
ABSTRACT

An abstract of the thesis of Yan Chen for the Master of Science in Computer Science

presented July 8, 2008.

Title: Equivalence Checking for High-Level Synthesis Flow

High-level synthesis provides a promising solution to design complicated circuits,

but the lack of designers’ confidence in correctness of synthesis tools prevents the wide

acceptance in engineering practice. I develop an equivalence checking algorithm within

a framework for certifying high-level synthesis flow. I utilize a new formal structure

clocked control data flow graph (CCDFG) to facilitate the equivalence checking pro-

cess, and implement the prototype tool for verifying the equivalence between CCDFG

and synthesized circuit in both bit-level and word-level. Experimental results demon-

strate the effectiveness of the tools in quickly verifying, or finding bugs in the high-level

synthesis flow.

EQUIVALENCE CHECKING FOR HIGH-LEVEL SYNTHESIS FLOW

by

YAN CHEN

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2008

ii

CONTENTS

List of Tables . iii

List of Figures . iv

1 Introduction . 1
1.1 Research Overview . 2
1.2 Thesis Outline . 2

2 Background . 4
2.1 High-Level Synthesis . 4
2.2 Framework for Certification of High-Level Synthesis Flow 5
2.3 Semantics of CCDFG . 8
2.4 Certified Compilation . 12
2.5 Related Work . 13

3 Equivalence Checking for High-Level Synthesis 16
3.1 Circuit Model . 16
3.2 Correspondence between CCDFGs and Circuits 18
3.3 Dual-Rail Simulation for Sequential Equivalence Checking 20
3.4 Optimization through Word-level Abstraction 21

3.4.1 Uninterpreted Functions . 22
3.4.2 Reducing False Negatives . 23

3.5 Experimental Results and Discussion 24

4 Conclusion and Future Work . 27

References . 28

iii

LIST OF TABLES

3.1 Equivalence Checking Results for GCD in bit-level 25

iv

LIST OF FIGURES

2.1 Framework for Analysis of High-Level Synthesis Flow 6
2.2 Source code for GCD and the corresponding CCDFG. In the CCDFG,

each while box denotes a micro step and each shaded region denotes a
scheduling step. The primitive operations here are assignment, compar-
ison, modular division, and swap. To simplify presentation, only control
dependency edges are shown and data dependency edges are omitted. . 11

2.3 An example of certifiable transformation sequence. The sequence in-
cludes (1) unrolling the loop once, (2) interpreting the “%” operation to
show that (a < b) holds after the assignment a = a % b, and (3) loop
transformation through interpretation of swap operation. Due to space
limitation, we use C code instead of the CCDFGs to represent the trans-
formation. 14

3.1 Synthesized circuit for GCD and its operation mapping relation with
CCDFG in Fig. 2.2. A,B, reset, start are the input nodes, and the
shaded nodes a, a′, b, b′ are latches. The dotted lines represent the map-
ping from operations of CCDFG to combinational nodes of circuit. We
consider a wire to be a combinational node. 17

3.2 Dual-Rail Simulation Scheme for Equivalence Checking 20
3.3 Behavioral description of a loop . 26

Chapter 1

INTRODUCTION

With the rapid miniaturization of VLSI technology, it is becoming increasingly chal-

lenging to develop reliable, high-quality systems that make effective use of all the avail-

able transistors. The complexity of modern circuits makes it infeasible to develop reli-

able hand-crafted designs at gate level or even register-transfer level (RTL). High-Level

Synthesis [2, 6, 10, 14] (HLS) provides a promising solution to this problem, namely

automated synthesis of the design from a behavioral specification. The behavioral speci-

fication is written in a high-level language such as SystemC or C; a synthesis tool applies

a sequence of transformations to compile this description into a hardware netlist or RTL.

In spite of its promise, high-level synthesis has not yet found wide acceptance in

engineering practice [14]. A major barrier is the lack of designers’ confidence in cor-

rectness of synthesis tools. The large semantic gap between the synthesized design and

its behavioral description puts the onus on synthesis to ensure that its output conforms

to the specification. On the other hand, the employed transformations include complex

optimizations to satisfy diverse performance and power metrics, making synthesis tools

error-prone.

My motivation is that a scalable, mechanized framework for certifying high-level

synthesis flow will help designers be confident about the synthesized circuits, and mak-

ing the synthesis tools more reliable. In particular, an efficient equivalence checking

algorithm for high-level synthesis can guarantee the correctness of the circuit even after

some minor manual optimizations.

2

1.1 RESEARCH OVERVIEW

My research is mainly focused on the equivalence checking of high-level synthesis flow.

This work builds directly on the work of Sandip Ray, Fei Xie and me on a framework

for certifying high-level synthesis flow.

Certification of the high-level synthesis flow is decomposed into verified and ver-

ifying components, which are discharged by theorem proving and model checking re-

spectively. The bridge between these components is provided by a new formal structure,

clocked control data flow graph (CCDFG), that serves as the golden circuit model used

in this framework.

After theorem proving verified the CCDFG, my work analyzes the CCDFG by sym-

bolic simulation and tries to prove that the verified CCDFG and the synthesized circuit

are equivalent. If they are not equivalent, the verification tool reports the mismatched

points, which is useful for the user to find the bugs.

In this thesis, my equivalence checker uses symbolic simulation in both bit-level and

word-level. By bit-level, I use the Binary Decision Diagram (BDD) [5] to bit-blasting all

the data into bits. This approach may have space explosion problems, but theoretically

it can verify all the computation being considered. To scale the model checking process,

I also consider using word-level abstraction, mainly uninterpreted functions, bit vectors

and linear arithmetic, to handle much more complex designs. Although this approach

has some limitations due to the undecidability natural of Satisfiability Modulo Theory

(SMT) [3], it is able to verify many practical designs, which demonstrate the practical

usefulness of my approach.

