair if d∞(sj ,Γ(G)) ≤ 4
√
N + 4, and we say that it is a type-2 demand pair

14 On Approximating Node-Disjoint Paths in Grids

otherwise. Let F1 be the total flow in the LP-solution between the type-1 demand pairs, and
F2 the total flow between type-2 demand pairs. We assume without loss of generality that
F1 ≤ F2, so F2 ≥ F ∗/2. From now on we focus on routing type-2 demand pairs. Abusing
the notation, we useM to denote the set of all type-2 demand pairs.

We next define a sub-grid Q+ of A, obtained by adding a margin of m around the
grid Q, if possible. Specifically, let R`, R`′ be the rows of G, containing the top and the
bottom rows of Q, respectively. Similarly, let Cb, Cb′ be the columns of G, containing the
left and the right columns of Q, respectively. We let Q+ be the sub-grid of G, spanned
by rows Rmax{1,`−m}, . . . , Rmin{N,`′+m} and columns Cmax{1,b−m}, . . . , Cmin{N,b′+m}. From
our definition of A, Q+ ⊆ A. Moreover, since m ≤ N , and since we have assumed that all
demand pairs are type-2 good pairs, all source vertices corresponding to the demand pairs in
M are within L∞ distance at least 4

√
m+ 5 from the boundary of Q+. We start with the

following simple observation.

I Observation 9. Let L′ be a boundary edge of Q′, such that L′ 6⊆ Γ(G), and let Y ⊆ V (L′)
be any set of its vertices. Then there is a boundary edge L of Q+, and a set P of |Y | disjoint
paths in graph A, connecting every vertex of Y to a distinct vertex of L, such that the paths
in P are internally disjoint from Q+ ∪Q′.

Proof. If the top boundary edge L̃ of Q+ is separated by at least m rows from the top
boundary edge of G, then set L = L̃; otherwise, let L be the bottom boundary edge of Q+

- notice that it must be separated by at least m rows from the bottom boundary edge of
G. Let X ⊆ V (L) be any set of |Y | vertices, and let A′ be the graph obtained from A, by
deleting all vertices in Q+ \X and Q′ \ Y from it. It is enough to show that there is a set
P of |X| = |Y | disjoint paths in A′, connecting the vertices of X to the vertices of Y . Let
z = |X|. From Menger’s theorem, if such a set of paths does not exist, then there is a set
J of at most z − 1 vertices, such that in A′ \ J there is no path from a vertex of X \ J to
a vertex of Y \ J . But from our definition of Q+, Q′, and A, it is clear that no such set of
vertices exists. J

Let r be the smallest integral power of 2 greater than 4
√
m + 4, so r = Θ(

√
m). Our

next step is to partition Q into a collection X of disjoint sub-grids of size (r × r) each.
For 1 ≤ p, q ≤ m/r, we let Xp,q be the sub-grid of Q, spanned by rows R(p−1)r+1, . . . , Rpr
and columns C(q−1)r+1, . . . , Cqr of Q. We then let X = {Xp,q | 1 ≤ p, q ≤ m/r}. The next
theorem is key to finding the final routing.

I Theorem 10. There is a subsetM1 ⊆M of Ω(F ∗/n1/4) demand pairs, such that every
vertex of Q∪Q′ participates in at most one demand pair. Moreover, if S1 and T1 denote the
sets of all source and all destination vertices of the pairs inM1, respectively, then:

for every square Xp,q ∈ X , at most one vertex of Xp,q belongs to S1; and
there is a boundary edge L′ of Q′, with L′ 6⊆ Γ(G), and a set P1 of node-disjoint paths
in graph Q′, connecting every vertex of T1 to a distinct vertex of L′.

Proof. Let U be the union of the boundary edges L′ of Q′, with L′ 6⊆ Γ(G). We build a
flow network N , starting with the graph Q′. We add a source vertex a, that connects to
every vertex in U with a directed edge. Let S ⊆ Q be the set of all vertices participating
in the demand pairs inM as sources. Observe that each vertex s ∈ S may participate in
several demand pairs inM. We add every vertex s ∈ S to graph N , and for each demand
pair (s, t) ∈M, we connect t to s with a directed edge. Next, for each square Xp,q ∈ X, we
add a vertex up,q, and we connect every vertex s ∈ S ∩Xp,q to up,q with a directed edge.

J. Chuzhoy and D. Kim 15

Finally, we add a destination vertex b, and connect every vertex up,q for 1 ≤ p, q ≤ m/r to b
with a directed edge. We set all vertex-capacities (except for those of a and b) to 1.

We claim that there is a valid flow of value Ω(F ∗/
√
m) from a to b in N . Indeed, consider

the multicommodity flow between the demand pairs inM, given by our current LP-solution.
For each (sj , tj)-pair in M, we send xj/4r flow units on the edge (tj , sj) in N . For each
flow-path P ∈ Pj , notice that P must contain some vertex of U . Let v be the last such
vertex on P (where we view P as directed from sj to tj), and let P ′ be the sub-path of P
from v to tj . We send f(P)/4r flow units on every edge in P ′. For every vertex v ∈ U , we
set the flow on the edge (a, v) to be the total flow leaving the vertex v; for each vertex s ∈ S,
with s ∈ Xp,q, we set the flow on the edge (s, up,q) to be the total amount of flow entering
s. The flow on edge (up,q, b) is then set to the total amount of flow entering up,q. Notice
that for each square Xp,q, every flow-path originating at a vertex of S ∩Xp,q must cross the
boundary Γ(Xp,q) of Xp,q, that contains at most 4r vertices. Therefore, the total amount of
flow in the original LP-solution leaving the vertices in S ∩Xp,q is at most 4r. It is now easy
to see that we have defined a valid a-b flow of value F̃ = Ω(F ∗/

√
m).

