Formal Verification for High-Assurance Behavioral
Synthesis*

Sandip Ray!, Kecheng Hao?, Yan Chen?, Fei Xie?, and Jin Yang?

! Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712
2 Department of Computer Science, Portland State University, Portland, OR 97207
3 Toyota Technological Institute at Chicago, Chicago, IL 60637**

4 Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124

Abstract. We present a framework for certifying hardware designs generated
through behavioral synthesis, by using formal verification to certify the associ-
ated synthesis transformations. We show how to decompose this certification into
two components, which can be respectively handled by the complementary verifi-
cation techniques, theorem proving and model checking. The approach produces
a certified reference flow, composed of transformations distilled from production
synthesis tools but represented as transformations on graphs with an associated
formal semantics. This tool-independent abstraction disentangles our framework
from the inner workings of specific synthesis tools while permitting certification
of hardware designs generated from a broad class of behavioral descriptions. We
provide experimental results suggesting the scalability on practical designs.

1 Introduction

Recent years have seen high complexity in hardware designs, making it challenging
to develop reliable, high-quality systems through hand-crafted Register Transfer Level
(RTL) or gate-level implementations. This has motivated a gradual migration away from
RTL towards Electronic System Level (ESL) designs which permit description of de-
sign functionality abstractly in high-level languages, e.g., SystemC. However, the ESL
approach crucially depends on reliable tools for behavioral synthesis, that is, automated
synthesis of a hardware circuit from its ESL description. Behavioral synthesis tools ap-
ply a sequence of transformations to compile the ESL description to an RTL design.

Several behavioral synthesis tools are available today [1I2I3/4]. Nevertheless, and
despite its great need, behavioral synthesis has not yet found wide acceptance in in-
dustrial practice. A major barrier to its adoption is the lack of designers’ confidence in
correctness of synthesis tools themselves. The difference in abstraction level between a
synthesized design and the ESL description puts the onus on behavioral synthesis to en-
sure that the synthesized design indeed conforms to the description. On the other hand,
synthesis transformations necessary to produce designs satisfying the growing demands
of performance and power include complex and aggressive optimizations which must
respect subtle invariants. Consequently, synthesis tools are often either (a) error-prone
or (b) overly conservative, producing circuits of poor quality and performance [413]].

* This research was partially supported by a grant from Intel Corporation.
** Yan Chen was a M..S. student at Portland State University when he participated in this research.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 337 20009.
(© Springer-Verlag Berlin Heidelberg 2009

338 S. Ray et al.

In this paper, we develop a scalable, mechanized framework for certifying behavioral
synthesis flows. Certification of a synthesis flow amounts to the guarantee that its output
preserves the semantics of its input description; thus, the question of correctness of the
synthesized design is reduced to the question of analysis of the behavioral description.
Our approach is distinguished by two key features:

— Our framework is independent of the inner workings of a specific tool, and can be
applied to certify designs synthesized by different tools from a broad class of ESL
descriptions. This makes our approach particularly suitable for certifying security-
critical hardware which are often synthesized from domain-specific languages [6]).

— The approach produces a certified reference flow, which makes explicit generic
invariants that must be preserved by different transformations. The reference flow
serves as a formal specification for reliable, aggressive synthesis transformations.

Formal verification has enjoyed significant successes in the analysis of industrial hard-
ware designs [Z/8]. Nevertheless, applying formal verification directly to certify a syn-
thesized design is undesirable for two reasons. First, it defeats the very purpose of
behavioral synthesis as a vehicle for raising design abstraction since it requires reason-
ing at the level of the synthesized design rather than the behavioral description. Second,
the cost of analyzing a complex design is substantial and the cost must be incurred
for each design certification. Instead, our approach targets the synthesis flow, thereby
raising the level of abstraction necessary for design certification.

In the remainder of this section, we first provide a brief overview of behavioral syn-
thesis with an illustrative example; we then describe our approach in greater detail.

1.1 Behavioral Synthesis and an Illustrative Example

A behavioral synthesis tool accepts a design description and a library of hardware re-
sources; it performs a sequence of transformations on the description to generate RTL.
The transformations are roughly partitioned into the following three phases.

— Compiler transformations. These include loop unrolling, common subexpression
elimination, copy propagation, code motion, etc. Furthermore, expensive opera-
tions (e.g., division) are often replaced with simpler ones (e.g., subtraction).

— Scheduling. This phase determines the clock step for each operation. The ordering
between operations is constrained by the data and control dependencies. Scheduling
transformations include chaining operations across conditional blocks and decom-
posing one operation into a sequence of multi-cycle operations based on resource
constraints. Furthermore, several compiler transformations are employed, exploit-
ing (and creating opportunities for) operation decomposition and code motions.

— Resource binding and control synthesis. This phase binds operations to func-
tional units, allocates and binds registers, and generates the control circuit to im-
plement the schedule.

After these transformations, the design can be expressed as RTL. This design is sub-
jected to further manual optimizations to fine-tune for performance and power.