1.2 THESIS OUTLINE

I will give a brief overview of background in Chapter 2 that introduces high-level syn-

thesis flow and the overall framework of the certification. I will also give the formal

semantics of CCDFG, which will be used as the golden circuit model in the equivalence

3

checking, and discuss some related work on sequential equivalence checking. In Chap-

ter 3, I will describe the challenges for my verification methods and detailed solutions

to them. To test the effectiveness, I apply my tools to two real world examples, and

demonstrate the capability of my apporach. Chapter 4 goes into the conclusion, and

some future work.

Chapter 2

BACKGROUND

2.1 HIGH-LEVEL SYNTHESIS

High-level synthesis [14] is the process of converting a behavioral description, usually

written in a high-level language such as C or SystemC, into a digital circuit that consists

of a data path, a controller and memory elements. The first task in high-level synthesis

is to capture the behavioral description in an intermediate representation that captures

both control flow and data flow. Thereafter, the high-level synthesis problem has usually

been solved by dividing the problem into several sub-tasks. Typically the subtasks are:

• Allocation: This task consists of determining the number of resources that have

been allocated or alloted to synthesize the hardware circuit. Typically, designers

can specify an allocation in terms of the number of resources of each resource

type. Resources consist not only of functional units (like adders and multipliers),

but may also include registers and interconnection components (such as mux and

bus).

• Scheduling: The scheduling problem is to determine the time step or clock cy-

cle in which each operation in the design executes. The ordering between the

“scheduled” operations is constrained by the data and control dependencies be-

tween operations. Scheduling is often done under constraints on the number of

resources as specified in resource allocation.

• Module Selection: Module selection is the task of determining the resource type

from the resource library that an operation executes on. The need for this task

5

arises because of the presence of several resources of different types (and different

area and timing) that an operation may execute on. For example, an addition may

execute on an adder, an ALU, or a multiply-accumulate unit. There are area,

performance, and power trade-offs in choosing between different resources such

that a metric is minimized.

• Binding: Binding determines the mapping between the operations, variables and

data (and control) transfers in the design and the specific resources in the resource

allocation. Hence, operations are mapped to specific functional units, variables to

registers, and data/control transfers to interconnection components.

• Control Generation and Optimization: Control synthesis generates a control

unit that implements the schedule, usually represented as a finite state machine.

This control unit generates control signals that control the flow of data through

the data path (i.e. through the mux). Control optimization tries to minimize the

size of the control unit and hence, improve metrics such as area and power.

Each of these tasks are interlinked and often dependent on each other. As they may

contain complicated heuristics, many things can go wrong during the synthesis process.

The motivation of my research is trying to check the equivalence of the intermediate

representation and the synthesized circuit.

2.2 FRAMEWORK FOR CERTIFICATION OF HIGH-LEVEL SYNTHESIS

FLOW

Certification of a synthesis flow amounts to the guarantee that its output preserves the se-

mantics of its input description; thus, the question of correctness of synthesized designs

is reduced to the question of analysis of the behavioral specification.

The analysis of a practical synthesis flow is non-trivial for several reasons. The trans-

formations performed by a synthesis tool include (1) “generic compilation steps” such

6

Netlist Level Design

Offline proof of transformation rules;
primitive transformations;
(Application of certified

Online proof of ad−hoc transformations)

(Clocked Control/Data Flow Graphs)
Golden Circuit Model

(Algorithms/heuristics/user−guidence
deciding sequence of primitive

Application of primitive transformations)

RTL Design

RTL Synthesis

transformations to be applied;

Yes/No
(Using Extended GSTE)

Equivalence Checking

Behavioral Synthesis Certified Compiler

Possibly manual netlist optimizations

Possibly manual RTL optimizations

V
erified C

om
ponent

(T
heorem

 P
roving or

D
ecision P

rocedures)

V
erifying C

om
ponent

(M
odel C

hecking)
Resource LibraryDescription

Behavioral Design

primitive transformations

Hardware

Sequence of applied

Figure 2.1: Framework for Analysis of High-Level Synthesis Flow

as loop unrolling, code motion, and common subexpression elimination, (2) “schedul-

ing transformations” that order operations to meet the available resource constraints,

(3) “optimizing transformations” to achieve the overall target metric of area, power, and

efficiency, and (4) “ad hoc and manual transformations” or “tweaks” are often inserted

to fine-tune the output of the automated flow to specific design metrics. A transforma-

tion may depend implicitly on complex invariants of other transformations in the overall

flow.

The overall analysis framework is shown in Fig. 2.1. In summary, we decompose

analysis of transformations into two components, verified and verifying.1 A verified

transformation is formally proven once and for all to preserve the semantics of its input.

The proof is done offline and discharged by a theorem prover. This is suitable for trans-

formations associated with generic and reusable compilation steps at the higher levels

of the synthesis flow, where the cost of theorem proving is mitigated by reusability of

the transformations. A verifying transformation is not itself verified, but each instance

1The terms “verified” and “verifying” as used here have been borrowed from analogous notions in the
compiler certification literature [20, 1].

7

of its application is accompanied by a justification of correspondence. Since the obliga-

tions are discharged for each instance, the verification must be automatic; the verifying

component is implemented by model checking. I will discuss the verifying component

in more detail in Chapter 3.

The framework requires a smooth interface between the verified and verifying com-

ponents. This interface is provided by a formal graph-based design representation,

namely clocked control data flow graph (CCDFG). The CCDFG for a design can be

derived from its behavioral description and can be viewed as the formal representa-

tion of the golden circuit model. A CCDFG can be viewed as a formal rendition of

control data flow graph (CDFG) — used as an intermediate representation in many syn-

thesis tools — augmented with the notion of a schedule. Compiler transformations are

viewed as transformations of CCDFG, and the verified component involves proof that

the CCDFG generated by a certified transformation is a refinement of its input CCDFG.

To facilitate such verification, Sandip formalized the execution semantics of CCDFG in

the ACL2 theorem prover and developed a formal notion of refinement based on exe-

cution correspondence. Theorem proving facilitates the proof of generic properties that

can certify large classes of similar transformation in one swoop. The explicit repre-

sentation of control and data flow enables definition of invariants without augmenting

the model with auxiliary flow information; scheduling enables the use of CCDFGs for

both pre-scheduling and in-scheduling transformations. The transformed CCDFG is

used by the verifying component to derive correspondence with the synthesized circuit.

