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Abstract. Combinatorial auctions where agents can bid on bundles of items are
desirable because they allow the agents to express complementarity and substi-
tutability between the items. However, expressing one’s preferences can require
bidding on all bundles. Selective incremental preference elicitation by the auc-
tioneer was recently proposed to address this problem [4], but the idea was not
evaluated. In this paper we show, experimentally and theoretically, that automated
elicitation provides a large benefit. In all of the elicitation schemes under study,
as the number of items for sale increases, the amount of information elicited is
a vanishing fraction of the information collected in traditional “direct revelation
mechanisms” where bidders reveal all their valuation information. Most of the
elicitation schemes also maintain the benefit as the number of agents increases.
We develop more effective elicitation policies for existing query types. We also
present a new query type that takes the incremental nature of elicitation to a new
level by allowing agents to give approximate answers that are refined only on an
as-needed basis. In the process, we present methods for evaluating different types
of elicitation policies.

1 Introduction

Combinatorial auctions, where agents can submit bids on bundles of items, are eco-
nomically efficient mechanisms for selling k items to n bidders, and are attractive when
the bidders’ valuations on bundles exhibit complementarity (a bundle of items is worth
more than the sum of its parts) and/or substitutability (a bundle is worth less than the
sum of its parts). Determining the winners in such auctions is a complex optimization
problem that has recently received considerable attention (e.g., [1, 7, 11, 15, 19, 20]).

An equally important problem, which has received much less attention, is that of
bidding. There are 2k − 1 bundles, and each agent may need to bid on all of them
to fully express its preferences. This can be undesirable for any of several reasons:
determining one’s valuation for any given bundle can be computationally intractable [9,
13,17]; there is a huge number of bundles to evaluate; communicating the bids can incur
prohibitive overhead (e.g., network traffic); and agents may prefer not to reveal all of
their valuation information due to reasons of privacy or long-term competitiveness [16].
Appropriate bidding languages [7, 8, 11, 18, 19] can solve the communication overhead



in some cases (when the bidder’s utility function is compressible). However, they still
require the agents to completely determine and transmit their valuation functions and
as such do not solve all the issues. So in practice, when the number of items for sale is
even moderate, the bidders will not bid on all bundles. Instead, they may wastefully bid
on bundles which they will not win, and they may suffer reduced economic efficiency
by failing to bid on bundles they would have won.

Selective incremental preference elicitation by the auctioneer was recently proposed
to address these problems [4], but the idea was not evaluated. We implemented the
most promising elicitation schemes from that paper, starting from a rigid search-based
scheme and continuing to a general flexible elicitation framework. We evaluated the
previous schemes, and also developed a host of new elicitation policies. Our experi-
ments show that elicitation reduces revelation drastically, and that this benefit increases
with problem size. We also provide theoretical results on elicitation policies. Finally, we
introduce and evaluate a new query type that takes the incremental nature of elicitation
to a new level by allowing agents to give approximate answers that are refined only on
an as-needed basis.

Smith, Sandholm, and Simmons [21] have examined elicitation in a combinatorial
exchange used for multi-robot planning. Their work concentrates on the generalization
to an exchange setting, whereas the present work concentrates on elicitation policies
and query types.

2 Auction and elicitation setting

We model the auction as having a single auctioneer selling a set K of items to n bidder
agents (let k = |K|). Each agent i has a valuation function vi : 2K 7→ R+ that deter-
mines a positive, finite, and private value vi(b) for each bundle b ⊆ K. We make the
usual assumption that the agents have free disposal, that is, adding items to an agent’s
bundle never makes the agent worse off because, at worst, the agent can dispose of extra
items for free. Formally, ∀b ⊆ K, b′ ⊆ b, vi(b) ≥ vi(b

′). The techniques of the paper
could also be used without free disposal, although more elicitation would be required
due to less a priori structure.

At the start of the auction, the auctioneer knows the items and the agents, but has no
information about the agents’ value functions over the bundles—except that the agents
have free disposal. The auction proceeds by having the auctioneer incrementally elicit
value function information from the agents one query at a time until the auctioneer has
enough information to determine an optimal allocation of items to agents. Therefore,
we also call the auctioneer the elicitor. An allocation is optimal if it maximizes social
welfare

∑n
i=1 vi(bi), where bi is the bundle that agent i receives in the allocation.1

The goal of the elicitor is to determine an optimal allocation with as little elicitation as
possible.2

1 Social welfare can only be maximized meaningfully if bidders’ valuations can be compared to
each other. We make the usual assumption that the valuations are measured in money (dollars)
and thus can be directly compared.