Each synthesis transformation is non-trivial. The consequence of their composition
is a significant difference in abstraction from the original description. To illustrate this,

Formal Verification for High-Assurance Behavioral Synthesis 339

void encrypt (uint32 tx v, uint32 tx k) { @ V[”Ivm —
/x set up =/ | l l ’Wﬁne‘::
uint32 t vo=v[0], vi=v[1], sum=0, i; i logic
/x a key schedule constant x/ X e
uint32 t delta=0x9e3779b9; r M
/x cache key x/ Phi T
uint32 t k0=k[0], ki1=k[1], newen
k2=k[2], k3=k[3];

| A B
e
newbin {¢—t——o{

/« basic cycle start x/ K7 ki %*
for (i=0; i < 32; i++) { 5 L = FSM
sum += delta; L V(o] eTg;.
vO += ((v1<<4)+k0) (vl + sum) oo ok
“((v1i>>5)+k1); out =
vl += ((v0<<4)+k2)"(v0 + sum) ; VF(’)hiO I
“((vO>>5)+k3); T 8 -
} N
/% end cycle %/ oul‘:1\0+\|i‘/“((\0>>5hl+|2) Iﬁ;@
v[0]=v0; v[1]=v1;
} V[0]
(A) (B)

Fig. 1. (A) C code for TEA encryption function. (B) Schema of RTL synthesized by AutoPilot.

consider the synthesis of the Tiny Encryption Algorithm (TEA) [9]. Fig. [l shows a
C implementation and the circuit synthesized by the AutoPilot behavioral synthesis
tool [10]. The following transformations are involved in the synthesis of the circuit.

— In the first phase, constant propagation removes unnecessary variables.

— In the second phase, the key scheduling transformation performed is pipelining, to
enable overlapping execution of operations from different loop iterations.

— In the third phase, operations are bound to hardware resources (e.g., “+” operation
to an adder), and the FSM module is generated to schedule circuit operations.

Each transformation must respect subtle design invariants. For instance, paralleling
operations from different loop iterations must avoid race conditions, and scheduling
must respect data dependencies. Since such considerations are entangled with low-level
heuristics, it is easy to have errors in the synthesis tool implementation, resulting in
buggy designs [3]. However, the difference in abstraction level makes direct comparison
between the C and RTL descriptions impractical; performing such comparison through
sequential equivalence checking requires cost-prohibitive symbolic co-simulation
to check input/output correspondence.

1.2 Approach Overview

We address the above issue by breaking the certification of behavioral synthesis trans-
formations into two components, verified and verifyingEl Fig. 2l illustrates our frame-
work. A verified transformation is formally certified once and for all using theorem

! The terms “verified” and “verifying” as used here are borrowed from analogous notions in the
compiler certification literature.

340 S. Ray et al.

Behavioral Design Hardware
Description Resource Library

Behavioral Synthesis Certified Compiler
Sequence of applied
(Algorithms/heuristics/user—guidence | primitive transformations (Application of certified

deciding sequence of primitive ~ - ------ > primitive transformations;
transformations to be applied; Offline proof of transformation rules;)
Application of primitive transformations)

(S2INpa201d UOISINA
10 BuiAo1g wot0aYy L)
Juauodwo)) payLIdA

Synthesized RTL

Golden Circuit Model -
(Clocked Control/Data Flow Graphs) -

Manual RTL Optimizations

Manually Optimized RTL

Equivalence Checking

[—>Yes/No

(BuryoayD [9poI)
Jusuoduwo)) SurkyLap

Fig. 2. Framework for certification of behavioral synthesis flows

proving; a verifying transformation is not itself verified, but each instance is accom-
panied by a verification of correspondence between input and output. The viability of
decomposition is justified by the nature of behavioral synthesis. Transformations ap-
plied at the higher level, (e.g., compiler and scheduling transformations) are generic.
The cost of a monolithic proof is therefore mitigated by the reusability of the transfor-
mation over different designs. Such transformations make up the verified component.
On the other hand, the optimizations performed at the lower levels are unique to the de-
sign being synthesized; these transformations constitute the verifying component. Since
the verification is discharged per instance, it must be fully automatic. However, these
transformations tend to be localized and independent of global invariants, making it
tractable to verify them automatically by sequential equivalence checking.

1.3 Golden Circuit Model and Synthesis Certification

In a practical synthesis tool, transformations are implemented with low-level, optimized
code. A naive approach for the verified component, e.g., to formally verify such a tool
with all optimizations would be prohibitive. Furthermore, such an approach would tie
the framework to a single tool, limiting reusability.

To mitigate this challenge, we develop a formal, graph-based abstraction called
clocked control/data flow graph (CCDFG), which serves as the universal golden circuit
model. We discuss our formalization of CCDFG in Section 2l CCDFG is an abstrac-
tion of the control/data flow graph (CDFG) — used as an intermediate representation in
most synthesis tools — augmented with a schedule. The close connection between the
formal abstraction and the representation used in a synthesis flow enables us to view
synthesis transformations as transformations on CCDFG, while obviating a morass of
tool-specific details. We construct a reference flow as a sequence of CCDFG transforma-
tions as follows: each transformation generates a CCDFG that is guaranteed to preserve
semantic correspondence with its input. A production transformation is decomposed
into primitive transformations, together with algorithms/heuristics that determine the

Formal Verification for High-Assurance Behavioral Synthesis 341

application sequence of these transformations. Once the primitive transformations are
certified, the algorithms or heuristics do not affect the correctness of a transformation
sequence, only the performance. The reference flow requires no knowledge about the
algorithms/heuristics which are often confidential to a synthesis tool.

Given a synthesized hardware design D and its corresponding behavioral description,
the certification of the hardware can be mechanically performed as follows.

— Extract the CCDFG C from the behavioral description.