From the integrality of flow, there is an integral flow of the same value in N . Let P be
the set of paths carrying one flow unit in the resulting flow. Then there is a boundary edge
L′ of Q′, such that L′ 6⊆ Γ(G), with at least F̃ /4 of the paths in P containing a vertex of L′.
Let P ′ ⊆ P be this set of paths. We are now ready to define the final setM1 of the demand
pairs, and the corresponding set P1 of paths. Consider some path P ∈ P ′, and let (t, s) be
the unique edge with (s, t) ∈ M on this path. We then add (s, t) to M1. Let P ′ be the
sub-path of P , starting from the last vertex on P that belongs to L′, to vertex t. We add P ′
to P1. This finishes the definition of the subsetM1 of demand pairs, and the corresponding
set P1 of paths. J

If |M1| >
√
m, then we discard pairs fromM1, until |M1| ≤

√
m holds, and we update

the sets S1, T1, and P1 accordingly.
For w,w′ ∈ {0, 1}, let Sw,w′ be a subset containing all vertices s ∈ S1 lying in the

squares Xp,q, where p = w mod 2 and q = w′ mod 2. Then there is some choice of
w,w′ ∈ {0, 1}, so that |Sw,w′ | ≥ |S1|/4. We let S2 = Sw,w′ for this choice of w,w′, and we
defineM2 = {(s, t) ∈M1 | s ∈ S2}, and T2 as the set of all destination vertices for the pairs
inM2. Let P2 ⊆ P1 be the set of paths originating from the vertices of T2. Let Y be the
set of endpoints of the paths in P2 that lie on the boundary edge L′ of Q′. Finally, from
Observation 9, there is a boundary edge L of Q+, a set Y ′ of |Y | vertices of L, and a set
P ′2 of disjoint paths in A, connecting every vertex in Y to a distinct vertex of Y ′, so that
the paths in P ′2 are internally disjoint from Q+ ∪Q′. By concatenating the paths in P2 and
P ′2, we obtain a new set P∗ of paths, connecting every vertex of T2 to a distinct vertex of
Y ′. Denote M2 = {(sj , tj)}|M2|

j=1 , and let uj ∈ Y ′ be the vertex where the path Pj ∈ P∗,
originating at vertex tj , terminates. Notice that all vertices in S2 are now at the L∞-distance
at least r > 4

√
m+ 4 from each other, and at distance at least 4

√
m+ 5 from the boundaries

of Q+, and |M1| ≤
√
m. From Theorem 2, we can efficiently find a set Y of disjoint paths

in graph Q+, connecting every vertex sj ∈ S2 to the corresponding vertex uj ∈ Y ′. By
concatenating the paths in P∗ and Y, we obtain a set of paths routing all pairs inM2.

Notice that from the above discussion, |M2| = min {Ω(
√
m),Ω(F ∗/

√
m)}. It is easy to

see that F ∗ ≤ 4m, since every flow-path routing a pair inM must cross the boundary of
Q′. Therefore, |M2| = Ω(F ∗/

√
m). Since m ≤ N =

√
n, our algorithm routes Ω(F ∗/n1/4)

demand pairs.

16 On Approximating Node-Disjoint Paths in Grids

4.2 Routing the Bad Pairs
The goal of this section is to prove the following theorem.

I Theorem 11. Let (G,M) be an instance of the NDP problem, where G is an (N × N)
grid, and M = {(s1, t1), . . . , (sk, tk)}. Assume further that for each demand pair (sj , tj),
both d∞(sj ,Γ(G)), d∞(tj ,Γ(G)) < d∗, for some parameter 1 ≤ d∗ ≤ N/4. Then there is an
efficient algorithm that finds an O(d∗)-approximate solution to the NDP instance (G,M).

Notice that by setting d∗ = 4
√
N + 5, so that d∗ = Θ(n1/4), we obtain an O(n1/4)-

approximate solution for NDP instances on grid graphs, where all demand pairs are bad.
The rest of this section is dedicated to proving Theorem 11. Let T be the set of all

vertices participating in the bad demand pairs. We call the vertices in T terminals. Let
L1, L2, L3, L4 be the four boundary edges of the grid G. Notice that a terminal t ∈ T may be
within distance d∗ from up to two boundary edges. For each terminal t ∈ T , we let L(t) be
any boundary edge of G, such that d∞(t, V (L(t))) < d∗. We now partition all bad demand
pairs into 16 subsets: for 1 ≤ p, q ≤ 4, setMp,q contains all pairs (sj , tj), where L(sj) = Lp
and L(tj) = Lq. Let OPT be the optimal solution to the NDP instance. For every possible
choice of 1 ≤ p, q ≤ 4, let OPTp,q be the optimal solution restricted to the pairs in Mp,q.
Clearly, there is a choice of p and q, such that at least |OPT|/16 of the demand pairs routed
in OPT belong toMp,q, and so |OPTp,q| ≥ OPT/16. For each choice of values 1 ≤ p, q ≤ 4,
we show an algorithm that routes Ω(|OPTp,q|/d∗) demand pairs inMp,q. We then take the
best of these solutions, thus obtaining an O(d∗)-approximation algorithm.

Fix some 1 ≤ p, q ≤ 4. We consider three cases.
The first case happens when Lp and Lq are two distinct opposing boundary edges of G.

We assume without loss of generality that Lp is the top, and Lq is the bottom boundary
of G. We say that a subset M′ ⊆ Mp,q of demand pairs is a monotone matching, if the
following holds. Let S′ be the set of all source vertices, and T ′ the set of all destination
vertices, participating in the pairs inM′. Then:

All vertices of S′ lie in distinct columns of G;
All vertices of T ′ lie in distinct columns of G;
Every vertex of S′ ∪ T ′ participates in exactly one demand pair; and
For any two distinct pairs (si, ti), (sj , tj) ∈M′, col(si) < col(sj) iff col(ti) < col(tj).

The following observation is immediate.

I Observation 12. Let M′ ⊆ Mp,q be any monotone matching with |M′| ≤ N/2. Then
there is an efficient algorithm to route all pairs inM′ in graph G.

Our algorithm then simply computes the largest monotone matchingM′ ⊆Mp,q, using
standard dynamic programming: We maintain a dynamic programming table Π, that
contains, for all 0 ≤ x, y ≤ N , an entry Π(x, y), whose value is the size of the largest
monotone matchingM(x, y) ⊆Mp,q, such that every source vertex s participating in pairs
in M(x, y) has 1 ≤ col(s) ≤ x, and every destination vertex t participating in pairs in
M(x, y) has 1 ≤ col(t) ≤ y. We fill the entries of the table from smaller to larger values of
x+ y, initializing Π(x, 0) = 0 and Π(0, y) = 0 for all x and y. Entry Π(x, y) is computed as
follows. If there is a pair (s, t) ∈ Mp,q, with col(s) = x and col(t) = y, then we let Π(x, y)
be the maximum of Π(x− 1, y − 1) + 1, Π(x− 1, y), and Π(x, y − 1). Otherwise, Π(x, y) is
the maximum of Π(x− 1, y), and Π(x, y − 1). The size of the largest monotone matching
M′ ⊆ Mp,q is then stored in Π(N,N), and we can use standard techniques to compute
the matching itself. Finally, we show that there is a large enough monotone matching
M′ ⊆Mp,q.

J. Chuzhoy and D. Kim 17

I Lemma 13. There is a monotone matchingM′ ⊆Mp,q of cardinality Ω(OPTp,q/d∗).

Proof. For every source vertex s of a demand pair inMp,q, let P (s) denote the segment of
the column in which s lies, from the first row of G to s itself. Similarly, for each destination
vertex t of a demand pair inMp,q, let P (t) denote the segment of the column in which t lies,
from t to the last row of G.