2 A recent theoretical result shows that even with free disposal, in the worst case, finding an
(even only approximately) optimal allocation requires exponential communication [12].



3 Inference and constraint network

The elicitor, as we designed it, never asks a query whose answer could be inferred from
the answers to previous queries. To support the storing and propagation of information
received from the agents, we have the elicitor store its information in a constraint net-
work.3 Specifically, the elicitor stores a graph for each agent. In each graph, there is one
node for each bundle b. Each node is labeled by an interval [LBi(b),UBi(b)]. The lower
bound LBi(b) is the highest lower bound the elicitor can prove on the true vi(b) given
the answers received to queries so far. Analogously, UBi(b) is the lowest upper bound.
We say a bound is tight when it is equal to the true value.

Each graph can also have directed edges. A directed edge (a, b) encodes the knowl-
edge that the agent prefers bundle a over bundle b (that is, vi(a) ≥ vi(b)). The elicitor
may know this even without knowing vi(a) or vi(b). An edge (a, b) lets the elicitor
infer that LBi(a) ≥ LBi(b), which allows it to tighten the lower bound on a and on any
of a’s ancestors in the graph. Similarly, the elicitor can infer UBi(a) ≥ UBi(b), which
allows it to tighten the upper bound on b and its descendants in the graph.

We define the relation a � b (read “a dominates b”) to be true if we can prove that
vi(a) ≥ vi(b). This is the case either if LBi(a) ≥ UBi(b), or if there is a directed path
from a to b in the graph. The free disposal assumption allows the elicitor to infer the
following dominance relations before the elicitation begins: ∀b ⊆ K, b′ ⊆ b, b � b′.

4 Rank lattice based elicitation

The elicitor can make use of non-cardinal rank information. Let bi(ri), 1 ≤ ri ≤ 2k, be
the bundle that agent i has at rank ri. In other words, bi(1) is the agent’s most preferred
bundle, bi(2) is its second most preferred bundle, and so on until bi(2k), which is the
empty bundle.

For example, consider two agents 1 and 2 bidding on two items A and B, and the
following value functions:
v1(AB) = 8, v1(A) = 4, v1(B) = 3, v1(∅) = 0
v2(AB) = 9, v2(A) = 1, v2(B) = 6, v2(∅) = 0
So, agent 1 ranks AB first, A second, B third, and the empty bundle last. Agent 2 ranks
AB first, B second, A third, and the empty bundle last.

The elicitor uses a rank vector r = 〈r1, r2, . . . , rn〉 to represent allocating bi(ri)
to each agent i. Not all rank vectors are feasible: the bi(ri)’s might overlap in items,
which would correspond to giving the same item to multiple agents. For instance in
the example above, rank vector 〈1, 2〉 corresponds to allocating AB to agent 1 and
B to agent 2, which is infeasible. Similarly, rank vector 〈2, 2〉 allocates A to agent
1 and B to agent 2, which is a feasible allocation. The value of a rank vector r is
v(b(r)) =

∑
i vi(bi(ri)). Rank vector 〈1, 2〉 in our example has value 8 + 6 = 14,

while 〈2, 2〉 has value 4 + 6 = 10.
The elicitor can put bounds on vi(bi(ri)) using the constraint network as before.

Even without knowing bi(ri) (which bundle it is that agent i values rith), it knows that
vi(bi(ri − 1)) ≤ vi(bi(ri)) ≤ vi(bi(ri + 1)). Thus an upper bound on vi(bi(ri − 1))
is an upper bound on vi(bi(ri)), and a lower bound on vi(bi(ri + 1)) is a lower bound

3 This was included in the augmented order graph of Conen & Sandholm [4].



on vi(bi(ri)). In our example, knowing only b1(1) = AB and v1(AB) = 8, the elicitor
can infer v1(b1(2)) ≤ 8.

The set of all rank vectors defines a rank lattice (Figure 1). A key observation in the
lattice is that the descendants of a node have lower (or equal) value to the node.
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Fig. 1. Rank lattice corresponding to the example. The gray nodes are infeasible. The shaded
area is the set of nodes dominated by feasible nodes. The number above each node is the value
of the node. At the outset, the auctioneer knows the structure of the lattice, but knows neither the
shadings nor the values of each node.