My equivalence checking paradigm leverages the high capacity of GSTE-style model

checking [22] and the cycle-accurate nature of CCDFGs. The equivalence checking is

conducted as a dual-rail symbolic simulation, with the upper rail being the simulation of

the CCDFG and the lower rail being simulation of the circuit implementation. The two

rails are synchronized by clock cycle.

8

2.3 SEMANTICS OF CCDFG

In this section, I give the semantics of CCDFG. Since a CCDFG is derived from a

CDFG, we first review the notion of CDFG; we then formalize CCDFG and define its

execution semantics.

Remark. (Input Language Assumptions). We leave the underlying input language

unspecified, with the following “well-formedness” assumptions. The language is as-

sumed to provide a partition of design variables into state variables and input variables.

The legal expressions in the language are generated by a well-defined grammar over the

state and input variables and language constants; given a mapping of the variables to

constants, any legal expression is computable. Each instruction in the language can be

decomposed into a sequence of primitive operations; the set of operations includes stan-

dard arithmetic and logical operations, comparisons, assignments, etc. together with

standard if-then-else and loop constructs. Designs specifications in the language are

assumed to be amenable to usual control and data flow analysis. The control flow is

broken up into a number of basic blocks, each with a single entry and exit. Data de-

pendency is given by a “read after write” paradigm: an operation opj is data dependent

on an operation opi if opj occurs after opi in some control flow path and computes an

expression over some state variable v that is assigned most recently by opi in the path.

The language is assumed to disallow circular data dependencies.

Definition 2.1 (Control Flow and Data Flow Graphs). Let ops , {op1, . . . , opn} be a

set of operations over some set V of (state and input) variables, and bb be a set of basic

blocks each consisting of a sequence of operations over ops. A data flow graph GD

over ops is a directed acyclic graph such that each vertex of GD is a member of ops. A

control flow graph GC is a labeled graph with bb being the set of vertices and each edge

labeled with a Boolean assertion over V .

An edge in GD from opi to opj represents a data dependency from opi to opj , and an

edge in GC from bbi to bbj indicates that bbi is a direct predecessor of bbj in the control

9

flow structure of the program. An assertion along an edge is a predicate that must hold

whenever program control makes the corresponding transition.

Definition 2.2 (CDFG). Let ops , {op1, . . . , opm} be a set of operations over a set

of variables V , bb , {bb1, . . . , bbn} be a set of basic blocks over ops , GD and GC

are data and control flow graphs over ops and bb respectively. A CDFG is the tuple

GCD , 〈GD, GC , H〉, where H is a mapping H : ops → bb such that H(opi) = bbj iff

opi occurs in bbj .

The order of execution of operations in a CDFG is irrelevant as long as the control

and data dependencies are respected. The definition of microsteps below makes this

notion explicit.

Definition 2.3 (Microstep Ordering and Partition). Let GCD , 〈GC , GD, H〉, where

the set of vertices of GC is bb , {bb1, . . . , bbl}, and the set of vertices in GD is

ops , {op1, . . . , opn}. For each bbk ∈ bb, a microstep ordering is a relation ≺k over

ops(bbk) , {opi : H(opi) = bbk} such the opa ≺k opb if and only if there is a path

from opa to opb in the subgraph GD,k of GD induced by ops(bbk). A microstep partition

of bbk under ≺k is a partition Mk of ops(bbk) satisfying the following two conditions.

(1) For each p ∈ Mk, if opa, opb ∈ p then opa 6≺ opb and opb 6≺k opa. (2) If p, q ∈ Mk

with p 6= q, opa ∈ p, opb ∈ q, and opa ≺k opb, then for each opa′ ∈ p and opb′ ∈ q

opb′ 6≺k opa′ . A microstep partition of GCD is a set M containing each microstep parti-

tion Mk.

Since GD is acyclic, ≺k is an irreflexive partial order on ops(bbk) and the no-

tion of microstep partition above is well-defined. Given a microstep partition M ,
{m0,m1, . . .} of GCD each mi is called a microstep of GCD. It is convenient to view≺k

as a partial order over the microsteps of bbk, and further extend it without loss of gener-

ality to a total order. Informally, if opa and opb are in the same partition, their order of

execution does not matter; if p and q are two microsteps where p ≺k q, the operations

in p must be executed before q to respect the data dependencies.

10

Remark. We formalize the execution of a computing model as a sequence of the un-

derlying design states under a legal input sequence; given a state and legal input, the

semantics specifies the next state. For a CDFG (and CCDFG), states and inputs are the

valuation of the state and input variables; for circuit models (cf. Section 3.1), states

correspond to the valuation of latches and inputs to the valuation of input signals. When

the underlying model is clear, we use the terms “state” and “input” without qualifica-

tion; when discussing correspondence between two different models we make the model

explicit, for instance referring to “CCDFG states” and “circuit states”.

In the following definition, we leave the result of executing individual operations

unspecified, but assume that it can be derived from the input language. The result of

executing a microstep mj from state s under input i is a computable function fj that

computes the valuation of the state variables updated by the constituent operations; since

there is no data dependency among these operations, the order of evaluation does not

matter.

Definition 2.4 (Execution Semantics of CDFG). Given a CDFG, GCD, a microstep par-

tition M of GCD, and a sequence of inputs i0, i1, . . ., an execution of GCD is a state se-

quence, E , s0, s1, . . . satisfying the following conditions. (1) There exists a sequence

of microsteps P , m0,m1, . . . of GCD such that sj+1 is the result of executing mj from

state sj under input ij . (2) if mj,mj+1 ∈ bbk, then (i) mj+1 6≺k mj , and (ii) there is no

p ∈ bbk such that mj ≺k p and p ≺k mj+1. (3) If mj ∈ bbk and mj+1 ∈ bbl, k 6= l, then

(i) for each p ∈ bbk and q ∈ bbl mj 6≺k p and q 6≺l mj+1, and (ii) there is an edge e in

Gc from bbk to bbl, and (iii) the assertion on e evaluates to true under state sj and input

ij . We call P the inducing sequence of E .