— Apply the certified primitive transformations from the reference flow, following the
application sequence provided by the synthesis tool. The result is a CCDFG C’ that
is close to to D in abstraction level.

— Apply equivalence checking to guarantee correspondence between C’ and D.

The overall correctness of this certification is justified by the correctness of the verified
and verifying components and their coupling through the CCDFG C’.

How does the approach disentangle the certification of a synthesized hardware from
the inner workings of the synthesis tool? Although each certified transformation mimics
a corresponding transformation applied by the tool, from the perspective of certifying
the hardware they are merely heuristic guides transforming CCDFGs to facilitate equiv-
alence checking: certification of the synthesized hardware reduces to checking that the
initial CCDFG reflects the design intent. The initial CCDFG can be automatically ex-
tracted from the synthesis tools’ initial internal representation Furthermore, the frame-
work abstracts low-level optimizations making the verification problem tractable.

The rest of the paper is organized as follows. In Section[2]we present the semantics of
CCDFG. In Section[3 we discuss how to use theorem proving to verify the correctness
of generic CCDFG transformations. In Section] we present our equivalence checking
procedure. We provide initial experimental results in Section[3] discuss related work in
Section[@ and conclude in Section[7]

2 Clocked Control/Data Flow Graphs

A CCDFG can be viewed as a formal control/data flow graph (CDFG) — used as inter-
nal representation in most synthesis tools including Spark and Autopilot — augmented
with a schedule. Fig. 8] shows two CCDFGs for the TEA encryption. The semantics
of CCDFG are formalized in the logic of the ACL2 theorem prover [12]]. This section
briefly discusses the formulation of a CCDFG; for a more complete account, see [13].
The formalization of CCDFG assumes that the underlying language provides the
semantics for a collection ops of primitive operations. The primitive operations in Fig.[T]
include comparison and arithmetic operations. We also assume a partition of design
variables into state variables and input variables. Variable assignments are assumed to
be in a Static in Single Static Assignment (SSA) form. Design descriptions are assumed
to be amenable to control and data flow analysis. Control flow is broken up into basic

% Since the input description is normally unclocked, the initial CCDFG does not contain sched-
ule information, and can be viewed as a CDFG. Schedules are generated by synthesis transfor-
mations that turn the unclocked representation to a clocked one.

342 S. Ray et al.

[Ingut | [I InBul -]
i tart =
Microstep [_delta0 = 0x9e377909 | | P |
\\ a i
——
N = L [_start ==
\ | newPhi = phi (0, newbin); Y
y v1_0 = phi (v[1], tmp56); |tmp54 = (tmp41 << 4 + k2) A
v0_0 = phi (v[0], tmp41) tm549
[tmp56 =tmp54 +v1_ 0 |
=i
v{0] = v0_0; : - newPhi = phi (0, newbin);
vi1]=vi_0 [newbin = T'ewPhl +1] V1.0 = phi (V[1]tmp56);
return [sumo= ne\:vPhi*deItaO | v0_0 = phi (v[0], tmp41)
7 [
// [tmp26 = SLim0+deIta0 | = g'n e
. wbIn = W |+
ol imp39 = (i 0 << 4) + k0) 2 z{?} Zao [Sum0 = newPh0x95377959]
Step (tmp26 + v1_0) A (v1_0>>5) o umo = newPhi*0x
+k1)) [return | [pl_start = 1 |
T T
! £
£ 2
[tmpal =tmp39+v0 0 | [tmp26 = sum(l+0x9e3779b9 |
¥
tmp49 = (tmp41+tmp26) tmp39 = ((v1_0 << 4) + k0) A
A((tmp41>>5)+k3) (tmp26 + v1_0) A ((v1_0>>5)
T + k1))
i 1
tmp54 = ((tmp41 << 4 + k2) A —
| tmp49) [tmpa1= tmp39 +v0_0]
* tmp49 = (tmp41 + tmp26)
[_mpS6=tmp54+vi0 | | ((tmp41 >> 5) + k3)
[f
(A) B)

Fig. 3. (A) Initial CCDFG of TEA encryption function. (B) Transformed CCDFG after pipelining.
The shaded regions represent scheduling steps, and white boxes represent microsteps. For brevity,
only the control flow is shown; data flow is omitted. Although the underlying operations are
assumed to be in SSA form, the diagrams aggregate several single assignments for simplicity.

blocks. Data dependency is given by “read after write” paradigm: op; is data dependent
on op; if op; occurs after op; in some control flow path and computes an expression over
some state variable v that is assigned most recently by op; in the path. The language is
assumed to disallow circular data dependencies.

Definition 1 (Control and Data Flow Graphs). Let ops = {op,...,op,} be a set
of operations over some set V of (state and input) variables, and bb be a set of basic
blocks each consisting of a sequence of operations. A data flow graph G'p over ops is
a directed acyclic graph with vertex set ops. A control flow graph G¢ is a graph with
vertex set bb and each edge labeled with an assertion over V.

Anedge in G p from op; to op; represents data dependency, and an edge in G'¢ from bb;
to bb; indicates that bb; is a direct predecessor of bb; in the control flow of. An assertion
on an edge holds whenever program control makes the corresponding transition.

Definition 2 (CDFG). Let ops = {op1,...,0pm} be a set of operations over a set
of variables V, bb £ {bb1,...,bb,} be a set of basic blocks over ops, Gp and G¢
are data and control flow graphs over ops and bb respectively. A CDFG is the tuple
Gep £ (Gp,Ge, H), where H is a mapping H : ops — bb such that H(op;) = bb;
iff op; occurs in bb;.