Given the rank lattice, we can employ search algorithms to find an optimal alloca-
tion. In particular, by starting from the root and searching in best-first order (always
expanding the fringe node of highest value), we are guaranteed that the first feasible
node that is reached is optimal.
FINDOPTIMAL()
1 FRINGE← {〈1, 1, . . . , 1〉}
2 while FRINGE 6= ∅
3 r = FINDBESTNODE(FRINGE)
4 FRINGE← FRINGE−{r}
5 if r is feasible
6 return r
7 for each r′ ∈ children(r)
8 if r′ /∈ FRINGE
9 FRINGE← FRINGE ∪ {r′}

Unlike in typical best-first search, algorithm FINDOPTIMAL does not necessarily
know which node of the fringe has highest value and thus should be expanded next.
Determining this often requires more elicitation. We implemented the following algo-
rithm for doing this. It corresponds to an elicitation policy where as long as we cannot
prove which node on the fringe is the best, we pick an arbitrary node and elicit just
enough information to determine its value.



FINDBESTNODE(FRINGE)
1 S ← FRINGE
2 remove from S all r dominated by some r′ in S
3 if all r ∈ S have the same value
4 return arbitrary r ∈ S
5 choose r ∈ S whose value we don’t know exactly
6 for each agent i
7 if elicitor does not know bi(ri)
8 ask agent i what bundle it ranks rith
9 if elicitor does not know vi(bi(ri)) exactly

10 ask agent i for its valuation on bundle bi(ri)
11 goto 2

In some cases, FINDBESTNODE can return a rank vector r although not all bundles
bi(ri) are known to the elicitor. This can occur, for example, if the known valuations
in the rank vector already sum up to a large enough number. In that case, checking the
feasibility in step 5 of FINDOPTIMAL requires eliciting the unknown bundles bi(ri).

5 Experimental setup
While the idea and some algorithms for preference elicitation in combinatorial auctions
have been presented previously [4], they have not been validated. To evaluate the use-
fulness of the idea, we conducted a host of experiments. We present the results in the
rest of the paper. Each plot shows how many queries were needed to find an optimal
allocation and prove that it is optimal (that no other allocation is better). In each plot,
each point represents an average over 10 runs, where each run is on a different problem
instance (different draw of valuations for the agents). Each algorithm was tested on the
same set of problem instances.

Because the evaluation is based on the amount of information asked rather than real-
time, we did not optimize our algorithm implementations for time or space efficiency,
but only for elicitation efficiency. Generating all the plots in this paper took two days of
computer time on a 1 GHz Pentium III.

Unfortunately, real data for combinatorial auctions are not publicly available.4 There-
fore, as in all of the other academic work on combinatorial auctions so far, we used
randomly generated data. We first considered using existing benchmark distributions.
However, the existing problem generators output instances with sparse bids, that is,
each agent bids on a relatively small number of bundles. This is the case for the CATS
suite of economically-motivated random problem instances [10] as well as for the other
prior benchmarks [1,7,19]. In such cases, the communication is a non-issue, which un-
dermines the purpose of elicitation. In addition, the instances generated by many of the
earlier benchmarks do not honor the free disposal constraints (because for an agent, the
value of a bundle can be less than that of a sub-bundle).

In many real settings, each bidder has a nonzero valuation for every bundle. For
example in spectrum auctions, each bidder has positive value for every bundle because
each item is of positive value to every bidder (at least due to renting and reselling
possibilities). In other settings, there may exist worthless items for some bidders. Even

4 Furthermore, even if the data were available, they would only have some bids, not the full
valuation functions of the agents (because not all agents bid on all bundles).



in such cases, under the free disposal assumption, the bidders have positive valuations
for almost all bundles—except bundles that only contain worthless items (because, at
worst, they can throw away the extra items in any bundle for free).

To capture these considerations, we developed a new benchmark problem gener-
ator. In each problem instance we generate, each bidder has a nonzero valuation for
almost every bundle, and all valuations honor free disposal. Specifically, the genera-
tor assigns, for each agent in turn, integer valuations using the following routine. We
impose an arbitrary maximum bid value MAXBID = 107 in order to avoid integer
arithmetic overflow issues, while at the same time allowing a wide range of values to
be expressed. Valuations generated with this routine exhibit both complementarity and
substitutability.
GENERATEBIDS(K)
1 G← new constraint network
2 S ← 2K (the set of all bundles)
3 impose free disposal constraints on G
4 UB(K)← MAXBID
5 while S 6= ∅
6 pick b uniformly at random from S
7 S ← S − b
8 pick v(b) uniformly at random from [LB(b),UB(b)]
9 propagate LB(b) = UB(b) = v(b) through G