We now formulate CCDFG, by augmenting a CDFG with a schedule. Consider a

microstep partition M of GCD. A schedule T of M is a partition or grouping of M ; for

m1,m2 ∈ M , if m1 and m2 are in the same group in T , we say that m1 and m2 belong

to the same scheduling step.

11

i n t gcd (i n t a , i n t b)

{
do {

i f (a < b) swap (a , b) ;

a = a % b ;

} while (a != 0) ;

return b ;

}

a=A

b=B

swap (a,b)

a=a%b

True

False

a < b

return b

a!=0

False

True

Micro Step

Scheduling

Step

Figure 2.2: Source code for GCD and the corresponding CCDFG. In the CCDFG, each

while box denotes a micro step and each shaded region denotes a scheduling step. The

primitive operations here are assignment, comparison, modular division, and swap. To

simplify presentation, only control dependency edges are shown and data dependency

edges are omitted.

Definition 2.5 (CCDFG). A CCDFG is a tuple G , 〈GCD,M, T 〉, where GCD is a

CDFG, M is a micro-step partition of GCD, and T is a schedule of M .

Fig. 2.2 shows the relation between a high-level GCD program and a corresponding

CCDFG. Note that the CCDFG corresponds closely to the high-level description.

We need the following two definitions for CCDFG execution semantics. The first

formalizes the criterion for a sequence of microsteps to respect a schedule. The second

formalizes the notion that the inputs at the same scheduling step are fixed.

Definition 2.6 (Microstep Sequence Consistency). Let M be a microstep partition of a

CDFG, T be a schedule of M , P , m0,m1, . . . be a sequence of microsteps of M , and

N be a mapping that assigns a natural number to each microstep in P . We say that P is

consistent with T under N if the following conditions hold. (1) for mi,mj ∈ P if i < j

then N(mi) ≤ N(mj); and (2) if N(mj) = N(mj+1) then mj and mj+1 belong to the

same group under T .

We say that N is a witness to consistency ofP . A microstep sequenceP is consistent

12

with T if there is a mapping N such that P is consistent with T under N .

Definition 2.7 (Input Sequence Conformance). Let M be a microstep partition of a

CDFG, T be a schedule of M , and P , m0,m1, . . . be a sequence of microsteps from

M that is consistent with T under a witness N . Then an input sequence i0, i1, . . . is

conformant with P under N and T if, for each j such that ij 6= ij+1, N(mj+1) =

N(mj) + 1.

We now formalize the semantics of CCDFG execution.

Definition 2.8 (Execution Semantics of CCDFG). Let G , 〈GCD,M, T 〉 be a CCDFG,

and P be a sequence of microcode consistent with T under a witness N . Then E ,
s0, s1, . . . is an execution of G if the following hold. (1) E is an execution of GCD

corresponding to some input sequence I , i0, i1, (2) P is an inducing sequence of

E . (3) I is conformant with P under N and T .

Thus each execution of a CCDFG is an execution of the underlying CDFG but not

vice versa; the conformance requirement restricts the sequence of legal inputs and hence

executions.

Finally, we consider outputs and observation. An output of a CCDFG G is some

computable function f of (a subset of) state variables of G; informally, f corresponds to

some output signal in the circuit synthesized from G. For each state s of G, the obser-

vation corresponding to an output f at state s is the valuation of f under s. Given a set

F of output functions, any sequence E of states of G induces a sequence of observations

O; we refer to O as the observable behavior of E under F .

2.4 CERTIFIED COMPILATION

The verified component of the framework, namely certification of transformations, uses

theorem proving to certify generic transformations applied by high-level synthesis flow.

To give readers a complete picture of the framework, I give a transformation example to

13

show the process of this component. Since it is not the main focus of my thesis, I omit

the technique details here.

Informally, the goal in certifying that a high level synthesis transformation is to

show that applying it on CCDFG G results in a refinement of G. However, we must

additionally account for the possibility that a transformation may be applicable to G only

if G has a specific structural characteristic; furthermore the result of application might

produce a CCDFG with a characteristic that facilitates the subsequent application of

another transformation. To make explicit the notion of applicability of a transformation

on a CCDFG, it is convenient to view a transformation as a “guarded command” [15, 12]

τ , 〈pre, T , post〉. Informally, τ is applicable to a CCDFG which satisfies pre and

produces a CCDFG which satisfies post.

Consider the sequence of transformations shown in Fig. 2.3 for our GCD example.

The transformed code conducts two modular operations in one cycle, thus speed up

the computation of GCD. Once we can discharge a transformation into some primitive

transformations as shown in Fig. 2.3, each primitive transformation can be proof by

theorem proving. The transformations applied in the theorem proving part may affect

the performance of model checking.

2.5 RELATED WORK

There has been much research on sequential equivalence checking (SEC) between RTL

and gate-level hardware designs [4, 17]. Research has also be done on combinational

equivalence checking between high-level designs in software-like languages (e.g., Sys-

temC) and RTL-level designs [16].

There has also been effort for SEC between software specifications and hardware

implementations [13]: GSTE assertion graphs were extended so that an assertion graph

edge have pre and post condition labels, and also associated assignments that update

state variables. These extended assertion graphs motivated our formulation of CCDFGs,

14

/∗ O r i g i n a l ∗ /

do {
i f (a < b)

swap (a , b) ;

a = a % b ;

} while (a != 0) ;

return b ;

/∗ Transformat ion 1 ∗ /

do {
i f (a < b)

swap (a , b) ;

a = a % b ;

i f (! (a != 0))

return b ;

i f (a < b)

swap (a , b) ;

a = a % b ;

} while (a != 0) ;

return b ;

/∗ Transformat ion 2 ∗ /

do {
swap (a , b) ;

a = a % b ;

i f (! (a != 0))

return b ;

swap (a , b) ;

a = a % b ;

} while (a != 0) ;

/∗ Transformat ion 3 ∗ /

do {
a = a % b ;

i f (! (a != 0))

return b ;

b = b % a ;

i f (! (b != 0))

return a ;

} while (1) ;

Figure 2.3: An example of certifiable transformation sequence. The sequence includes

(1) unrolling the loop once, (2) interpreting the “%” operation to show that (a < b) holds

after the assignment a = a % b, and (3) loop transformation through interpretation of

swap operation. Due to space limitation, we use C code instead of the CCDFGs to

represent the transformation.