Formal Verification for High-Assurance Behavioral Synthesis 343

The execution order of operations in a CDFG is irrelevant as long as control and data
dependencies are respected. The definition of microsteps makes this notion explicit.

Definition 3 (Microstep Ordering and Partition). Let Gop = (Gc, Gp, H), where
the set of vertices of G¢ is bb £ {bb1,...,bb;}, and the set of vertices in Gp is
ops = {opi,...,opn}. For each bby, € bb, a microstep ordering is a relation <y,
over ops(bby) = {op; : H(op;) = bby} such that op, <y opy if and only if there is
a path from op,, to opy in the subgraph Gp i, of Gp induced by ops(bby,). A microstep
partition of bby, under <y is a partition My, of ops(bby) satisfying the following two
conditions. (1) For each p € My, if opa,opy € p then op, 4 opy and opy, Ak 0pa- (2)
If p,q € My withp # q, ops € p, opy € q, and op, <. opy, then for each op, € p
and opy € q opy A 0per- A microstep partition of Gop is a set M containing each
microstep partition M.

If op, and opy, are in the same partition, their order of execution does not matter; if p
and ¢ are two microsteps where p <y ¢, the operations in p must be executed before
q to respect the data dependencies. Note that we treat different instances of the same
operation as different (with same semantics); this permits stipulation of H as a function
instead of a relation, and simplifies the formalization. In Fig.[3, each white box corre-
sponds to a microstep partition. Since G p is acyclic, < is an irreflexive partial order
on ops(bby) and the notion of microstep partition is well-defined. Given a microstep
partition M = {mg, m1,...} of Gop each m; is called a microstep of Gop. It is
convenient to view <, as a partial order over the microsteps of bby,.

CCDEFGs are formalized by augmenting a CDFG with a schedule. Consider a mi-
crostep partition M of Gop. A schedule T of M is a partition or grouping of M ; for
mi, me € M, if m; and my are in the same group in 7', we say that they belong to the
same scheduling step. Informally, if two microsteps in M are in the same group in T’
then they are executed within the same clock cycle.

Definition 4 (CCDFG). A CCDFG is a tuple G 2 (Gcp, M, T), where Gep is a
CDFG, M is a microstep partition of Gop, and T is a schedule of M.

We formalize CCDFG executions through a state-based semantics. A CCDFG state is
a valuation of state variables, and a CCDFG input is a valuation of input variables. We
also assume a well-defined initial state. Given a sequence Z of inputs, an execution of
a CCDFG G = (G¢p, M, T) is a sequence of CCDFG states that corresponds to an
evaluation of the microsteps in M respecting T'.

Finally, we consider outputs and observation. An output of a CCDFG G is some
computable function f of (a subset of) state variables of G; informally, f corresponds
to some output signal in the circuit synthesized from G. To formalize this in ACL2’s
first order logic, the output is restricted to a Boolean expression of the state variables;
the domain of each state variable itself is unrestricted, which enables us to represent
programs such as the Greatest Common Divider (GCD) algorithm that do not return
Boolean values. For each state s of G, the observation corresponding to an output f at
state s is the valuation of f under s. Given a set F' of output functions, any sequence £
of states of GG induces a sequence of observations O; we refer to O as the observable
behavior of £ under F.

344 S. Ray et al.

3 Certified Compilation

Certifying a transformation 7 requires showing that if the application of 7 on a CCDFG
G generates a new CCDFG (', then there is provable correspondence between the
executions of G and G’. The certification process crucially depends on a formal notion
of correspondence to relate the executions of G and G’. Note that the notion must
comprehend differences between execution order of operations as long as the sequence
of observations is unaffected. The notion we use is loosely based on stuttering trace
containment [14/15]. Roughly, a CCDFG G’ refines G if for each execution of G’ there
is an execution of GG that produces the same observable behavior up to stuttering. We
formalize this notion below.

Definition 5 (Compressed Execution). Let £ £ s, 51, . . . be an execution of CCDFG
G and F be a set of output functions over G. The compression of £ under F is the
subsequence of € obtained by removing each s; such that f(s;) = f(siy1) for every
fer.

Definition 6 (Trace Equivalence). Let G and G’ be two CCDFGs on the same set
of state and input variables, £ and &' be executions of G and G' respectively, and F
be a set of output functions. We say that £ is trace equivalent to &' if the observable
behavior of the compression of € under F is the same as the observable behavior of the
compression of &' under F'.

Definition 7 (CCDFG Refinement). We say that a CCDFG G’ refines G if for each
execution £' of G' there is an execution € of G such that £ is trace equivalent to £'.

Remark 1. For the verified component, we use refinement instead of full equivalence as
a notion of correspondence between CCDFGs, to permit connecting the same ESL de-
scription with a number of different concrete implementations. In the verifying frame-
work, we will use a stronger notion of equivalence (and indeed, equivalence without
stuttering), to facilitate sequential equivalence checking.

In addition to showing that a transformation on a CCDFG G produces a refinement of
G, we must account for the possibility that a transformation may be applicable to G
only if G has a specific structural characteristic; furthermore the result of application
might produce a CCDFG with a characteristic to facilitate a subsequent transformation.
To make explicit the notion of applicability of a transformation, we view a transforma-
tion as a “guarded command” 7 = (pre, 7, post): T is applicable to a CCDFG which
satisfies pre and produces a CCDFG which satisfies post.