Consider the solution OPTp,q, and letM∗ ⊆Mp,q be the set of the demand pairs routed
in it. For each pair (si, ti) ∈M∗, let Pi ∈ OPTp,q be the path routing this demand pair in
the solution. We say that two demand pairs (si, ti) and (sj , tj) in M∗ have a conflict iff
either Pi contains a vertex of P (sj) ∪ P (tj), or Pj contains a vertex of P (si) ∪ P (ti).

Let H be a directed graph, that contains a vertex vi for every pair (si, ti) ∈M∗, and a
directed edge (vi, vj) iff path Pi intersects P (sj) or P (tj). Notice that the length of every
path P (sj) or P (tj) is bounded by d∗, and so every vertex of H has in-degree bounded by
2d∗. Therefore, any vertex-induced sub-graph H ′ of H with z vertices has at most 2d∗z edges,
and contains at least one vertex whose degree (including the incoming and the outgoing
edges) is at most 4d∗.

We now construct the set M′ of demand pairs as follows. Start with M′ = ∅. While
H is non-empty, let vi be any vertex of degree at most 4d∗. Delete vi and all its neighbors
from H, and add the pair (si, ti) toM′. When this procedure terminates, it is easy to see
that M′ contains at least |OPTp,q|/(4d∗ + 1) = Ω(|OPTp,q|/d∗) demand pairs. Moreover,
if (si, ti) and (sj , tj) are distinct pairs inM′, then there is no conflict between (si, ti) and
(sj , tj). In particular, this means that col(si) 6= col(sj) and col(ti) 6= col(tj). Moreover, if
we assume that col(si) < col(sj), then col(ti) < col(tj) must hold: this is since the union of
Pi, P (si) and P (ti) partitions the face defined by Γ(G) into a number of sub-faces, and both
sj and tj must be contained in a single sub-face, as the path Pj cannot intersect the paths
Pi, P (si) and P (ti). J

This concludes the analysis of the algorithm for the case where Lp and Lq are two distinct
opposing boundary edges of G. The case where Lp and Lq are two adjacent boundary edges
of G is dealt with very similarly. Finally, we consider the case where Lp = Lq. Assume
without loss of generality that Lp is the bottom boundary edge of the grid. We say that a
subsetM′ ⊆Mp,q is a nested matching, if the following holds. Let S′ be the set of all source
vertices, and T ′ the set of all destination vertices, participating in the pairs inM′. Then:

All vertices of S′ lie in distinct columns of G;
All vertices of T ′ lie in distinct columns of G;
Every vertex of S′ ∪ T ′ participates in exactly one demand pair; and
For any two distinct pairs (si, ti), (sj , tj) ∈M′, with col(si) lying to the left of col(sj),
either both col(si), col(ti) lie to the left of both col(sj), col(tj), or both col(sj), col(tj)
lie between col(si) and col(ti), or both col(si), col(ti) lie between col(tj) and col(sj).

It is immediate to see that any nested matching M′ ⊆ Mp,q, with |M′| ≤ N/2 can
be routed efficiently in G. As before, we can find a largest-cardinality nested matching
M′ ⊆ Mp,q using standard dynamic programming techniques. The following lemma will
then finish the proof.

I Lemma 14. There is a nested matchingM′ ⊆Mp,q of cardinality Ω(OPTp,q/d∗).

Proof. We construct the paths P (s), P (t), the graph H ′, and the matchingM′ corresponding
to an independent set in H ′ exactly as in the proof of Lemma 13. As before, |M′| =
Ω(OPTp,q/d∗). Moreover, if (si, ti) and (sj , tj) are distinct pairs in M′, then there is

18 On Approximating Node-Disjoint Paths in Grids

no conflict between (si, ti) and (sj , tj). As before, this means that col(si) 6= col(sj) and
col(ti) 6= col(tj). Assume now that col(si) lies to the left of col(sj). Then the union of
Pi, P (si) and P (ti) partitions the face defined by Γ(G) into a number of sub-faces, and both
sj and tj must be contained in a single sub-face, as before. In this case, this means that
either both col(si), col(ti) lie to the left of both col(sj), col(tj), or both col(sj), col(tj) lie
between col(si) and col(ti), or both col(si), col(ti) lie between col(tj) and col(sj). J

4.3 Putting Everything Together
Our algorithm for an input NDP instance (G,M), where G is an (N × N) grid, applies
the algorithm from Section 4.1 to the setM′ of the good demand pairs, and the algorithm
from Section 4.2 to the setM′′ of the bad demand pairs, and returns the better of the two
solutions. Since each of the two algorithms achieves an O(n1/4 logn)-approximation to the
corresponding problem, and since at least half of the demand pairs routed in the optimal
solution are either all good pairs, or all bad pairs, we obtain an O(n1/4 logn)-approximation
overall.

5 APX-Hardness Proof

In this section we prove that NDP does not have a (1 + δ)-approximation algorithm on grid
graphs, for some fixed δ > 0, unless P = NP. We perform a reduction from the 3SAT(5)
problem. In this problem we are given a 3SAT formula ϕ on n variables and 5n/3 clauses.
Each clause contains exactly 3 distinct literals and each variable participates in exactly
5 different clauses. We say that ϕ is a Yes-Instance if it is satisfiable. We say that ϕ is
a No-Instance with respect to some parameter ε, if no assignment satisfies more than an
ε-fraction of clauses. The following well-known theorem follows from the PCP theorem [7, 6].

I Theorem 15. There is a constant ε : 0 < ε < 1, such that it is NP-hard to distinguish
between Yes-Instances and No-Instances (defined with respect to ε) of the 3SAT(5) problem.

Let ϕ be the input 3SAT(5) formula, defined over the set {x1, . . . , xn} of variables, and
a set C1, . . . , Cm of clauses, where m = 5n/3. Our graph G is the (N × N) grid, where
N = (m + 1)(4m + 6). The set M of demand pairs consists of three subsets: set M1
representing the variables of ϕ, setM2 representing the clauses, and setM3 of additional
auxiliary pairs. We now define each set of the demand pairs in turn.

Let I1, . . . , In be any set of mutually disjoint sub-paths of the top row R1 of the grid,
each containing exactly 13 vertices of R1. For 1 ≤ j ≤ n, let sj be the vertex lying exactly
in the middle of Ij , so sj is the 7th vertex of Ij from the left. Let tj and t′j be the first and
the last vertices of Ij , respectively. We then define:

M1 =
{

(sj , tj), (sj , t′j) | 1 ≤ j ≤ n
}
.