15

which preserve both control/data flows and the scheduling information. My scheme is

analogous to but extends traditional GSTE-style model checking [23] in the following

sense. Like GSTE, the simulation is guided by a graph, namely the CCDFG, and the

simulation complexity largely depends on that of the graph since the fixed-point com-

putation is conducted on the CCDFG and only the current circuit state is kept; on the

other hand, CCDFGs provide richer information than assertion graphs employed by

GSTE, with explicit specification of valuation of state variables which can be symboli-

cally simulated to generate state sequences. In contrast, assertion graph edges are only

labeled with preconditions and postconditions. Also GSTE can only check properties

in bit-level, while my approach can run in both bit-level and word-level. There is also

much research on symbolic simulation of software [19], hardware [18] and embedded

systems [11] in word-level.

There has also been work on equivalence checking with other graph representations,

e.g., Signal Flow Graph (SFG) [9].

Chapter 3

EQUIVALENCE CHECKING FOR HIGH-LEVEL SYNTHESIS

The basic goal for my verification method is to check the equivalence between a verified

CCDFG and a synthesized circuit. I first formulate the notion of equivalence between a

CCDFG and a circuit. Then I discuss my approach for checking the equivalence in bit-

level. Finally, I consider word-level abstractions to scale the capacity of my equivalence

checker.

3.1 CIRCUIT MODEL

I represent a circuit as a Mealy machine specifying the updates to the state elements

(latches) in each clock cycle. My formalization of circuits is typical in traditional hard-

ware verification, but we make combinational nodes explicit to facilitate correspondence

with CCDFGs.

Definition 3.1 (Circuit). A circuit is a tuple MC = 〈I, N, F 〉 where I is a vector of

input signals; N is a pair 〈Nc, Nd〉 where Nc is a set of combinational nodes and Nd is a

set of latches; and F is a pair 〈Fc, Fd〉 where Fc maps each combinational node c ∈ Nc

to a Boolean expression over N ∪ I . and for each latch d ∈ Nd, Fd maps each latch d to

a node n ∈ N where Fd is a delay function which takes the current value of n to be the

next-state value of d.

A circuit state is an assignment to the latches in Nd; we assume a pre-assigned

initial state, corresponding to the values of the latches at reset. Given a circuit state

and a valuation of the input signals I , we compute the circuit transition at each clock

17

cycle as follows. The output of each combinational node c ∈ Nc is the valuation of

the function Fc(c) on the current circuit state and the input valuation; the next state of

each latch d ∈ Nd is the valuation of Fd(d). Combinational nodes are updated at the

beginning of a clock cycle and the latches are updated at the end; the state updates are

thus delayed to reflect propagation of signals through circuit wires.

We now formalize circuit executions. Given a sequence of valuations to the input

signals i0, i1, . . ., a circuit trace of M is the sequence of states s0, s1, . . ., where (1) s0 is

the initial state and (2) for each j > 0, the state sj is obtained by updating the elements

in Nd given the state valuation sj−1 and input valuation ij−1.

mux mux

a b

A B

<

mux mux

%

a’ b’

!=

FSM

result

swap

done

reset

start

(1)

(1) (2) (3)

(1)

(2) (2)

(3) (3)

a=A

b=B

swap (a,b)

a=a%b

True

False

a < b

return b

a!=0

False

True

Figure 3.1: Synthesized circuit for GCD and its operation mapping relation with

CCDFG in Fig. 2.2. A,B, reset, start are the input nodes, and the shaded nodes

a, a′, b, b′ are latches. The dotted lines represent the mapping from operations of CCDFG

to combinational nodes of circuit. We consider a wire to be a combinational node.

Fig. 3.1 shows a synthesized circuit derived from the CCDFG in Fig. 2.2. Note that

18

FSM is the control component of the circuit, which contains both combinational nodes

and latches. Given any circuit state, FSM will decide all control signals for the circuit,

and finally when computation finishes, the result will be available in result, and done

signal is set to true.

3.2 CORRESPONDENCE BETWEEN CCDFGS AND CIRCUITS

Given a CCDFG G and a synthesized circuit MC , how do we define execution corre-

spondence? Note that we can define a natural mapping between the inputs of G and the

input signals of MC . It is thus tempting to define the correspondence between G and

MC as follows: (1) establish a mapping between the state variables of G and the latches

in MC , and (2) stipulate an execution of G to be equivalent to an execution of MC if

they have the same sequence of observable behaviors.

However, equivalence based on fixed mappings of variables does not work in gen-

eral. Although there are fixed mappings between input variables in the CCDFG and

input signals of the circuit, the mappings between internal variables and latches may

be different in each clock cycle. We address this by introducing mappings between

the CCDFG operations and the combinational nodes in the circuit: each operation op

is mapped to the set of combinational nodes that together implement op; note that this

mapping is independent of clock cycles.

We formalize these mappings by the definitions of IMap and NMap below. Sup-

pose G is a CCDFG with a set of input variables VI and a set of operations ops,

and MC , 〈I, N, F 〉 is a circuit. Then IMap : Vi → I is a one-to-many map-

ping from the input variables of G to the input signals of M ; for each input variable

of v of G, IMap(v) returns the corresponding set of input signals of MC . Finally,

NMap : ops → Nc is a mapping from the operations of G to the combinational nodes

of MC , which determines how each operation is implemented in MC . For the GCD

example, since variables a, b are the input of CCDFG, we define IMap(a) = A and

19

IMap(b) = B (cf. Fig. 3.1). Each CCDFG operation corresponds to a combinational

node.

