TTIC 31150/CMSC 31150
Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 6: SVD
Recap

• Any finite-dimensional inner product space has orthonormal basis. Fourier coefficients, Parseval’s identity. Adjoint of linear transform. Reisz representation theorem. Self-adjoint linear operators: eigenvalues are real and eigenvectors corresponding to distinct eigenvalues are orthogonal.

• Real Spectral Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ for finite-dimensional V has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

• Raleigh quotients: $R_\varphi(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$ where $\hat{v} = v / \|v\|$

• The vector v such that applying φ gives the largest “stretch” in \hat{v} direction is the eigenvector of largest eigenvalue, and likewise for the eigenvector of smallest eigenvalue. (Extension: Courant-Fischer Theorem)

• Positive semidefiniteness (see next slide).
Positive Semidefiniteness (recap)

Definition 3.4 Let $\varphi : V \to V$ be a self-adjoint operator. φ is said to be positive semidefinite if $R_{\varphi}(v) \geq 0$ for all $v \neq 0$. φ is said to be positive definite if $R_{\varphi}(v) > 0$ for all $v \neq 0$.

Proposition 3.5 Let $\varphi : V \to V$ be a self-adjoint linear operator. Then the following are equivalent:

1. $R_{\varphi}(v) \geq 0$ for all $v \neq 0$.

2. All eigenvalues of φ are non-negative.

3. There exists $\alpha : V \to V$ such that $\varphi = \alpha^* \alpha$.

Part of argument: if $\varphi = \alpha^* \alpha$ then $\langle v, \varphi(v) \rangle = \langle v, \alpha^*(\alpha(v)) \rangle = \langle \alpha(v), \alpha(v) \rangle \geq 0$. This also means that if v is an eigenvector, its eigenvalue must be non-negative.

The decomposition of a positive semidefinite operator in the form $\varphi = \alpha^* \alpha$ is known as the Cholesky decomposition of the operator. Note that if we can write φ as $\alpha^* \alpha$ for any $\alpha : V \to W$, then this in fact also shows that φ is self-adjoint and positive semidefinite.
The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

- E.g., square symmetric matrices over \mathbb{R}^n.

- Gives a nice way to view action of such operators. Say φ has orthonormal eigenvectors $w_1, ..., w_n$ with associated eigenvalues $\lambda_1, ..., \lambda_n$. Then:

$$\varphi(v) = \sum_i \lambda_i c_i w_i.$$

I.e., just stretching or shrinking in each “coordinate”.

Assume V is finite-dimensional
Singular Value Decomposition preliminaries

• Consider a linear transformation $\varphi: V \to W$. We can use our previous discussion to analyze the eigenvectors of $\varphi^* \varphi: V \to V$ and $\varphi \varphi^*: W \to W$, and then use these to get a nice decomposition of φ called **Singular Value Decomposition (SVD)**.

Proposition 1.1 Let $\varphi : V \to W$ be a linear transformation. Then $\varphi^* \varphi : V \to V$ and $\varphi \varphi^*: W \to W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Self-adjointness of $\varphi \varphi^*$ (the proof for $\varphi^* \varphi$ is analogous):

• $\langle w_1, \varphi(\varphi^*(w_2)) \rangle = \langle \varphi^*(w_1), \varphi^*(w_2) \rangle = \langle \varphi(\varphi^*(w_1)), w_2 \rangle$.

Positive semidefiniteness of $\varphi \varphi^*$ (the proof for $\varphi^* \varphi$ is analogous):

• $\langle w, \varphi(\varphi^*(w)) \rangle = \langle \varphi^*(w), \varphi^*(w) \rangle \geq 0$.
Singular Value Decomposition preliminaries

• Consider a linear transformation \(\varphi: V \to W \). We can use our previous discussion to analyze the eigenvectors of \(\varphi^* \varphi: V \to V \) and \(\varphi \varphi^*: W \to W \), and then use these to get a nice decomposition of \(\varphi \) called Singular Value Decomposition (SVD).

Proposition 1.1 Let \(\varphi: V \to W \) be a linear transformation. Then \(\varphi^* \varphi: V \to V \) and \(\varphi \varphi^*: W \to W \) are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Now just need to show they have the same nonzero eigenvalues:

• Let \(\lambda > 0 \) be an eigenvalue of \(\varphi^* \varphi \) with eigenvector \(v \). So \(\varphi^*(\varphi(v)) = \lambda v \).