Let V (j, T) be the set of vertices lying on Ij between tj and sj (excluding tj and sj), and
similarly, let V (j, F) be the set of vertices lying on Ij between sj and t′j . The intuition is
that, since the paths routing the demand pairs are required to be completely disjoint, for
each 1 ≤ j ≤ n, we can only route one of the two pairs: (sj , tj) or (sj , t′j). The routing of
the former pair is interpreted as assigning the value ‘F’ to variable xj , and the routing of the
latter pair is interpreted as assigning the value ‘T’ to variable xj . Intuitively, in the former
case, all vertices of V (j, T) will be “blocked” by the path routing (sj , tj), while in the latter
case all vertices of V (j, F) are “blocked”.

J. Chuzhoy and D. Kim 19

We now turn to define the second set,M2 of the demand pairs. Let R = RN−4m−6 be
the row lying within distance 4m+ 6 from the bottom row of the grid. Let y1, . . . , ym be
any set of m vertices on R, ordered from left to right, so that the distance between every
consecutive pair is at least 4m+ 5; the distance between y1 and the left boundary of G is at
least 4m+ 5, and the distance between ym and the right boundary of G is at least 4m+ 5.
Since the grid size is N ×N , and N = (m+ 1)(4m+ 6), we can find such vertices y1, . . . , ym.
For each 1 ≤ h ≤ m, vertex yh will serve as a source vertex corresponding to the clause
Ch. We will associate it with three destination vertices, z1

h, z
2
h, z

3
h, as follows. Assume that

Ch = `h1 ∨ `h2 ∨ `h3 . For 1 ≤ i ≤ 3, let xhi
be the variable corresponding to the literal

`hi
. If `hi

= xhi
, then we let zih be some vertex in set V (hi, T), and otherwise we let zih be

some vertex in set V (hi, F). We select the vertices zih in such a way, that all vertices in set
Z =

{
zih | 1 ≤ h ≤ m, 1 ≤ i ≤ 3

}
are distinct. Since each variable participates in exactly 5

clauses, and each set V (j, T), V (j, F) contains 5 vertices, we can ensure that all vertices in
Z are distinct. We define:

M2 =
{

(yh, z1
h), (yh, z2

h), (yh, z3
h) | 1 ≤ h ≤ m

}
.

Before we define the third set of the demand pairs, we provide some intuition. As
mentioned above, we associate each assignment in {T, F} to each variable xj with the routing
of either (sj , tj) or (sj , t′j) along the corresponding segment of the first row. For each clause
Ch, if at least one of its literals `hi

is satisfied, we will route the corresponding demand
pair (yh, zih) (we discuss this in more detail later). However, in the No-Instance case, a
solution can “cheat” by routing the pairs (sj , tj), or (sj , t′j) differently: for example, we can
route them on a path that goes around some of the sources yh. In order to avoid this, we
create an artificial “bottleneck” by adding a new set of demand pairs. Recall that v(i, j) is
a vertex lying in the intersection of row Ri and column Cj of the grid. The last set M3
of demand pairs contains 8m demand pairs {ai, bi}8m

i=1, where for 1 ≤ i ≤ 8m, we define
ai = v(m+ 4 + i,m+ 1), and bi = v(m+ 4 + i,N). In other words, the ith demand pair in
setM3 consists of the (m+ 1)st and the last vertex of the row Rm+4+i. The final set of the
demand pairs isM =M1 ∪M2 ∪M3. This completes the description of the NDP instance.
We now analyze its properties.

Completeness.

Assume that the 3SAT(5) formula ϕ is a Yes-Instance. We show that in this case we can
route 9m+ n = 16n demand pairs. Consider the assignment f : {x1, . . . , xn} → {T, F} that
satisfies ϕ.

For each 1 ≤ i ≤ n, if xi is assigned the value ‘T’, then we route the pair (si, t′i) via the
segment of the row R1 between these two vertices; if xi is assigned value F , then we route
the pair (si, ti) via the corresponding segment of R1. For each pair (ai, bi) ∈M3, we route
(ai, bi) via the segment of row Rm+4+i connecting these two vertices. Finally, we define the
routing of m demand pairs inM2. For each clause Ch, let `∗h be any of the literals of Ch
that is satisfied by the assignment f , and let zh = zih be the destination vertex corresponding
to `∗h, so that (yh, zh) ∈M2. We will route the pairs {(yh, zh)}1≤h≤m.

In order to do so, we define three sub-grids of G: B1 is the sub-grid spanned by
rows R2, . . . , Rm+5, and all columns of the grid; B2 is the sub-grid spanned by rows
Rm+5, . . . , R9m+4 and columns C1, . . . , Cm of the grid; andB3 spanned by rowsR9m+4, . . . , RN
and all columns of the grid.

For each 1 ≤ h ≤ m, let eh be the unique vertical edge of the grid incident on vertex
zh, and let z′h be its other endpoint. Let S1 = {z′h | 1 ≤ h ≤ m}, so S1 contains m distinct

20 On Approximating Node-Disjoint Paths in Grids

vertices on the top row of B1, and let E′ = {eh | 1 ≤ h ≤ m}. Let S2 be the set of m vertices
on the top boundary of B2. Then the vertices of S2 also lie on the bottom boundary of B1,
and from Observation 1, there is a set P1 of disjoint paths in B1, connecting all vertices of
S1 to the vertices of S2, so that the paths in P1 are internally disjoint from V (R2 ∪Rm+5).
Let S3 be the set of m vertices on the bottom boundary of B2, and let P2 be the set of the
columns of B2, so P2 is a set of m paths, connecting all vertices of S2 to the vertices of S3, in
graph B2. Finally, consider the graph B3, and observe that S3 is a set of m distinct vertices
lying on the top boundary of B3, while {yh | 1 ≤ h ≤ m} is a set of m vertices lying at
L∞-distance at least 4m+5 from each other, and from the boundary of B3. From Theorem 2,
we can route any matching between the vertices of S3 and the vertices of {yh | 1 ≤ h ≤ m} in
graph S3. Let P ′ be the set of paths obtained by concatenating E′,P1,P2. Then P ′ is a set
of disjoint paths connecting the vertices of {zh | 1 ≤ h ≤ m} to the vertices of S3. We denote
the vertices of S3 by {z′′1 , . . . , z′′m}, where z′′h is the vertex that serves as an endpoint of the
path of P ′ originating at zh. We can now construct a set P3 of disjoint paths in B3, routing
the pairs {(yh, z′′h) | 1 ≤ h ≤ m}. By concatenating the paths in P ′ and P3, we obtain the
final routing of the pairs in {(yh, zh) | 1 ≤ h ≤ m}. Altogether, we route n demand pairs in
M1, all 8m demand pairs inM3, and m demand pairs inM2, routing n+ 9m = 16n pairs
in total.

Soundness.