We now define the equivalence between a CCDFG state of G and a circuit state of

MC with respect to a given scheduling step of G and under the equivalent inputs.

Definition 3.2. A CCDFG state x of G is equivalent to a circuit state s of MC with

respect to an input i and a microstep partition M , if for each operation op in t, the inputs

to op according to x and i are equivalent to the inputs to NMap(op) according to s and

IMap(i), i.e., the values of an input to op and the corresponding input to NMap(op)

are equivalent, and the outputs of op are equivalent to the outputs of NMap(op). Given

a CCDFG G and a circuit MC , G is equivalent to M if and only if for any execution

[x0, x1, x2, . . .] of G that is generated by an input sequence [i0, i1, i2, . . .] and by the

execution [t0, t1, . . .] of G, and state sequence [s0, s1, s2, . . .] of M generated by the input

sequence [IMap(i0), IMap(i1), IMap(i2), . . .], xk and sk are equivalent with respect

to tk under ik, k ≥ 0.

Note that the initial states x0 and s0 of G and MC are irrelevant in that the operations

in the first scheduling step of G (or, respectively, the corresponding circuit nodes of M

under IMap, respectively) depend on i0 (or IMap(i0)), but not x0 (or s0). Therefore, x0

and s0 can be arbitrary while the requirement that v0 and s0 are equivalent with respect

to t0 under i0 are still satisfied.

Finally note that, not all combinational nodes in the circuit have their corresponding

operations in CCDFG. For example, the mux nodes and FSM in the circuit are not

represented in the CCDFG. These unobservable parts constitute the control component

generated by synthesis to preserve the control and data dependencies of the CCDFG,

and their correctness is implied by the equivalence of observable nodes.

20

3.3 DUAL-RAIL SIMULATION FOR SEQUENTIAL EQUIVALENCE CHECK-

ING

To check the above equivalence between a CCDFG, G, and a circuit, M , we propose a

dual-rail symbolic simulation scheme shown in Fig. 3.2.

Circuit
Refinement

Conduct

Real

Error
Report

Mapping
Eqivalence

Constraints
Input Yes. Fixed Point Computation No

No

Yes

CCDFG
Simulation of CCDFG

Single Clock Cycle

Simulation of Circuit
Single Clock Cycle

Violation?
Equivalent?

Figure 3.2: Dual-Rail Simulation Scheme for Equivalence Checking

The upper rail simulates G while the lower rail simulates MC . The two rails are syn-

chronized by clock cycle, and follow an abstraction/refinement paradigm. The equiva-

lence checking scheme for clock cycle k can be roughly summarized as follows:

1. The current CCDFG state xk and circuit state sk are checked to see whether for the

input ik, the inputs to each operation op in the scheduling step tk are equivalent

to the inputs to its corresponding circuit nodes in NMap(op). If the inputs are

equivalent, go to Step 2; otherwise, go to Step 3.

2. G is simulated by executing tk on xk under ik to obtain state xk+1, recording

the outputs of each op ∈ tk. Correspondingly, M is simulated for one clock cycle

from sk under the input IMap(ik) to obtain circuit state sk+1. The outputs of each

op are checked for equivalence under NMap against the outputs of the nodes in

NMap(op). If the inputs are equivalent, go to Step 4; otherwise, go to Step 3.

21

3. We check if the failure on equivalence check is a false negative caused by ab-

straction. If there is no false negative, the problem is reported; otherwise, the

abstraction is refined. The report is associated with an error trace that contains the

CCDFG state sequence, the execution of G, and the circuit state sequence of MC

up to the current clock cycle.

4. The scheduling step tk+1 is determined based on the control flow. If tk has mul-

tiple outgoing control edges, the last microstep of tk executed in the simulation

above is identified. The outgoing control edge from this micro-step whose condi-

tion evaluates to be true leads to tk+1.

The simulation proceeds cycle-by-cycle until either (i) the equivalence check fails,

or (ii) a fixed point is reached and there is no observable inconsistency between CCDFG

and circuit. If there is a mismatch during the equivalence checking for a certain op-

eration. There may be two possible causes either (i) the synthesized operation is not

correctness, possibly by choosing the wrong bit width for that operation, or (ii) the FSM

is not correctly implemented, so the data is going through the wrong data path. In all,

my mapping relation can capture synthesize errors in both data flow and control flow.

3.4 OPTIMIZATION THROUGH WORD-LEVEL ABSTRACTION

Among the research on equivalence checking of sequential circuits, Binary Decision

Diagrams (BDD) [5] are a very successful representation for model checking on many

practical systems. However, BDD-based method cannot scale well to verify very large

designs. That is mainly because, to conduct equivalence checking using BDDs, we need

to do two things.

1. All the variables in CCDFG should be represented in bit-level. As a result, the

performance of model checking largely depends on the bit width of the design

being considered. The more bit width we are trying to verify, the more variables

we need to use for BDDs.

22

2. All high-level operations, such as addition and multiplication, need to be imple-

mented in bit-level. For some functions like multiplication, the size of BDDs can

grow exponentially in the number of variables being considered.

This motivates the development of tools which can operate at a higher level of ab-

straction. In this thesis, I use word-level abstraction to represent the states in CCDFG,

and borrow a Satisfiability Modulo Theories (SMT) solver CVC3 [3] as the decision

procedure.

CVC3 is a SMT solver that supports the theories of linear arithmetic, bit vectors

and uninterpreted functions. Unfortunately, some complicated computations, such as

nonlinear arithmetic, is undecidable in general. In order to solve this problem, I have to

make a simplifying assumptions: the control flow must be analyzable — the designer

can give a iteration bound for all loops. Otherwise, my equivalence checker can only

check whether a CCDFG and a circuit is equivalent up to a fixed bound. To the best of

my knowledge, many industry design have bounded loops, so this simplification does

not reduce too much practical usefulness of my approach.