Definition 8 (Transformation Correctness). A transformation T = (pre, T, post) is
correct if the result of applying T to any CCDFG G satisfying pre refines G and satisfies
post.

The following theorem is trivial by induction on the sequence of transformations. Here
[7o, ..., 7,] represents the composition of 7y, ..., 7,,.

Theorem 1 (Correctness of Transformation Sequences). Let 79, . . ., 7,, be some se-
quence of correct transformations, where T; = (pre;, T;, post,), Let post, = pre, 1
1 < i < n. Then the transformation (pre,, [Ty, T, ..., T,], post,,) is correct.

Formal Verification for High-Assurance Behavioral Synthesis 345

Theorem [justifies decomposition of a transformation into a sequence of primitive
transformations. Note that the proof of Theorem[I]is independent of a specific transfor-
mation. We thus construct a reference flow as follows. (1) Identify and distill a sequence
70, - - - , Ty, Of primitive transformations; (2) verify 7; individually; and (3) check that for
each 0 < i < n, post; = pre, ;. Theorem[I] guarantees the correctness of the flow.

Verifying the correctness of individual guarded transformations using theorem prov-
ing might involve significant manual effort. To ameliorate this cost, we identify and
derive generic theorems that can certify a class of similar transformations. As a simple
example, consider any transformation that refines the schedule. The following theorem
states that each such transformation is correct.

Theorem 2 (Correctness of Schedule Refinement). Let G 2 (Gop, M, T) and G’ =
(Gep, M, T"y be CCDFGs such that for any two microsteps m;, m; € M if T assigns
m; and m; the same group then so does T. Then G’ is a refinement of G.

Theorem] is admittedly trivial; it is only shown here for illustration purposes. How-
ever, the same approach can verify more complex transformations. For example, con-
sider the constant propagation and pipelining transformations shown in Figure [3| for
our TEA example. The implementations of these transformations involve significant
heuristics, for instance, to determine whether to apply the transformations in a specific
case, how many iterations of the loop should be pipelined, etc. However, from the per-
spective of correctness, the only relevant conditions about the two transformations are:
(1) if a variable v is assigned a constant ¢, then v can be eliminated by replacing each
occurrence with ¢; and (2) a microstep m; can be overlapped with microstep m; from a
subsequent iteration if for each op; € m; and op; € mj, op; A op, in G. Since these
conditions are independent of a specific design (e.g., TEA) to which the transforma-
tion is applied, the same certification can be used to justify its applicability for diverse
designs. The approach is viable because we employ theorem proving which supports
an expressive logic, thereby permitting stipulation of the general conditions above as
formal predicates in the logic. For example, as we show in previous work [[16], we can
make use of first-order quantification to formalize a generic refinement proof of arbi-
trary pipelines, which is directly reusable for verification of the pipeline transformation
in our framework. Another generic transformation that is widely employed in behav-
ioral synthesis is operation balancing; its correctness depends only on the fact that the
operations involved are associative and commutative and can be proven for CCDFGs
containing arbitrary associative-commutative operations.

We end the discussion of the verified framework with another observation. Since the
logic of ACL2 is executable, pre and post can be efficiently executed for a given con-
crete transformation. Thus, a transformation 7 = (pre, T, post) can be applied even
before verification by using pre and post for runtime checks: if a CCDFG G indeed
satisfies pre and the application of 7 on G results in a CCDFG satistying post then the
instance of application of 7 on G can be composed with other compiler transformations;
furthermore, the expense of the runtime assertion checking can be alleviated by gener-
ating a proof obligation for a specific instance, which is normally more tractable than a
monolithic generic proof of the correctness of 7. This provides a trade-off between the
computational expense of runtime checks and verification of individual instances with
a (perhaps deep) one-time proof of the correctness of a transformation.

346 S. Ray et al.
4 Equivalence Checking

We now discuss how to check equivalence between a CCDFG and its synthesized cir-
cuit. The verified component facilitates close correspondence between the transformed
CCDFG and the synthesized circuit, critical to the scalability of equivalence checking.

4.1 Circuit Model

We represent a circuit as a Mealy machine specifying the updates to the state elements
(latches) in each clock cycle. Our formalization of circuits is typical in traditional hard-
ware verification, but we make combinational nodes explicit to facilitate the correspon-
dence with CCDFGs.

Definition 9 (Circuit). A circuit is a tuple M = (I, N, F) where I is a vector of
inputs; N is a pair (N.., Ng) where N, is a set of combinational nodes and N is a set
of latches; and F' is a pair (F., F;) where F, maps each combinational node ¢ € N,
to an expression over N. U Ny U I and for each latch d € Ny, F; maps each latch d to
n € N.U NgU I where Fy is a delay function which takes the current value of n to be
the next-state value of d.

A circuit state is an assignment to the latches in V4. Given a sequence of valuations
to the inputs %¢, %1, . . ., a circuit trace of M is the sequence of states sg, s1, . . ., where
(1) sq is the initial state and (2) for each j > 0, the state s; is obtained by updating the
elements in N given the state valuation s;_; and input valuation 7;_1. The observable
behavior of the circuit is the sequence of valuations of the outputs which are a subset
of latches and combinational nodes.