Let δ = (1−ε)/200, where ε is the constant from Theorem 15. Assume that ϕ is a No-Instance,
so no assignment can satisfy more than εm clauses of ϕ. We show that the value of the
optimal solution of the corresponding NDP problem is at most (1−δ) ·16n. Assume otherwise,
and let P be a set of paths, routing more than (1− δ) · 16n demand pairs.

Our first observation is that at least 6m of the demand pairs inM3 must be routed by
P . Indeed, assume otherwise. Then P routes at most n pairs inM1, fewer than 6m pairs in
M3, and at most m pairs inM2. In total, P routes at most n+ 7m = 38n/3 < (1− δ) · 16n
pairs, since δ < 1/200. Therefore, at least 6m of the demand pairs inM3 are routed. Let
i be the smallest index, so that (ai, bi) is routed in P, and let P ∈ P be the path routing
(ai, bi). Let U be the set of vertices of column Cm+1 (the column where the sources of the
pairs inM3 lie), that belong to rows R1, . . . , R9m+4. We use the following observation.

I Observation 16. There is a contiguous sub-path P ′ of P , containing bi and some vertex
of U , such that P ′ is internally disjoint from U , and it does not contain any vertex of row
R = RN−4m−6.

Proof. If P does not contain any vertex of R, then, since it must contain at least one vertex
of U (the vertex ai), such path P ′ clearly exist. Therefore, we assume that P ∩R 6= ∅. Let v
be the last vertex of P lying on row R, where we view P as directed from ai to bi. Let P ∗
be the segment of P from v to bi.

We claim that P ∗ ∩ U 6= ∅. Indeed, assume otherwise. Let Cj be the column in which
v lies and let Q be the segment of Cj from v to the bottom vertex of Cj . If Cj is the
last column, then path P ∗ separates all vertices in {aj}8m

j=1 from all vertices in {tj}8m
j=i+1,

contradicting the fact that at least 6m demand pairs inM3 are routed, and i is the smallest
index for which pair (ai, bi) is routed. Therefore, Cj is not the last column. The union
of Q and P ∗ partitions the face defined by Γ(G) into a number of sub-faces. Let F2 be
the sub-face containing the top left boundary of the grid, and let F1 be the union of the
remaining sub-faces. Since P ∗ ∪ Q is disjoint from U , all vertices {aj}8m

j=1 belong to F2,
while the vertices {tj}8m

j=i+1 belong to F1. Therefore, all paths of P routing the pairs inM3

J. Chuzhoy and D. Kim 21

must intersect Q, while Q contains only 4m+ 7 vertices, a contradiction. We conclude that
P ∗ ∩ U 6= ∅. Let u be the last vertex on P ∗ that belongs to U . We can then let P ′ be the
segment of P ∗ between u and bi. J

Let v∗ be the endpoint of P ′ lying in U , and let R′ = row(v∗). Let I be the sub-path of
R′ between v∗ and the first vertex of row R′ (excluding v∗). Since path P ′ is disjoint from
row R, it is easy to see that every path in P that routes a demand pair inM2 has to contain
at least one vertex of I.

We partition the set of variables of ϕ into three subsets. Set X1 contains all variables xj ,
such that none of the pairs (sj , tj), (sj , t′j) is routed by P ; X2 contains all variables xj , such
that one of the pairs (sj , tj), (sj , t′j) is routed by some path Qj ∈ P, and |Qj ∩ I| ≥ 2. Set
X3 contains all remaining variables. We need the following three observations.

I Observation 17. |X1| ≤ 16δn.

Proof. Assume otherwise. Then P routes fewer than n(1−16δ) pairs ofM1, at most 8m pairs
ofM2 and at most m pairs ofM3. In total, this is fewer than n(1− 16δ) + 9m = 16n(1− δ)
pairs, a contradiction. J

I Observation 18. |X2| ≤ 8δn.

Proof. Assume otherwise. As observed above, if (y, z) ∈M2 is routed by P via some path Q,
then Q∩ I 6= ∅. Since |I| = m, the number of pairs inM2 routed by P is less than m− 16δn,
and the total number of pairs routed is smaller than n+ (m− 16δn) + 8m = 16n(1− δ). J

I Observation 19. Let xj ∈ X3 be some variable, and let Q ∈ P be the path originating at
sj. If Q terminates at tj, then no path of P, routing a demand pair in M2, may contain
any vertex of V (j, T), and if Q terminates at t′j, then no path of P, routing a demand pair
inM2, may contain any vertex of V (j, F).

Proof. Assume that Q terminates at tj : the proof for t′j is symmetric. Since |I ∩Q| < 2, the
path Q, together with the sub-path of R1 between tj and sj , forms a closed curve L in the
natural drawing of the grid, such that all sources of all pairs inM2 lie outside L. Therefore,
the paths of P originating from the sources of the demand pairs inM2 cannot contain the
vertices of V (j, T). J

We now define an assignment to the variables of ϕ that satisfies more than εm clauses
of ϕ, leading to a contradiction. The assignment is defined as follows. For each variable
xj ∈ X3, let Qj ∈ P be the path originating at sj . If Qj terminates at tj , then we assign
the value ‘F’ to xj ; otherwise we assign the value ‘T’ to it. All other variables are assigned
arbitrary values.

Let C be the collection of clauses Ch, such that there is a path originating at vertex
yh in P. It is easy to see that |C| ≥ m − 16δn, since otherwise P contains fewer than
n+ 8m+ (m− 16δn) = 16n(1− δ) paths. Let C′ ⊆ C be the subset of clauses containing the
variables ofX1∪X2. Since each variable participates in at most 5 clauses, from Observations 17
and 18, |C′| ≤ 5 · 24δn = 120δn. Let C∗ = C \ C′. Then |C∗| ≥ m− 136δn ≥ εm. We claim
that every clause Ch ∈ C∗ is satisfied by our assignment. Indeed, let P ∈ P be the path
originating at yh, and let zih be its other endpoint. Assume that the corresponding literal
`hi

corresponds to variable xj . From our definition of C∗, xj ∈ X3. Let P ′ ∈ P be the path
originating from sj . If zih ∈ V (j, T), then `hi = xj . From Observation 19, P ′ terminates at t′j ,
and variable xj is assigned the value ‘T’. If zih ∈ V (j, F), then `hi

= xj . From Observation 19,

22 On Approximating Node-Disjoint Paths in Grids

P ′ terminates at tj , and variable xj is assigned the value ‘F’. In either case, the assignment
to xj satisfies the clause Ch.