6 Rank lattice experiments
The first experiment evaluates the efficiency of rank lattice based elicitation, see Fig-
ure 2. We plot the number of rank queries made (the number of value queries is never
greater because a value query is only ever asked after the corresponding rank query). For
comparison, we plot the total number of value queries we could have made: n(2k − 1)
(that is, for each agent, one query for each of the 2k bundles except the empty bun-
dle). This corresponds to full revelation of each agent’s valuation function. Because
this number grows exponentially in the number of items k, we use a log scale on the
vertical axis of the plot that shows performance as a function of the number of items.
The other plot has a linear-scale vertical axis because full revelation increases linearly
in the number of agents n.

Define the elicitation ratio to be the number of queries asked divided by the number
of queries asked in full revelation. Figure 2 Left shows that as the number of items
increases, the elicitation ratio approaches zero, that is, only a vanishingly small fraction
of the possible queries are asked.

Figure 2 Right shows that as the number of agents n grows, the advantage from rank
lattice based elicitation decreases. This is not as important because even under full rev-
elation, the number of queries increases only linearly. Nevertheless, this behavior might
be explained by the observation that while the size of the lattice grows exponentially in
n, the number of feasible nodes only grows polynomially. Specifically, the total number
of rank vectors is (2k)n = 2nk while the number of feasible rank vectors is nk (each of
the k items can independently go to any of the n agents). Therefore, as n increases, this
rank lattice based search procedure encounters an increasing fraction of infeasible rank
vectors before finally finding an optimal allocation.
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Fig. 2. Rank lattice based elicitation. Left: 2 agents, varying number of items, log scale. Right:
4 items, varying number of agents, linear scale. All other graphs in the paper also follow this
convention.

A very recent theoretical result shows that the algorithm here is as good as any rank
lattice based elicitation algorithm [6]. Specifically, this algorithm is a member of the
EBF (efficient best-first) family of algorithms, and the result proves that no algorithm
based on the rank lattice can guarantee asking fewer queries than an EBF algorithm
over all problem instances (unless it sacrifices economic efficiency).

7 General elicitation framework
Given that no rank lattice based algorithm can do better than the one outlined above,
we now move to a more general elicitation framework. As we will show, this allows us
to develop algorithms that ask significantly fewer queries.

The framework allows a richer set of query types (to accommodate for different
settings where answering some types of queries is easier than answering other types);
allows more flexible ordering of the queries at run time; and never considers infeasible
solutions. We could implement rank queries in this framework, but did not do so in
this work, because rank queries are somewhat unrealistic: to answer them would likely
require the bidder to evaluate and sort its entire valuation function.

The general algorithm template is a slightly modified version of that of Conen &
Sandholm [4]:
SOLVE()
1 C ← INITIALCANDIDATES(n, k)
2 while not DONE(C)
3 q ← SELECTQUERY(C)
4 ASKQUERY(q)
5 C ← PRUNE(C)

Here, C is a set of candidates, where a candidate is a vector c = 〈c1, c2, . . . , cn〉
of bundles where the bundles contain no items in common. Unlike with rank vectors,
all candidates are feasible. The value of a candidate is v(c) =

∑
i vi(ci); UB(c) =∑

i UBi(ci) is an upper bound, and LB(c) =
∑
i LBi(ci) a lower bound. A candidate c

dominates another candidate c′ if the elicitor can prove that the value of c is at least as
high as that of c′.5

5 This is the case if LB(c) ≥ UB(c′). Even if not, the elicitor can use the edges in the graph. If
there is a subset of the agents I such that ∀i ∈ I , ci � c′i, and that for the remaining agents,



INITIALCANDIDATES generates the set of all candidates, which is the set of all nk

allocations of the k items to the n agents (some agents might get no items). In our
experiments, the candidate set is represented explicitly. To scale the implementation to
large k and n would require representing it more intelligently in an implicit way.

PRUNE removes, one candidate at a time, each candidate that is dominated by a
remaining candidate. This may eliminate some optimal allocations, but it will never
eliminate all optimal allocations—one will always remain. If strict domination were to
be used as the criterion, then SOLVE would find all optimal allocations, at the cost of
requiring more elicitation.

DONE returns true ifC is a set of candidates, each of which is provably optimal. This
is the case either if C has only one element, or if all candidates in C have known value
(that is, ∀c ∈ C,UB(c) = LB(c)). Because the algorithm has just pruned, it knows that
if all candidates have known value, then they have equal value.