4.2 Correspondence between CCDFGs and Circuits

Given a CCDFG G and a synthesized circuit M, it is tempting to define a notion of
correspondence as follows: (1) Establish a fixed mapping between the state variables
of G and the latches in M, and (2) stipulate an execution of GG to be equivalent to
an execution of M if they have the same observable behavior. However, this does not
work in general since the mappings between state variables and latches may be differ-
ent in each clock cycle. To address this, we introduce EMap : ops — N., mapping
CCDFG operations to the combinational nodes in the circuit: each operation is mapped
to the combinational node that implements the operation; the mapping is independent
of clock cycles. Fig. [shows the mapping for the synthesized circuit of TEA. Recall
from Section [[.1] that the FSM decides the control signals for the circuit; the FSM is
thus excluded from the mapping. We now define the equivalence between GG and M .

Definition 10. A CCDFG state x of G is equivalent to a circuit state s of M with
respect to an input i and a microstep partition t, if for each operation op in t, the inputs
to op according to x and i are equivalent to the inputs to EMap(op) according to s and
EMap(i), i.e., the values of each input to op and the corresponding inputto EM ap(op)
are equivalent, and the outputs of op are equivalent to the outputs of EM ap(op).

Formal Verification for High-Assurance Behavioral Synthesis 347

[tnput] _ Y 2

plistaﬂ: 0 -7

Pipeline [¢+————
logic j¢———
[E—

i0 i1 Q2
out = ((i0<<4) +i1)r2 |_{x
out

13
newPhi = phi (0, newbin);~

v1_0 = phi (v[1],tmp56);- ~
v0_0 = phi (v[0], tmp41)- -

FSM

N
newbin = newPhi + 1

sum0 = newPhi 0x9e3779b9

| return | Pl 5"3'1 1

[tmp26 = sum0+0x9e3779b9 | sum0+0x9e3779b9

tmp39 = ((v1_0 <<4) + k0) *
(tmp26 + v1_0) A ((v1_0>>5) |
+K1)

T

tmp41 = tmp39 + v0_0

tmp49 = (tmp41 + tmp26) *
((tmp41 >> 5) + k3) E—
I

Fig. 4. Synthesized circuit for TEA and the corresponding operation mapping with pipelined
CCDEFG:; dotted lines represent mapping from CCDFG operations to combinational circuit nodes

Definition 11. Given a CCDFG G and a circuit M, G is equivalent to M if and only
if for any execution [xo,x1, %2, ...] of G generated by an input sequence [ig, 1,12, . . .]
and by microstep partition [to,t1,...] of G, and the state sequence [so, $1, S2, . ..] of
M generated by the input sequence [EMap(ig), EMap(i1), EMap(is), ..., i and
sy are equivalent with respect to ti, under iy, k > 0.

4.3 Dual-Rail Simulation for Equivalence Checking

We check equivalence between CCDFG G and circuit M by dual-rail symbolic simu-
lation (Fig.@); the two rails simulate G' and M respectively, and are synchronized by
clock cycle. The equivalence checking in clock cycle & is conducted as follows:

1. The current CCDFG state ;. and circuit state s;, are checked to see whether for the
input 71, the inputs to each operation op in the scheduling step ¢ are equivalent to
the inputs to EMap(op). If yes, continue; otherwise, report inequivalence.

2. G is simulated by executing ¢, on z under iy to compute x4 and recording the
outputs of each op € t;. M is simulated for one clock cycle from s, under input
EMap(iy) to compute s;41. The outputs for each op are checked for equivalence
with the outputs of EMap(op). If yes, continue; otherwise, report inequivalence.

3. The next scheduling step t51 is determined from control flow. If ¢, has multiple
outgoing control edges, the last microstep of ¢; executed is identified. The outgoing
control edge from this microstep whose condition evaluates to true leads to t51.

We permit both bounded and unbounded (fixed-point) simulations. In particular, the
simulation proceeds until (i) the equivalence check fails, (ii) the end of a bounded input
sequence is reached, or (iii) a fixed point is reached for an unbounded input sequence.

348 S. Ray et al.

Single Clock Cycle
CCCDFG) Simulation of CCDFG
[}

Eqivélcncc lni)ul Yes. Fixed Point Computation . > No
! Equivalent?

Mapping Consl‘rainls or Execution up to Given Bound
I I

Y
- Single Clock Cycle
CC“C““) Simulation of Circuit

Fig. 5. Dual-Rail simulation scheme for equivalence checking between CCDFG and circuit

We have implemented the dual-rail scheme on the bit level in the Intel Forte envi-
ronment [17], where symbolic states are represented using BDDs. We have also im-
plemented the scheme on the word level with several built-in optimizations, using
Satisfiability Modulo Theories (SMT); this is viable since word-level mappings be-
tween operations and circuit nodes are explicit. We use bit-vectors to encode the vari-
ables in the CCDFG and the circuit; the SMT engine checks input/output equivalence
and determines control paths. Our word-level checker is based on the CVC3 SMT
engine [18]].

The bit-level and word-level checkers are complementary. The bit-level checker en-
sures that the equivalence checking is decidable, while the word-level checker provides
the optimizations crucial to scalability. The word-level checker can make effective use
of results from bit-level checking in many cases. One typical scenario is as follows.
Suppose M is a design module of modest complexity but is awkward to check at word-
level. Then the bit-level checker is used to check the equivalence of the CCDFG of M
with its circuit implementation; when the word-level checker is used for equivalence
checking of a module that calls M, it skips the check of M, treating the CCDFG of M
and its circuit implementation as equivalent black boxes.