To conclude, we have shown an efficient algorithm, that, given a 3SAT(5) formula ϕ,
constructs an instance (G,M) of the NDP problem, where G is a grid graph, whose size is
polynomial in the size of ϕ. If ϕ is a Yes-Instance, then there is a solution of value 16n to
the NDP instance, and if ϕ is a No-Instance, then no solution routes more than 16n(1− δ)
demand pairs in the NDP instance, for some constant δ. Since it is NP-hard to distinguish
the Yes- and the No-instances of 3SAT(5), we conclude that no efficient algorithm can obtain
a better than (1− δ)-approximation for NDP on grids, unless P = NP.

6 Integrality Gap of (LP-flow) for Good Pairs

We prove that the integrality gap of (LP-flow) is Ω(n1/8) even when all of the terminals are
far from the grid boundary. We note that the family of instances that we construct here
was previously used by Cutler and Shiloah [16], to provide a lower bound on the size of
permutation layouts. Our analysis also closely follows theirs.

Given any integer p > 10, let k = p2 and N = 6k. We show that the integrality gap of
(LP-flow) on the (N ×N) grid G, where all terminals are within distance at least N/6 from
Γ(G) is Ω(k1/4) = Ω(n1/8), where n = N2 is the number of vertices in the grid.

In order to define the demand pairs, we let S be any set of k consecutive vertices on
row R2k of G, where all vertices are at distance at least 2k from both the left and the right
boundary of G, and define a set T of k consecutive vertices on row R4k similarly. We partition
the set S into p subsets S1, . . . , Sp of p consecutive vertices each, where for 1 ≤ i, j ≤ p, the
jth vertex in set Si is denoted by si,j . Similarly, we partition T into p subsets T1, . . . , Tp of
p consecutive vertices each, and for 1 ≤ i, j ≤ p, the jth vertex in set Ti is denoted by ti,j .
The setM of the demand pairs is then:

M = {(si,j , tj,i) | 1 ≤ i, j ≤ p} .

It is easy to see that there is a solution to (LP-flow) of value k/3: for each pair (si,j , tj,i),
we send 1/3 flow unit on the path P , lying in the union col(si,j), col(tj,i) and Rip+j , that
connects si,j to tj,i. We next show that the value of any integral solution is O(k3/4), thus
establishing the integrality gap of Ω(k1/4).

In our analysis we use the notions of graph drawing and graph crossing number. A
drawing of a graph H in the plane is a mapping, in which every vertex of H is mapped into
a point in the plane, and every edge into a continuous curve connecting the images of its
endpoints, such that no three curves meet at the same point, and no curve contains an image
of any vertex other than its endpoints. A crossing in such a drawing is a point where the
images of two edges intersect, and the crossing number of a graph H, denoted by cr(H), is
the smallest number of crossings achievable by any drawing of H in the plane. We use the
following well-known theorem [2, 23].

I Theorem 20. For any graph H = (V,E) with |E| > 7|V |, cr(H) ≥ |E|3
29|V |2 .

Let OPT denote the optimal integral solution for the instance (G,M), letM∗ ⊆M be
the set of the demand pairs routed by OPT, and let x = |OPT|. We define two bipartite
graphs. The first bipartite graph, H = (S, T,E∗) is defined over the sets S and T of the
source and the destination vertices ofM, and it contains an edge e = (s, t) for every pair
(s, t) ∈M∗. The second graph is H ′ = (A,B,E′), where A = {v1, . . . , vp}, B = {u1, . . . , up},
and E′ contains all edges (vi, uj), where (si,j , tj,i) ∈M∗. The following claim is central to
our analysis.

J. Chuzhoy and D. Kim 23

I Claim 21. There is a drawing of H ′ with at most 2px crossings.

We prove Claim 21 below, after we complete the analysis of the integrality gap here.
If |E′| ≤ 14p, then |OPT| = O(

√
k) and we are done, so we assume that |E′| > 14p.

Then from Theorem 20, cr(H ′) ≥ x3

116p2 , while from Claim 21, cr(H ′) ≤ 2px. Therefore,
x = O(p3/2) = O(k3/4). It now remains to prove Claim 21.

Proof of Claim 21: Notice that the natural drawing of the grid G, together with the
solution OPT to the NDP instance gives a planar drawing ϕ of the graph H in the plane.
For each 1 ≤ i ≤ p, let S′i ⊆ Si be the set of the sources that have an edge incident to them
in E∗, and define T ′i ⊆ Ti similarly. Let xi = |S′i| and yi = |T ′i |. For each 1 ≤ i ≤ p, if
xi = 0, then the vertex vi of H ′, corresponding to Si is an isolated vertex, and we can draw
it anywhere. Otherwise, let si,j ∈ S′i be any vertex. We draw vi at ϕ(si,j). Let I(i) be the
segment of row R2k containing the vertices of Si, and no other vertices. Let Li be a very
thin strip (of height 1/10) around the segment I(i) (see Figure 5). We alter the drawings
of all edges in E∗, originating at the vertices of S′i, so that they now originate at ϕ(si,j),
by re-routing them inside the strip Li. Since the number of paths in OPT containing the
vertices of Si is bounded by p, it is easy to do so, by introducing at most pxi crossings. We
perform the same transformation for the sets Ti of destination vertices, and obtain a drawing
of the graph H ′ with at most p

∑p
i=1(xi + yi) ≤ 2px crossings.

bipartite graph, H = (S, T, E⇤) is defined over the sets S and T of the source and the destination
vertices of M, and it contains an edge e = (s, t) for every pair (s, t) 2 M⇤. The second graph
is H 0 = (A, B, E0), where A = {v1, . . . , vp}, B = {u1, . . . , up}, and E0 contains all edges (vi, uj),
where (si,j , tj,i) 2 M⇤. The following claim is central to our analysis.

Claim 6.2 There is a drawing of H 0 with at most 2px crossings.

If |E0| < 14p, then |OPT| = O(
p

k) and we are done, so we assume that |E0| � 14p. Then from

Theorem 6.1, cr(H 0) � x3

29p2 , while from Claim 6.2, cr(H 0) 2px. Therefore, x = O(p3/2) = O(k3/4).
It now remains to prove Claim 6.2.

Proof of Claim 6.2: Notice that the natural drawing of the grid G, together with the solution
OPT to the NDP instance gives a planar drawing ' of the graph H in the plane. For each 1 i p,
let S0

i ✓ Si be the set of the sources that have an edge incident to them in E⇤, and define T 0
i ✓ Ti

similarly. Let xi = |S0
i| and yi = |T 0

i |. For each 1 i p, if xi = 0, then the vertex vi of H 0,
corresponding to Si is an isolated vertex, and we can draw it anywhere. Otherwise, let si,j 2 S0

i

be any vertex. We draw vi at '(si,j). Let I(i) be the segment of row R2k containing the vertices
of Si, and no other vertices. Let Li be a very thin strip (of height 1/10) around the segment I(i)
(see Figure 4). We alter the drawings of all edges in E⇤, originating at the vertices of S0

i, so that
they now originate at '(si,j), by re-routing them inside the strip Li. Since the number of paths in
OPT containing the vertices of Si is bounded by p, it is easy to do so, by introducing at most pxi

crossings. We perform the same transformation for the sets Ti of destination vertices, and obtain
a drawing of the graph H 0 with at most p

Pp
i=1(xi + yi) 2px crossings.