SELECTQUERY selects the next query to be asked. This function can be instantiated
in different ways to implement different elicitation policies, as we will show.

ASKQUERY takes a query, asks the corresponding agent for the information, and
appropriately updates the constraint network. The details of updating the network are
discussed in conjunction with each query type below.

7.1 Value queries
The most basic query asks an agent i to reveal vi(ci) exactly. We call such queries value
queries. Upon receiving the answer, ASKQUERY sets LBi(ci) = UBi(ci) = vi(ci) and
propagates the new bounds upstream and downstream through the constraint network
as described earlier.

Any policy that asks only value queries relies on there being edges in the constraint
network, for instance due to free disposal. Otherwise, it needs to ask every query: any
value the elicitor has not asked for might be infinite.

Random elicitation policy The first policy we investigate simply asks random value
queries. In the beginning, we generate the set of all n(2k − 1) value queries. Whenever
it is time to ask a query, the policy chooses a random query from the set, ignoring those
it has already asked or for which the value can already be inferred.

We can actually show that if any policy saves elicitation, then this policy also saves
elicitation, on average:6

Proposition 1 Let Q = n(2k − 1) be the total number of queries, and let qmin be
the number of queries asked by an optimal elicitation policy. For any given problem
instance, the expected number of queries that the random elicitation policy asks is at
most qmin

qmin+1 (Q+ 1).

Proof sketch: Since we are drawing randomly, we have some (small) chance of follow-
ing the optimal elicitation policy. ut
∑
j /∈I LBj(cj) ≥

∑
j /∈I UBj(cj), then this also constitutes a proof that c has value at least as

high as c′.
6 We omit proofs due to limited space. They can be found in a technical report at http://
reports-archive.adm.cs.cmu.edu/anon/2002/abstracts/02-124.html



The upper bound given in the above proposition only guarantees relatively minor
savings in elicitation (especially because qmin increases when the number of agents
and items increases). This could be due to either the bound being loose, or due to this
elicitation policy being poor, or both. The experiment in Figure 3 shows that this elicita-
tion policy is poor—even in the average case. The policy asks almost all of the queries.
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Fig. 3. Random elicitation policy.

Random allocatable bundle elicitation policy Essentially, the random elicitation pol-
icy asks many queries which, as it turns out, are not useful. We will now present a
useful restriction on the set of queries from which the elicitation policy should choose.
The key observation is that the elicitor might already know that a bundle b will not be
allocated to a particular bidder—even before the elicitor knows the bidder’s valuation
for the bundle. This occurs when the elicitor knows that the value other agents have for
the other items (those in K − b) is insufficient. On the other hand, if the elicitor cannot
(yet) determine this, then the bundle-agent pair is deemed allocatable.

Definition 1 A bundle-agent pair (b, i) is allocatable if there exists a remaining candi-
date allocation c ∈ C such that ci = b. In some places, the reference to the agent is
obvious from the context, so we sometimes talk about allocatable bundles b rather than
(b, i).

Now we can refine our random elicitation policy to ask queries on allocatable (b, i)
only (and as before, queries are never repeated, and queries whose answer can be in-
ferred are not asked).

This restriction is intuitively appealing, and we can characterize cases where it
cannot hurt. We define the notation 〈x, y〉 to mean that revealing the value of a non-
allocatable pair (b, i) would raise the lower bound on x allocatable super-bundles of b
(that is, there are x allocatable pairs (b′, i) such that b′ � b), and lower the upper bound
on y allocatable sub-bundles of b. To affect a lower bound, vi(b) must be strictly greater
than the currently-proven lower bound on any of the x super-bundles. Similarly, vi(b)
must be strictly less than the currently-proven upper bound on the y sub-bundles.

Given this notation, we can examine the cases where eliciting a non-allocatable
(b, i) is no more useful than eliciting some allocatable (b′, i). Because the elicitor does
not know vi(b), it cannot know what case actually applies.



Proposition 2 No matter what value queries the elicitor has asked so far, querying a
non-allocatable (b, i) in case 〈x, y〉 with x+y < 2 cannot help the unrestricted random
elicitation policy ask fewer queries than the restricted random elicitation policy.