5 Experimental Results

We used the bit-level checker on a set of CCDFGs for GCD and the corresponding
circuits synthesized by AutoPilot. The experiments were conducted on a workstation
with 3GHz Intel Xeon processor with 2GB memory. Table [Tl shows the statistics before
and after schedule refinement (Theorem[2)). Since we bit-blast all CCDFG operations,
the running time grows exponentially with the bit width; for 8-bit GCD, checking re-
quires about 2 hours. It is interesting to understand how schedule refinement affects
the performance of equivalence checking. Schedule refinement partitions operations in
the loop body into two clock cycles. This does not change fixed-point computation;
however, the number of cycles for which the circuit is simulated doubles. For small bit-
widths, the running time after schedule refinement is about two times slower than that
before. However, for large bit widths, the running time is dominated by the complexity
of the CCDFG simulation instead of the circuit simulation. The decrease in time with
the increase in bit width from 7 to 8 is likely due to BDD variable reordering.

Formal Verification for High-Assurance Behavioral Synthesis 349

Table 1. Bit-level equivalence checking statistics

Circuit Before schedule refinement After schedule refinement

Bit Width # of Nodes Time (Sec.) BDD Nodes Time (Sec.) BDD Nodes

2 96 0.02 503 0.02 783

3 164 0.05 4772 0.07 11113

4 246 0.11 42831 0.24 20937

5 342 0.59 16244 1.93 99723

6 452 12.50 39968 27.27 118346

7 576 369.31 220891 383.98 164613

8 714 6850.56 1197604 3471.74 581655

Table 2. Word-level equivalence checking statistics

Design GCD TEA DCT 3DES 3DES key
C Code Size (# of Lines) 14 12 52 325 412
RTL Size (# of Lines) 364 1001 688 18053 79976
Time (Seconds) 2 15.6 30.1 3557 2351.7
Memory (Megabytes) 4.1 246 492 594 307.2

Using our word-level checker, we have checked several RTL designs synthesized
by AutoPilot with CCDFGs derived from AutoPilot’s intermediate representations; the
statistics are shown in Table2l The designs illustrate different facets of the framework.
GCD contains a loop whose number of iterations depends on the inputs. TEA has an
explicitly bounded loop. DCT contains sequential computation without loop. 3DES rep-
resents a practical design of significant size. 3DES key is included to illustrate the scal-
ability of our approach on relatively large synthesized designs. The results demonstrate
the efficacy of our word-level equivalence checking. In contrast, full word-level sym-
bolic simulation comparing the input/output relations of C and RTL runs out of memory
on all the designs but DCT (for which it needs twice as much time and memory).

6 Related Work

An early effort [19]] on verification of high-level synthesis targets the behavioral portion
of VHDL [20]. A translation from behavioral VHDL to dependence flow graphs [21]
was verified by structural induction based on the CSP [22] semantics. Recently, there
has been research on certified synthesis of hardware from formal languages such as
HOL in which a compiler that automatically translates recursive function defini-
tions in HOL to clocked synchronous hardware has been developed. A certified hard-
ware synthesis from programs in Esterel, a synchronous design language, has been also
been developed [24]] in which a variant of Esterel was embedded in HOL.

Dave provides a comprehensive bibliography of compiler verification. One of
the earliest work on compiler verification was the Piton project [26], which verified a
simple assembly language compiler. Compiler certification forms a critical component
of the Verisoft project [27], aiming at correctness of implementations of computing sys-
tems with both hardware and software components. The Verifix and CompCert [29]

350 S. Ray et al.

projects have explored a general framework for certification of compilers for various C
subsets [30[31]]. There has also been work on a verifying compiler, where each instance
of a transformation generates a proof obligation discharged by a theorem prover [32]].
There has been much research on sequential equivalence checking (SEC) between
RTL and gate-level hardware designs [33/34]. Research has also be done on combina-
tional equivalence checking between high-level designs in software-like languages (e.g.,
SystemC) and RTL-level designs [[T1]]. There has also been effort for SEC between soft-
ware specifications and hardware implementations [35]: GSTE assertion graphs [36]]
were extended so that an assertion graph edge have pre and post condition labels, and
also associated assignments that update state variables. There has also been work on
equivalence checking with other graph representations, e.g., Signal Flow Graph [37].

7 Conclusion

We have presented a framework for certifying behavioral synthesis flows. The frame-
work includes a combination of verified and verifying paradigms: high-level transfor-
mations are certified once and for all by theorem proving, while low-level tweaks and
optimizations can be handled through model checking. We demonstrated the use of the
CCDFG structure as an interface between the two components. Certification of differ-
ent compiler transformations is uniformly specified by viewing them as manipulation of
CCDFGs. The transformed CCDFG can then be used for equivalence checking with the
synthesized design. One key benefit of the approach is that it obviates the need for de-
veloping formal semantics for each different intermediate representation generated by
the compiler. Furthermore, the low-level optimizations implemented in a synthesis tool
are abstracted from the reasoning framework without weakening the formal guarantee
on the synthesized design. Our experimental results indicate that the approach scales to
verification of realistic designs synthesized by production synthesis tools.

In future work, we will make further improvements to improve scalability. In the
verified component, we are formalizing other generic transformations e.g., code motion
across loop iterations. In the verifying component, we are considering the use of theo-
rem proving to partition a CCDFG into smaller subgraphs for compositional certifica-
tion. We are also exploring ways to tolerate limited perturbations in mappings between
CCDFGs and circuits (e.g., due to manual RTL tweaks) in their equivalence checking.