(a) Before (b) After

Figure 4: Altering the drawing around Si.

References

[ACG+10] Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal
Talwar, and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion
routing on undirected graphs. Combinatorica, 30(5):485–520, 2010.

[ACNS82] M. Ajtai, V. Chvátal, M.M. Newborn, and E. Szemerédi. Crossing-free subgraphs. In
Gert Sabidussi Peter L. Hammer, Alexander Rosa and Jean Turgeon, editors, Theory
and Practice of Combinatorics A collection of articles honoring Anton Kotzig on the
occasion of his sixtieth birthday, volume 60 of North-Holland Mathematics Studies, pages
9 – 12. North-Holland, 1982.

14

(a) Before

bipartite graph, H = (S, T, E⇤) is defined over the sets S and T of the source and the destination
vertices of M, and it contains an edge e = (s, t) for every pair (s, t) 2 M⇤. The second graph
is H 0 = (A, B, E0), where A = {v1, . . . , vp}, B = {u1, . . . , up}, and E0 contains all edges (vi, uj),
where (si,j , tj,i) 2 M⇤. The following claim is central to our analysis.

Claim 6.2 There is a drawing of H 0 with at most 2px crossings.

If |E0| < 14p, then |OPT| = O(
p

k) and we are done, so we assume that |E0| � 14p. Then from

Theorem 6.1, cr(H 0) � x3

29p2 , while from Claim 6.2, cr(H 0) 2px. Therefore, x = O(p3/2) = O(k3/4).
It now remains to prove Claim 6.2.

Proof of Claim 6.2: Notice that the natural drawing of the grid G, together with the solution
OPT to the NDP instance gives a planar drawing ' of the graph H in the plane. For each 1 i p,
let S0

i ✓ Si be the set of the sources that have an edge incident to them in E⇤, and define T 0
i ✓ Ti

similarly. Let xi = |S0
i| and yi = |T 0

i |. For each 1 i p, if xi = 0, then the vertex vi of H 0,
corresponding to Si is an isolated vertex, and we can draw it anywhere. Otherwise, let si,j 2 S0

i

be any vertex. We draw vi at '(si,j). Let I(i) be the segment of row R2k containing the vertices
of Si, and no other vertices. Let Li be a very thin strip (of height 1/10) around the segment I(i)
(see Figure 4). We alter the drawings of all edges in E⇤, originating at the vertices of S0

i, so that
they now originate at '(si,j), by re-routing them inside the strip Li. Since the number of paths in
OPT containing the vertices of Si is bounded by p, it is easy to do so, by introducing at most pxi

crossings. We perform the same transformation for the sets Ti of destination vertices, and obtain
a drawing of the graph H 0 with at most p

Pp
i=1(xi + yi) 2px crossings.

(a) Before (b) After

Figure 4: Altering the drawing around Si.

References

[ACG+10] Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal
Talwar, and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion
routing on undirected graphs. Combinatorica, 30(5):485–520, 2010.

[ACNS82] M. Ajtai, V. Chvátal, M.M. Newborn, and E. Szemerédi. Crossing-free subgraphs. In
Gert Sabidussi Peter L. Hammer, Alexander Rosa and Jean Turgeon, editors, Theory
and Practice of Combinatorics A collection of articles honoring Anton Kotzig on the
occasion of his sixtieth birthday, volume 60 of North-Holland Mathematics Studies, pages
9 – 12. North-Holland, 1982.

14

(b) After

Figure 5 Altering the drawing around Si.

J

7 Approximation Algorithm for EDP on Wall Graphs

In this section we show that the algorithm from Section 4 can be adapted to give an
O(n1/4 · logn)-approximation for EDP on wall graphs of width and height N = Ω(

√
n). In

order to construct a wall W of height h and width r (or an (h× r)- wall), we start from a
grid of height h and width 2r. Consider some column Cj of the grid, for 1 ≤ j ≤ r, and
let ej1, e

j
2, . . . , e

j
h−1 be the edges of Cj , in the order of their appearance on Cj , where ej1 is

incident on v(1, j). If j is odd, then we delete from the graph all edges eji where i is even. If
j is even, then we delete from the graph all edges eji where i is odd. We process each column
Cj of the grid in this manner, and in the end delete all vertices of degree 1. The resulting
graph is a wall of height h and width r, that we denote by W (See Figure 1).

Let E1 be the set of edges of W that correspond to the horizontal edges of the original
grid, and let E2 be the set of the edges of W that correspond to the vertical edges of the
original grid. The sub-graph of W induced by E1 is a collection of h node-disjoint paths,
that we refer to as the rows of W . We denote these rows by R1, . . . , Rh, where for 1 ≤ i ≤ h,
Ri is incident on v(i, 1). Let V1 denote the set of all vertices in the first row of W , and Vh
the set of vertices in the last row of W . There is a unique set C of r node-disjoint paths,
where each path C ∈ C starts at a vertex of V1, terminates at a vertex of Vh, and is internally

24 On Approximating Node-Disjoint Paths in Grids

disjoint from V1 ∪ Vh. We refer to these paths as the columns of W . We order these columns
from left to right, and denote by Cj the jth column in this ordering, for 1 ≤ j ≤ r. The
sub-graph Γ(W) = R1 ∪ C1 ∪Rh ∪ Cr of W is a simple cycle, that we call the boundary of
W .

For every vertex v ∈ V (W), we let col(v) and row(v) denote the column and the row of
W to which v belongs. As before, for a pair u, v ∈ V (W) of vertices, we define:

d∞(u, v) = max {| col(v)− col(u)|, | row(v)− row(u)|} ,

and for a vertex v and a subset U ⊆ V (W) of vertices, we let d∞(v, U) = minu∈U {d∞(u, v)}.
Assume now that we are given an (N ×N)-wall graph G = (V,E), so n = |V | = Θ(N2),

and a collectionM = {(si, ti)}ki=1 of demand pairs. As before, we say that a demand pair
(si, ti) is bad if both d∞(si,Γ(G)), d∞(ti,Γ(G)) ≤ 4

√
N + 4, and we say that it is good

otherwise. LetM′,M′′ ⊆M denote the sets of the good and the bad demand pairs inM,
respectively. We find an approximate solution to each of the two sub-problems, defined by
M′ andM′′, separately, and take the better of the two solutions.