Proof sketch: We can show that in these cases (〈0, 0〉, 〈1, 0〉, and 〈0, 1〉), it would have
been better to ask about some allocatable bundle. ut

While the idea of restricting the queries to allocatable bundles is intuitively appeal-
ing and can never hurt in the cases above, there are cases where this restriction forces
the elicitor to ask a larger number of queries:

Proposition 3 Querying a non-allocatable (b, i) in case 〈x, y〉 with x+y ≥ 2 may help
the unrestricted random elicitation policy ask fewer queries than the restricted random
elicitation policy.

Proof sketch: We can construct an example where this occurs. ut
Proposition 3 does not mean that all cases 〈x, y〉 with x+ y ≥ 2 are bad. Indeed, it

could be that eliciting the non-allocatable (b, i) gives insufficiently tight bounds on the
allocatable bundles it affects, and therefore the allocatable bundles need to be elicited
anyway. An open problem is whether, in the case of an oracle that chose the best bundle
to elicit every time, the bad cases would ever happen.

The case-by-case analysis of Propositions 2 and 3 indicates that restricting the elic-
itation policy to choosing only allocatable bundles will often help, but may sometimes
also cause harm. However, the harm is limited, as we now show.

Proposition 4 Any bad case 〈x, y〉 with x+y ≥ 2 causes the random query policy that
restricts itself to allocatable queries to ask at most twice as many queries (in expecta-
tion) as the unrestricted random policy. This bound is tight.

Proof sketch: The unrestricted random policy is likely to ask several allocatable queries
before using the non-allocatable (b, i). ut

Summarizing, restricting value elicitation to allocatable bundles either helps, does
not hurt, or at worst only causes the elicitor to ask (in expectation) twice as many
queries. We ran experiments (Figure 4) to determine whether the restriction helps in
practice. The results are clear: at k = 10, the elicitation ratio is 17%. That is, the
random elicitation policy restricted to eliciting only allocatable (b, i) avoids the vast
majority of the elicitation needed in full revelation or in the unrestricted random elic-
itation policy. Most importantly, as the number of items increases, the elicitation ratio
continues to decrease (unlike with the random elicitation policy without the restriction).
Also, unlike with rank lattice based elicitation, as the number of agents increases, the
elicitation ratio stays constant or may even decrease.

This policy is simpler than the value-query policy previously proposed by Conen
& Sandholm [4]. That policy counted the number of remaining candidates in which a
given bundle b is allocated to agent i, and elicited the value of the (b, i) pair with the
highest count. We ran the same experiment with that policy. Interestingly, that policy
does far less well: depending on the tie-breaking scheme, it asked exactly all the queries
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Fig. 4. Random allocatable-only elicitation policy.

(when breaking ties in favor of the smaller bundle, arbitrarily choosing among equal-
size bundles), or it converged to about half the queries (when breaking ties in favor of
the larger bundle). A randomized tie-breaking scheme did slightly worse than breaking
ties in favor of larger bundles.

The grand bundle is (almost) always revealed Intuitively it is appealing to elicit
from every agent the value for the grand bundle because that sets an upper bound on
all bundle-agent pairs (via the free disposal assumption). In this section we analyze
whether this indeed is a good idea.

Proposition 5 In order to determine the optimal allocation, any elicitation policy must
prove an upper bound on vi(K) for every i to which K is not allocated.

In particular, using value queries only (and with no extra structure beyond free dis-
posal), the only way the auctioneer can establish an upper bound on vi(K) is by eliciting
the value.

Proposition 6 Assume there are at least 2 bidders. There is a policy (possibly requiring
an oracle for choosing the queries) using value queries that asks vi(K) for every i and
that asks the fewest possible questions.

Proof sketch: In practice, Proposition 5 usually holds; it can be shown that even when
it does not (that is, some agent i gets all the items), there is some set of queries that
includes vi(K) and which has size qmin . ut

7.2 Order queries
In some applications, agents might not know the values of bundles, and might need to
expend a lot of effort to determine them [9, 17], but might easily be able to see that
one bundle is preferable over another. In such settings, it would be sensible for the
elicitor to ask order queries, that is, ask an agent i to order two given bundles ci and
c′i (to say which of the two it prefers). The agent will answer ci � c′i or c′i � ci or
both. ASKQUERY will then create new edges in the constraint network to represent these
new dominates relations. By asking only order queries, the elicitor cannot compare
the valuations of one agent against those of another, so in general it cannot determine
a social welfare maximizing allocation. However, order queries can be helpful when
interleaved with other types of queries.