References

1. Forte Design Systems: Behavioral Design Suite, http://www.forteds. com

2. Celoxica: DK Design Suite, http://www.celoxica.com

3. Cong, J., Fan, Y., Han, G., Jiang, W., Zhang, Z.: Behavioral and Communication Co-
Optimizations for Systems with Sequential Communication Media. In: DAC (2006)

4. Gajski, D., Dutt, N.D., Wu, A., Lin, S.: High Level Synthesis: Introduction to Chip and
System Design. Kluwer Academic Publishers, Dordrecht (1993)

5. Kundu, S., Lerner, S., Gupta, R.: Validating High-Level Synthesis. In: Gupta, A., Malik, S.
(eds.) CAV 2008. LNCS, vol. 5123, pp. 459-472. Springer, Heidelberg (2008)

6. Galois, Inc.: Cryptol: The Language of Cryptography (2007)

http://www.forteds.com
http://www.celoxica.com

32.

33.

34.

35.

36.

37.

Formal Verification for High-Assurance Behavioral Synthesis 351

. Russinoff, D.: A Mechanically Checked Proof of IEEE Compliance of a Register-Transfer-

Level Specification of the AMD-K7 Floating-point Multiplication, Division, and Square
Root Instructions. JCM 1 (1998)

. O’Leary, J., Zhao, X., Gerth, R., Seger, C.J.H.: Formally Verifying IEEE Compliance of

Floating-point Hardware. Intel Technology Journal Q1 (1999)

. Wheeler, D.J., Needham, R.M.: Tea, a tiny encryption algorithm. In: Fast Software Encryp-

tion (1994)

. AutoESL: AutoPilot Reference Manual. AutoESL (2008)
. Hu, A.J.: High-level vs. RTL combinational equivalence: An introduction. In: ICCD (2006)
. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach.

Kluwer Academic Publishers, Boston (2000)

. Ray, S., Chen, Y., Xie, F., Yang, J.: Combining theorem proving and model checking for

certification of behavioral synthesis flows. Technical Report TR-08-48, University of Texas
at Austin (2008)

. Abadi, M., Lamport, L.: The Existence of Refinement Mappings. TCS 82(2) (1991)
. Lamport, L.: What Good is Temporal Logic? Information Processing 83 (1983)
. Ray, S., Hunt Jr., W.A.: Deductive Verification of Pipelined Machines Using First-Order

Quantification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 31-43.
Springer, Heidelberg (2004)

. Seger, C.J.H., Jones, R., O’Leary, J., Melham, T., Aagaard, M., Barrett, C., Syme, D.: An

industrially effective environment for formal hardware verification. TCAD 24(9) (2005)

. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,

vol. 4590, pp. 298-302. Springer, Heidelberg (2007)

. Chapman, R.O.: Verified high-level synthesis. PhD thesis, Ithaca, NY, USA (1994)

. IEEE: IEEE Std 1076: IEEE standards VHDL language reference manual

. Johnson, R., Pingali, K.: Dependence-based program analysis. In: PLDI (1993)

. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)
. Gordon, M., Iyoda, J., Owens, S., Slind, K.: Automatic formal synthesis of hardware from

higher order logic. TCS 145 (2006)

. Schneider, K.: A verified hardware synthesis for Esterel. In: DIPES (2000)
. Dave, M.A.: Compiler verification: a bibliography. SIGSOFT SEN 28(6) (2003)
. Moore, J.S.: Piton: A Mechanically Verified Assembly Language. Kluwer Academic

Publishers, Dordrecht (1996)

. Verisoft Project: http: //www.verisoft.de

. Verifix Project: http://www.info.uni-karlsruhe.de/~verifix

. CompCert Project: http://pauillac.inria.fr/~xleroy/compcert

. Leinenbach, D., Paul, W.J., Petrova, E.: Towards the formal verification of a CO compiler:

Code generation and implementation correctness. In: SEFM (2005)

. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a

proof assistant. In: POPL (2006)

Pike, L., Shields, M., Matthews, J.: A Verifying Core for a Cryptographic Language Com-
piler. In: ACL2 (2006)

Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable sequential
equivalence checking across arbitrary design transformations. In: ICCD (2006)

Kaiss, D., Goldenberg, S., Hanna, Z., Khasidashvili, Z.: Seqver: A sequential equivalence
verifier for hardware designs. In: ICCD (2006)

Feng, X., Hu, A.J., Yang, J.: Partitioned model checking from software specifications. In:
ASP-DAC (2005)

Yang, J., Seger, C.J.H.: Introduction to generalized symbolic trajectory evaluation.
TVLSI 11(3) (2003)

Claesen, L., Genoe, M., Verlind, E.: Implementation/specification verification by means of
SFG-Tracing. In: CHARME (1993)

http://www.verisoft.de
http://www.info.uni-karlsruhe.de/~verifix
http://pauillac.inria.fr/~xleroy/compcert

	Formal Verification for High-Assurance Behavioral Synthesis
	Introduction
	Behavioral Synthesis and an Illustrative Example
	Approach Overview
	Golden Circuit Model and Synthesis Certification

	Clocked Control/Data Flow Graphs
	Certified Compilation
	Equivalence Checking
	Circuit Model
	Correspondence between CCDFGs and Circuits
	Dual-Rail Simulation for Equivalence Checking

	Experimental Results
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