Furthermore, I assume CCDFG and the synthesized circuit have very similar control

flow. As we are simulating CCDFG in word-level, we also need to abstract the circuit

into word-level. As a first step, I build a CCDFG for the circuit based on its VHDL

implementation, and then check whether the two CCDFGs are equivalent in word-level.

If the control structure is too different, we cannot verify the equivalence due to the

imprecision introduced by word-level abstraction.

3.4.1 Uninterpreted Functions

Under the above simplifications, my equivalence checker use uninterpreted functions to

handle undecidable part of the operations. An uninterpreted function is a function that

knows nothing other than its name and it is a function in mathematical sense (it does

not have side-effects). For example, if we know that a = x and b = y, then we know

23

f(a, b) = f(x, y), regardless of what the function f is and what data type of a, b, x and

y are.

Uninterpreted functions naturally abstract away the details of hardware data path

operations. This abstraction makes a lot of sense in the high-level synthesis flow, since

we care more on the higher-level problem of what operations are being applied to what

operands, instead of whether a multiplier actually multiplies. This abstraction is partic-

ularly useful when some data path does not effect the control flow of the program. In

this case, we do not need to evaluate the results without losing any information.

The abstraction is also conservative — the abstraction will not cause two inequiv-

alent designs to be declared equivalent — but it is sometimes too conservative. For

example, if in CCDFG we have a × 2, and in the synthesized circuit, the operation be-

comes left shifting a by one bit. Although these two operations are equivalent for bit

vector a. But uninterpreted functions can not handle this case. The good thing is that

since we have the mapping relation of operations between CCDFG and circuit, we can

pre-certify all these operations are equivalent in bit-level, and use the same uninterpreted

functions to abstract them in the equivalence checking process.

Uninterpreted functions can handle overflow as well. For example, consider two

computations (A + B) − C and (A − C) + B. If we interpret the meaning of addition

and substraction, the equivalence checker will report equivalence for these two compu-

tations. However, if A+B overflows, whereas A−C+B does not, the two computations

will have different results. Uninterpreted functions do not consider the associativity, and

therefore can correctly report the two are not equivalent.

3.4.2 Reducing False Negatives

Since the abstraction is conservative, the equivalence checker may falsely report two

equivalent CCDFGs to be inequivalent. We need to have a way to reduce the chance of

encountering false negatives. The basic idea is to use abstraction refinement technique

to add more information into the model being verified. Currently, we support users to

24

manually decide the appropriate level of abstraction, and refine the CCDFG. There are

several approaches to do the abstraction refinement:

• Full interpretation: If the operation can be specified in linear arithmetic or bit

vector, we can use these theories and change the operations to be interpreted.

• Partial interpretation: Operations sometimes only need a partial interpretation

instead of a full interpretation. For example, if we only care whether a multi-

plication operation will get 0 or not (SMT solver can not decide multiplication in

general). We can partially interpreted the function as mult(a,b): If a==0

OR b==0 THEN 0 ELSE mult’(a,b);, where mult’ is an uninterpreted

function.

• Bit-blasting: We can bit-blasting some operations in bit-level. This may lose the

advantage of SMT solver, since we only use the Boolean expression to represent

the problem. But since SMT is not decidable in general, in the worst case, we

have to bit-blasting everything into bit-level. In many cases, when the control flow

does not tightly depend on the data, we may bit-blasting all the control conditions,

while still take the advantage of uninterpreted functions on data.

3.5 EXPERIMENTAL RESULTS AND DISCUSSION

We implemented the above equivalence checking algorithm in the Intel Forte environ-

ment [21]. The equivalence checking is based on symbolic simulation; symbolic states

are represented at bit-level using BDDs, and at word-level using theories supported by

CVC3.

To assess the practical usefulness of my approach, I applied my equivalence checker

to two designs: The GCD algorithm and a pipelined design synthesized by xPilot [10].

All experiments were conducted on a workstation with 3GHz Intel Xeon processor with

2GB memory.

25

Before trans. seq. in Fig. 2.3 After trans. seq. in Fig. 2.3

Bit Circuit # of Time BDD Circuit # of Time BDD

Width Nodes Steps (Sec.) Nodes Nodes Steps (Sec.) Nodes

2 96 20 0.02 503 135 16 0.02 560

3 164 33 0.05 4772 240 22 0.04 5542

4 246 48 0.11 42831 373 34 0.11 55646

5 342 63 0.59 16244 534 40 0.79 90599

6 452 78 12.50 39968 723 58 17.78 51977

7 576 93 369.31 220891 940 70 376.48 84834

8 714 108 6850.56 1197604 1185 82 5798.03 589557

Table 3.1: Equivalence Checking Results for GCD in bit-level

We first checked the equivalence of the GCD algorithm totally in word-level, and

using uninterpreted functions to represent modular operation. We finished the equiva-

lence checking within one second for 8-bit GCD, and the equivalence checker reports

the CCDFG and circuit is not equivalent. Since the control flow of GCD algorithm re-

quires the full interpretation of modular operation, which is not supported by CVC3.

In order to eliminate false negatives, we bit-blast all the operations in the CCDFG, and

check the equivalence in bit-level. Table 3.1 shows the results for GCD before and af-

ter the transformation sequence in Fig. 2.3. In all cases, the equivalence checker can

correctly report the equivalence of CCDFG and the synthesized circuit. However, the

running time grows exponentially when the bit width increases. For the 8-bit GCD, the

equivalence checking finished within 2 hours and the number of BDDs required is not

prohibitive. It is interesting to note that the number of steps performed for equivalence

checking provides a good estimation for the effectiveness of the transformation — the

fewer number of steps needed to reach fixed-point, the more likely the circuit can run

in less time. However, the performance gain in real circuit does not necessarily im-

ply the performance improvement in equivalence checking, because the transformation

26

P ipe l i ne (C,N) {
r e s u l t = 0 ;

for (i = 0 ; i < N; i ++) {
tmp = i ∗ C;

r e s u l t = r e s u l t + tmp ;

}
return r e s u l t ;

}

Figure 3.3: Behavioral description of a loop

also increases the number of circuit nodes, and the total number of modular operations

required is the same as the unoptimized version. Therefore, increasing the circuit simu-

lation time.

