
TTIC 31010 and CMSC 37000 Algorithms Winter 2015

Homework set 3

Note: the homework sets are not for submission. They are designed to help you prepare for the
quizzes. It is highly recommended that you solve all problems and write the solutions down.

1. We are given a directed graph G = (V,E), with two special vertices s and t, and non-negative
capacities c(e) on edges e ∈ E. Assume that s has no incoming edges and t has no outgoing
edges.

(a) Show an efficient algorithm that finds a maximum s-t flow f in G, such that f is acyclic
(A flow f is acyclic, if G contains no cycles, where every edge carries positive flow).

(b) A collection P of paths connecting s to t, together with values f ′(P) ≥ 0 for each P ∈ P is
called a valid flow-paths solution, iff for every edge e ∈ E,

∑
P∈P:
e∈P

f ′(P) ≤ c(e).

Assume that we are given a valid acyclic s-t flow f in G. Show an efficient algorithm that
finds a valid flow-paths solution (P, f ′), with |P| ≤ |E|, such that for each edge e ∈ E,∑

P∈P:
e∈P

f ′(P) = f(e).

Prove the algorithm’s correctness.

(c) Let OPTf denote the value of the maximum flow in G. Given a valid flow-paths solution
(P, f ′), its value is denoted by v(P, f ′) =

∑
P∈P f

′(P). Let v∗ be the maximum value of
any valid flow-paths solution. Prove that v∗ = OPTf .

(d) Assume now that all edge capacities are integral. Prove that there is an optimal flow-path
solution, where the values f ′(P) for every path P are integral, and the number of paths
with non-zero value f ′(P) is at most |E|.

2. In this question we study a variant of the Ford-Fulkerson algorithm. Recall that given a residual
graph Gf and an s-t path P in Gf , we have denoted by bf (P) = mine∈P {cf (e)} - the minimum
residual capacity of any edge on P . We run the standard Ford-Fulkerson algorithm, except that
we choose augmenting paths according to the following rule: select a path P with maximum
value bf (P), breaking ties arbitrarily. For each iteration i of the algorithm, let bi denote the
value bf (P) of the path P selected in iteration i. Prove or disprove: The values bi, for i ≥ 1,
always form a non-increasing sequence.

Hint: the statement is false.

3. We are given a flow network G = (V,E), with positive integral capacities c(e) on edges e ∈ E, a
source s and a sink t. Recall that an s-t cut in G is a partition (A,B) of the vertices of V , such
that s ∈ A, t ∈ B. An s-t cut (A,B) is a minimum cut iff the value C(A,B) is minimal among
all s-t cuts. Notice that it is possible for a graph to contain several minimum cuts.

• Show an example of a graph G, that contains Ω(n2) minimum s-t cuts, where n = |V |.
• Show an example of a graph G that contains a unique minimum s-t cut (that is, the number

of minimum s-t cuts in G is 1).

1

• Show an efficient algorithm to determine whether G contains a unique minimum s-t cut, or
the number of minimum cuts is greater than 1. Prove the algorithm’s correctness.

• An s-t cut (A,B) in G is called the best minimum s-t cut iff it minimizes |E(A,B)| among
all s-t cuts. Show an efficient algorithm to compute the best minimum s-t cut in G.

4. Given a graph G (that can be directed or undirected), and two special vertices s and t, a collection
of node-disjoint s-t paths is any set P = {P1, . . . , Pk} of paths, where each path Pi ∈ P connects
s to t, and every vertex v ∈ V (G) \ {s, t} appears on at most one path in P.

(a) Design an efficient algorithm, that, given a directed graph G, and two vertices s, t ∈ V (G),
computes a largest-cardinality set P of node-disjoint s-t paths in G.

(b) Design an efficient algorithm, that, given an undirected graph G, and two vertices s, t ∈
V (G), computes a largest-cardinality set P of node-disjoint s-t paths in G.

(c) Suppose we are given an undirected graph G, and three distinct vertices x, y, z ∈ V (G). We
would like to know whether there is a simple path from x to z that contains y. Design an
efficient algorithm that finds such a path in G if it exists. Prove the algorithm’s correctness.

5. Suppose we are given an n×n square grid, some of whose squares are colored black, and the rest
are white. We are also given n tokens. Describe and analyze an algorithm to determine whether
tokens can be placed on the grid, so that:

• Every token is on a distinct white square;

• Every row of the grid contains exactly one token; and

• Every column of the grid contains exactly one token.

2