The algorithm for the bad pairs remains exactly the same as the algorithm from Section 4.2.
We now focus on the problem defined by the setM′ of the good pairs. Let G′ be the (N×N)-
grid obtained from G, by contracting, for each 1 ≤ i, j ≤ N , the unique edge e ∈ Ri ∩ Cj ,
and consider the NDP problem instance (G′,M′). Any collection P ′ of node-disjoint paths
in G′, routing a subset M̃ ⊆ M′ of the demand pairs immediately gives a collection P ′′
of edge-disjoint paths in G, routing the same subset of the demand pairs. Moreover, it is
easy to see that there is an LP-solution to (LP-flow) on instance (G′,M′) of value OPT′/2,
where OPT′ is the optimal solution for the EDP instance (G,M′). Indeed, for every path
P ∈ OPT′, we simply set f(P ′) = 1/2, where P ′ is the path of G′ corresponding to the path
P of G, and for every demand pair (sj , tj) routed by OPT′, we set xj = 1/2. It is immediate
to verify that this is a feasible solution to (LP-flow) on NDP instance (G′,M′), of value
OPT′/2. We then use the algorithm from Section 4.1 to find an O(n1/4 · logn)-approximation
solution to (G′,M′), which in turn gives an O(n1/4 · logn)-approximation solution to the
EDP instance (G,M′).

References

1 Alok Aggarwal, Jon Kleinberg, and David P. Williamson. Node-disjoint paths on the mesh
and a new trade-off in VLSI layout. SIAM J. Comput., 29(4):1321–1333, February 2000.

2 M. Ajtai, V. Chvátal, M.M. Newborn, and E. Szemerédi. Crossing-free subgraphs. In
Gert Sabidussi Peter L. Hammer, Alexander Rosa and Jean Turgeon, editors, Theory and
Practice of Combinatorics A collection of articles honoring Anton Kotzig on the occasion
of his sixtieth birthday, volume 60 of North-Holland Mathematics Studies, pages 9 – 12.
North-Holland, 1982.

3 Matthew Andrews. Approximation algorithms for the edge-disjoint paths problem via
Raecke decompositions. In Proceedings of IEEE FOCS, pages 277–286, 2010.

4 Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar,
and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion routing on
undirected graphs. Combinatorica, 30(5):485–520, 2010.

5 Matthew Andrews and Lisa Zhang. Hardness of the undirected edge-disjoint paths problem.
In STOC, pages 276–283. ACM, 2005.

6 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45:501–555, May 1998.

J. Chuzhoy and D. Kim 25

7 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization
of np. J. ACM, 45:70–122, January 1998.

8 Yonatan Aumann and Yuval Rabani. Improved bounds for all optical routing. In Proceed-
ings of the sixth annual ACM-SIAM symposium on Discrete algorithms, SODA ’95, pages
567–576, Philadelphia, PA, USA, 1995. Society for Industrial and Applied Mathematics.

9 Chandra Chekuri and Julia Chuzhoy. Half-integral all-or-nothing flow. Unpublished Ma-
nuscript.

10 Chandra Chekuri and Alina Ene. Poly-logarithmic approximation for maximum node dis-
joint paths with constant congestion. In Proc. of ACM-SIAM SODA, 2013.

11 Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Edge-disjoint paths in planar
graphs. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Sym-
posium on, pages 71–80. IEEE, 2004.

12 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity flow, well-
linked terminals, and routing problems. In Proc. of ACM STOC, pages 183–192, 2005.

13 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(
√
n) approximation and

integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(1):137–146,
2006.

14 Julia Chuzhoy. Routing in undirected graphs with constant congestion. In Proc. of ACM
STOC, pages 855–874, 2012.

15 Julia Chuzhoy and Shi Li. A polylogarithimic approximation algorithm for edge-disjoint
paths with congestion 2. In Proc. of IEEE FOCS, 2012.

16 M. Cutler and Y. Shiloach. Permutation layout. Networks, 8:253–278, 1978.
17 R. Karp. On the complexity of combinatorial problems. Networks, 5:45–68, 1975.
18 Ken-Ichi Kawarabayashi and Yusuke Kobayashi. An o(log n)-approximation algorithm

for the edge-disjoint paths problem in eulerian planar graphs. ACM Trans. Algorithms,
9(2):16:1–16:13, March 2013.

19 Jon M. Kleinberg. An approximation algorithm for the disjoint paths problem in even-
degree planar graphs. In FOCS’05, pages 627–636, 2005.

20 Jon M. Kleinberg and Éva Tardos. Disjoint paths in densely embedded graphs. In Pro-
ceedings of the 36th Annual Symposium on Foundations of Computer Science, pages 52–61,
1995.

21 Jon M. Kleinberg and Éva Tardos. Approximations for the disjoint paths problem in high-
diameter planar networks. J. Comput. Syst. Sci., 57(1):61–73, 1998.

22 Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Mathematical Programming, 99:63–87, 2004.

23 Frank Thomson Leighton. Complexity Issues in VLSI: Optimal Layouts for the Shuffle-
exchange Graph and Other Networks. MIT Press, Cambridge, MA, USA, 1983.

24 Harald Räcke. Minimizing congestion in general networks. In Proc. of IEEE FOCS, pages
43–52, 2002.

25 Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a technique for prov-
ably good algorithms and algorithmic proofs. Combinatorica, 7:365–374, December 1987.

26 Satish Rao and Shuheng Zhou. Edge disjoint paths in moderately connected graphs. SIAM
J. Comput., 39(5):1856–1887, 2010.

27 N. Robertson and P. D. Seymour. Outline of a disjoint paths algorithm. In Paths, Flows
and VLSI-Layout. Springer-Verlag, 1990.

28 Neil Robertson and Paul D. Seymour. Graph minors. VII. disjoint paths on a surface. J.
Comb. Theory, Ser. B, 45(2):212–254, 1988.

29 Neil Robertson and Paul D Seymour. Graph minors. XIII. the disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

26 On Approximating Node-Disjoint Paths in Grids

30 Loïc Seguin-Charbonneau and F. Bruce Shepherd. Maximum edge-disjoint paths in planar
graphs with congestion 2. In Proceedings of the 2011 IEEE 52Nd Annual Symposium on
Foundations of Computer Science, FOCS ’11, pages 200–209, Washington, DC, USA, 2011.
IEEE Computer Society.

	Introduction
	Preliminaries
	Routing with Well-Separated Destinations
	An (n1/4)-Approximation Algorithm
	Routing the Good Pairs
	Routing the Bad Pairs
	Putting Everything Together

	APX-Hardness Proof
	Integrality Gap of (LP-flow) for Good Pairs
	Approximation Algorithm for EDP on Wall Graphs