7.3 Using value and order queries
We developed an elicitation policy that uses both value and order queries. It mixes them
in a straightforward way, simply alternating between the two, starting with an order
query. Whenever an order query is to be asked, the elicitor picks an arbitrary pair (c, c′)
of remaining candidates that cannot be compared due to lack of information, chooses
an agent i whose ranking of ci and c′i is unknown, and asks that agent to order bundles
ci and c′i. (This is the policy for choosing order queries that was proposed by Conen &
Sandholm [4].) Whenever a value query is to be asked, the query is chosen using the
policy described in the value query section above.

To evaluate the mixed policy, we need a way of comparing the cost of an order query
to the cost of a value query. The plots in this section correspond to a cost model where
an order query costs 10% of the cost of a value query.

Figure 5 shows that the amount of elicitation grows linearly with the number of
agents. Also, as the number of items increases, the cost of the queries is a vanishing
fraction of the cost of full elicitation.
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Fig. 5. Elicitation using value and order queries.

The policy saves elicitation cost compared to the policy that only uses value queries.
For example, at 2 agents and 10 items, its elicitation cost averages 324 while the elicita-
tion cost of the value-only policy averages 361. As the relative cost of an order query is
decreases, the benefit of interleaving value queries with order queries increases. Also,
if order queries are inexpensive, the policy should probably ask more than one order
query per value query.

While this mixed policy appears to provide only a modest benefit over using value
queries only, its advantage is that it does not depend as critically on free disposal. With-
out free disposal, the policy that uses value queries only would have to elicit all values.
The order queries in the mixed policy, on the other hand, can create useful edges in the
constraint network which the elicitor can use to prune candidates.

7.4 Bound-approximation queries
In many settings, the bidders can roughly estimate valuations easily, but the more ac-
curate the estimate, the more costly it is to determine. In this sense, the bidders deter-
mine their valuations using anytime algorithms [9]. For this reason, we introduce a new
query type: a bound-approximation query. In such a query, the elicitor asks an agent i



to tighten the agent’s upper bound UBi(b) (or lower bound LBi(b)) on the value of a
given bundle b. This query type leads to more incremental elicitation in that queries are
not answered with exact information, and the information is refined incrementally on
an as-needed basis.

The elicitor can provide a hint t to the agent as to how much additional time the
agent should devote to tightening the bound in the query. Smaller values of the hint t
make elicitation more incremental, but cause additional communication overhead and
computation by the elicitor. Therefore, the hint can be tailored to the setting, depending
on the relative costs of communication, bundle evaluation by the bidders, and computa-
tion by the elicitor. The hint could also be adjusted at run-time, but in the experiments
below, we use a fixed hint t = 0.2.

To evaluate this elicitation method, we need a model on how the agents’ compu-
tation refines the bounds. We designed the details of our elicitation policy motivated
by the following specific scenario, although the elicitation policy can be used generally.
Let each agent have two anytime algorithms which it can run to discover its value of any
given bundle: one gives a lower bound, the other gives an upper bound. Spending time
d, 0 ≤ d ≤ 1 will yield a lower bound vi(b)

√
d or an upper bound (2−

√
d)vi(b).7 This

means that there are diminishing returns to computation, as is the case with most any-
time algorithms.8 Finally, we assume that the algorithms can be restarted from the best
solution found so far with no penalty: having spent d time tightening a bound, we can
get the bound we would have gotten spending d′ > d by only spending an additional
time d′ − d.

Using arbitrarily picked bound-approximation queries as the elicitation policy would
work, but the more sophisticated elicitation policy that we developed chooses the query
that maximizes the expected benefit. This is the amount by which we expect the upper
and lower bounds on bundle-agent pairs to be tightened when we propagate the new
bound that the queried agent will return (only counting bundle-agent pairs that are in-
cluded in the set of remaining candidates). To compute the expected benefit, the elicitor
assumes that vi(b) is drawn uniformly at random in [LBi(b),UBi(b)]. To estimate the
expected change in bounds, the elicitor samples 10 equally spaced values v̂i(b) in that
interval. For each value, the elicitor computes (using the cost model described in the
previous paragraph) what bound z it would receive if the agent spent additional time
t working on that bound and the true value were v̂i(b). Finally, the elicitor observes
by how much the values in the constraint network would change if the elicitor were to

7 The model of agents’ computation cost here opens the possibility to cheat in the evaluation
of the elicitor. As the model is stated, the elicitor could ask an agent to spend t time each on
the upper and lower bound. Based on the answers, the elicitor would know the exact value (it
would be in the middle between the lower and upper bound). To check that our results do not
inadvertently depend on such specifics of the agents’ computation model, we ran experiments
using an asymmetric cost function (linear for lower bounds, square root for upper bounds).
This did not appreciably change the results.

