
TTIC 31010 and CMSC 37000 Algorithms Winter 2015

Homework set 2

Note: the homework sets are not for submission. They are designed to help you prepare for the
quizzes. It is highly recommended that you solve all problems and write your solutions down formally.
Whenever a question asks to design an algorithm for a problem, you should prove its correctness.

1. Given a string X, we denote by X[i] the ith character of X. Given an n-character string A, and
two additional strings B and C, we say that string A is an interleaving of strings B and C iff
we can partition the set {1, . . . , n} of indices into two disjoint subsets I = {i1, i2, . . . , ik} and
J = {j1, j2, . . . , jn−k}, where i1 < i2 < · · · < ik and j1 < j2 < · · · < jn−k such that:

• I ∪ J = {1, . . . , n}
• the string (A[i1], A[i2], . . . , A[ik]) = B, and the string (A[j1], A[j2], . . . , A[jn−k]) = C

In other words, A is obtained by interleaving the characters of B and C. Design an efficient
algorithm, that, given as input strings A,B and C, decides whether A is an interleaving of B
and C. Prove the algorithm’s correctness and analyze its running time.

2. The input to this problem is a set of n gems. Each gem has an integral value in dollars and is
either a ruby or an emerald. Let the sum of the values of the gems be L. The problem is to
determine if it is possible to partition of the gems into two sets P and Q, such that each set
has the same value, the number of rubies in P is equal to the number of rubies in Q, and the
number of emeralds in P is equal to the number of emeralds in Q. Note that a partition means
that every gem must be in exactly one of P or Q. Design an algorithm for this problem, whose
running time is polynomial in n + L. Prove the algorithm’s correctness and analyze its running
time.

3. We say that a set A ⊂ {1, 2, . . . , n} is good iff for all 1 ≤ i ≤ n − 2, among the numbers in
the triple Ti = (i, i + 1, i + 2), either one or two members of Ti belong to A. For example, the
set A = {1, 2, 4, 5} ⊂ {1, 2, . . . , 6} is good, set B = {4, 5} ⊂ {1, 2, . . . , 6} is not good (none of
the members of triple {1, 2, 3} belong to B), and C = {2, 3, 4, 6} ⊂ {1, 2, . . . , 6} is not good (all
members of triple {2, 3, 4} belong C). Using dynamic programming, design an algorithm, that,
given n, and a sequence w1, . . . , wn of non-negative numbers, finds a good subset A ⊂ {1, 2, . . . , n}
that maximizes the sum

∑
i∈Awi. The running time of the algorithm should be polynomial in

n. Describe your algorithm in detail, prove its correctness, and analyze the running time.

4. Consider the following modification of the standard algorithm for incrementing a binary counter.

Increment(B[0, . . . ,∞])

• i← 0

• While B[i] = 1:

– B[i]← 0

– i← i + 1

• B[i]← 1

• SomethingElse(i)

1



The only difference from the standard algorithm is the function call at the end, to a black-box
subroutine called SomethingElse. Suppose we call Increment n times, starting with counter value
0. The amortized time of each call clearly depends on the running time of SomethingElse. Let
T (i) denote the worst-case running time of SomethingElse(i).

(a) What is the amortized time per increment if T (i) = 0?

(b) What is the amortized time per increment if T (i) = 42?

(c) What is the amortized time per increment if T (i) = i?

(d) What is the amortized time per increment if T (i) = 2i?

5. An extendable array is a data structure that stores a sequence of items and supports the following
operations:

• AddToFront(x) adds x to the beginning of the sequence.

• AddToBack(x) adds x to the end of the sequence.

• Lookup(k) returns the kth item in the sequence, or Null if the current length of the sequence
is less than k.

Describe a simple data structure that implements extendable array. Your AddToFront and
AddToBack algorithms should take O(1) amortized time, and your Lookup algorithm should
take O(1) worst-case time. The data structure should use O(n) space, where n is the current
length of the sequence.

2