The other example we use is a for loop with and without pipelined design, generated

by xPilot. Fig. 3.3 shows high-level design of the loop. Each of the operation “*” and

“+” will take one cycle to finish. In the unpipelined design, the circuit takes two cycles

for each iteration. The pipelined design only need one cycles for each iteration. We

abstract both versions of the circuit as CCDFGs and check the equivalence with the

CCDFG derived from Fig. 3.3. We use linear arithmetic to represent the addition and

uninterpreted function to represent multiplication. Since the control flow does not need

to check the result of the multiplication, my equivalence checker can successfully report

the CCDFGs are equivalent for both unpipelined and pipelined design. The running

time for the whole verification takes three minutes to finish for 8-bit implementations.

Chapter 4

CONCLUSION AND FUTURE WORK

We have demonstrated a formal sequential equivalence verification for high-level syn-

thesis flow, based on symbolic simulation in both bit-level and word-level. By giving

a mapping relation for operations extracted from high-level synthesis flows, we defined

the notion of equivalence between a CCDFG and a circuit. The approach is capable

of verifying circuits with complicated control logics and multiple clock cycles. The

word-level representation scales the equivalence checking for many practical designs.

It must be admitted, however, that certification of practical synthesis flows is a sub-

stantial enterprise. Significant further research is necessary to facilitate the verification

of a practical synthesis flow such as SPARK [14] or xPilot [10]. Further research is

needed to improve the scalability, and accuracy of the equivalence checking. For scal-

ability, research is needed to find ways to decompose a larger verification problem into

smaller, more tractable ones. For example, by finding equivalent cut points between

two CCDFGs, or by using the information provided by the theorem proving part to

do induction or compositional model checking. An obvious way to improve accuracy

is to develop an automatic counterexample guided abstraction refinement loop [7, 8].

For example, when the word-level model checker reports inequivalency, it generates an

counterexample of the control path. We simulate this single control path in bit-level,

and decide whether this is a spurious counterexample or not. If it is a spurious coun-

terexample, we try to identify the cause of the imprecision and automatically add more

information into the model. We need to carefully tune the level of abstraction, since too

much abstraction yields inaccurate results, while too little results in complexity blow-

up.

28

REFERENCES

[1] Cryptol: The Language of Cryptography. See URL: http://www.cryptol.net.

[2] Forte Design Systems. Behavioral Design Suite. See URL:

http://www.forteds.com.

[3] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooper-

ating validity checker. In Rajeev Alur and Doron A. Peled, editors, Proceedings of

the 16th International Conference on Computer Aided Verification (CAV ’04), vol-

ume 3114 of Lecture Notes in Computer Science, pages 515–518. Springer-Verlag,

July 2004. Boston, Massachusetts.

[4] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen. Scalable

sequential equivalence checking across arbitrary design transformations. In Inter-

national Conference on Computer Design, 2006.

[5] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677–691, 1986.

[6] Celoxica. DK design suite. See URL: http://www.celoxica.com.

[7] Y. Chen, Y. He, F. Xie, and J. Yang. Automatic abstraction refinement for gen-

eralized symbolic trajectory evaluation. In Formal Methods in Computer-Aided

Design (FMCAD), 2007.

[8] Y. Chen, F. Xie, and J. Yang. Optimizing automatic abstraction refinement for gen-

eralized symbolic trajectory evaluation. In Design Automation Conference (DAC),

2008.

29

[9] L. Claesen, M. Genoe, and E. Verlind. Implementation/specification verification

by means of SFG-Tracing. In CHARME, 1993.

[10] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. Behavioral and Communication

Co-Optimizations for Systems with Sequential Communication Media. In DAC,

2006.

[11] David W. Currie, Xiushan Feng, Masahiro Fujita, Alan J. Hu, Mark Kwan, and

Sreeranga P. Rajan. Embedded software verification using symbolic execution and

uninterpreted functions. International Journal of Parallel Programming, 34(1):61–

91, 2006.

[12] E. W. Dijkstra. Guarded Commands, Non-determinacy and a Calculus for Deriva-

tion of Programs. Communications of the ACM, 18:453–457, 1975.

[13] X. Feng, A. J. Hu, and J. Yang. Partitioned model checking from software specifi-

cations. In ASP-DAC, pages 583–587, 2005.

[14] D. Gajski, N. D. Dutt, A. Wu, and S. Lin. High Level Synthesis: Introduction to

Chip and System Design. Kluwer Academic Publishers, Norwell, MA, 1993.

[15] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communica-

tions of the ACM, 12(10):576–583, 1969.

[16] A. J. Hu. High-level vs. RTL combinational equivalence: An introduction. In

International Conference on Computer Design, 2006.

[17] D. Kaiss, S. Goldenberg, Z. Hanna, and Z. Khasidashvili. Seqver: A sequential

equivalence verifier for hardware designs. In International Conference on Com-

puter Design, 2006.

[18] Alfred Kölbl, James H. Kukula, and Robert F. Damiano. Symbolic rtl simulation.

In Design Automation Conference (DAC), pages 47–52, 2001.

30

[19] Alfred Kölbl and Carl Pixley. Constructing efficient formal models from high-

level descriptions using symbolic simulation. International Journal of Parallel

Programming, 33(6):645–666, 2005.

[20] X. Leroy. Formal Certification of a Compiler back-end, or: Programming a Com-

piler with a Proof Assistant. In POPL, 2006.

[21] C.-J.H. Seger, R.B. Jones, J.W. O’Leary, T.F. Melham, M. Aagaard, C. Barrett, and

D. Syme. An industrially effective environment for formal hardware verification.

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 24(9),

2005.

[22] J. Yang and C.-J. H. Seger. Generalized symbolic trajectory evaluation — abstrac-

tion in action. In FMCAD, November 2002.

[23] J. Yang and C.-J. H. Seger. Introduction to generalized symbolic trajectory evalu-

ation. Transaction on VLSI Systems, 11(3), June 2003.