8 The square root is arbitrary, but captures the case of diminishing returns to additional compu-
tation. Running experiments with d in place of

√
d did not significantly change the results.



propagate z through the network (only bundle-agent pairs that are included in the set of
remaining candidates are counted).9

We evaluated bound-approximation queries using the elicitation policy and agents’
computation model described above. Figure 6 shows that as the number of items in-
creases, only a vanishingly small fraction of the overall computation cost is actually
incurred because the optimal allocation is determined while querying only very ap-
proximate valuations on most bundle-agent pairs. The method also maintains its benefit
as the number of agents increases.
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Fig. 6. Elicitation using bound-approximation queries. Because it costs 1 to get a tight upper or
lower bound, it costs 2 to make both bounds be tight. Thus the worst-case line in these plots is
2n(2k − 1).

Using bound-approximation and order queries As in the policy that mixed value
and order queries, we can alternate between bound-approximation queries and order
queries. Figure 7 presents the results when bound-approximation queries are charged
as in the previous section, and order queries are charged 1

10 . As the number of agents
increases, only a vanishingly small fraction of the cost of full revelation ends up being
paid. The method also maintains its benefit as the number of agents grows. The policy
saves elicitation cost compared to the policy that only uses value queries. For example,
at 2 agents and 8 items, its elicitation cost averages 172 while the elicitation cost of
the policy that only uses bound-approximation queries averages 230. Furthermore, as
the relative cost of order queries is lowered, the mixed method becomes increasingly
superior to using bound-approximation queries alone.

8 Conclusions and future research
In all of the elicitation schemes in this paper (except the unrestricted random one), as
the number of items for sale increases, the amount of information elicited is a vanish-
ing fraction of the information collected in traditional “direct revelation mechanisms”
where bidders reveal all their valuation information. Each of the elicitation schemes
(except the rank lattice based one) also maintains its benefit as the number of agents
increases.

9 A minor detail comes in estimating the worth of reducing an upper bound from∞. We dodge
this question by initially asking each agent for an upper bound on the grand bundle—which
is almost always required as shown in Proposition 5. By free disposal, that is also an upper
bound on all other bundles.
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Fig. 7. Elicitation using bound-approximation and order queries. The results are truncated to
k = 9 because a run at k = 10 took longer than 2 days.

While the straightforward policies we analyzed work well, some policies that at-
tempt to be more intelligent actually perform poorly (for example, the value query pol-
icy described by Conen & Sandholm [4], and some other policies we tried). These
poorly-performing policies have in common that they use a heuristic that maximizes
the number of candidates that would be affected by the query. In contrast, the bound-
approximation query policy that we introduced benefits from the heuristic of maximiz-
ing the change in bounds. Future work includes designing additional useful heuristics
for selecting queries.

We showed theoretically that if it is possible to save revelation using an elicitation
policy, the simple unrestricted random elicitation policy saves revelation. We also pre-
sented theoretical and experimental results that suggest that restricting value elicitation
to allocatable bundles is beneficial—which was assumed by Conen & Sandholm [4] but
is by no means obvious. For the other elicitation policies, our results were experimental.
Future work includes studying their performance theoretically as well.

By using the Clarke tax mechanism [3] to determine the payments that the bidders
have to pay, we can ensure that in a Bayes-Nash equilibrium, each agent is motivated
to answer the queries truthfully, and is not less happy after the auction than before it [4]
(under the usual assumption that the agents have quasilinear preferences). These pay-
ments can be computed by determining an optimal allocation n+ 1 times: once overall,
and once for each agent removed in turn. Even under the highly pessimistic assumption
that answers to queries in one of these problems do not help on the other problems, de-
termining the payments entails only an n-fold increase in the number of queries. Given
that our results show that we have a significantly better than n-fold benefit as the num-
ber of items grows, this would not change the fact that only a vanishingly small fraction
of queries is asked.

Our bound-approximation queries take the incremental nature of elicitation to a new
level. The agents are only asked for rough bounds on valuations first, and more refined
approximations are elicited only on an as-needed basis. A related approach would be to
propose a bound, and ask whether the agent’s valuation is above or below the bound.
This suggest a relationship between preference elicitation and ascending combinatorial
auctions where the auction proceeds in rounds, and in each round the bidders react to
price feedback by revealing demand (e.g., [2, 5, 14, 22]).
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