• This implies \(\varphi(\varphi^*(\varphi(v))) = \lambda \varphi(v) \). Note that \(\varphi(v) \) can’t be 0 (by \(\uparrow \)), so \(\varphi(v) \) is an eigenvector of \(\varphi \varphi^* \) of eigenvalue \(\lambda \).
Singular Value Decomposition preliminaries

• Consider a linear transformation \(\varphi : V \rightarrow W \). We can use our previous discussion to analyze the eigenvectors of \(\varphi^* \varphi : V \rightarrow V \) and \(\varphi \varphi^* : W \rightarrow W \), and then use these to get a nice decomposition of \(\varphi \) called Singular Value Decomposition (SVD).

Proposition 1.1 Let \(\varphi : V \rightarrow W \) be a linear transformation. Then \(\varphi^* \varphi : V \rightarrow V \) and \(\varphi \varphi^* : W \rightarrow W \) are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

• This implies \(\varphi \left(\varphi^* \left(\varphi(v) \right) \right) = \lambda \varphi(v) \). Note that \(\varphi(v) \) can’t be 0 (by ↑), so \(\varphi(v) \) is an eigenvector of \(\varphi \varphi^* \) of eigenvalue \(\lambda \).

Proposition 1.2 Let \(v \) be an eigenvector of \(\varphi^* \varphi \) with eigenvalue \(\lambda \neq 0 \). Then \(\varphi(v) \) is an eigenvector of \(\varphi \varphi^* \) with eigenvalue \(\lambda \). Similarly, if \(w \) is an eigenvector of \(\varphi \varphi^* \) with eigenvalue \(\lambda \neq 0 \), then \(\varphi^*(w) \) is an eigenvector of \(\varphi^* \varphi \) with eigenvalue \(\lambda \).
Singular Value Decomposition preliminaries

Proposition 1.2 Let \(v \) be an eigenvector of \(\varphi^* \varphi \) with eigenvalue \(\lambda \neq 0 \). Then \(\varphi(v) \) is an eigenvector of \(\varphi \varphi^* \) with eigenvalue \(\lambda \). Similarly, if \(w \) is an eigenvector of \(\varphi \varphi^* \) with eigenvalue \(\lambda \neq 0 \), then \(\varphi^*(w) \) is an eigenvector of \(\varphi^* \varphi \) with eigenvalue \(\lambda \).

Proposition 1.3 Let the subspaces \(V_\lambda \) and \(W_\lambda \) be defined as

\[
V_\lambda := \{ v \in V \mid \varphi^* \varphi(v) = \lambda \cdot v \} \quad \text{and} \quad W_\lambda := \{ w \in W \mid \varphi \varphi^*(w) = \lambda \cdot w \}.
\]

Then for any \(\lambda \neq 0 \), \(\dim(V_\lambda) = \dim(W_\lambda) \).

Proof:

- If \(\dim(V_\lambda) = k \) then we have \(k \) orthogonal eigenvectors \(v_1, ..., v_k \) of \(\varphi^* \varphi \) with eigenvalue \(\lambda \). So, \(\varphi(v_1), ..., \varphi(v_k) \) are eigenvectors of \(\varphi \varphi^* \) with eigenvalue \(\lambda \). In fact, they’re also orthogonal: \(\langle \varphi(v_i), \varphi(v_j) \rangle = \langle \varphi^* \varphi(v_i), v_j \rangle = \langle \lambda v_i, v_j \rangle = 0 \). So, \(\dim(W_\lambda) \geq k \). And vice versa.
Proposition 1.2 Let v be an eigenvector of $\varphi^* \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ with eigenvalue λ. Similarly, if w is an eigenvector of $\varphi \varphi^*$ with eigenvalue $\lambda \neq 0$, then $\varphi^*(w)$ is an eigenvector of $\varphi^* \varphi$ with eigenvalue λ.

Proposition 1.3 Let the subspaces V_λ and W_λ be defined as

$$V_\lambda := \{ v \in V \mid \varphi^* \varphi(v) = \lambda \cdot v \} \quad \text{and} \quad W_\lambda := \{ w \in W \mid \varphi \varphi^*(w) = \lambda \cdot w \} .$$

Then for any $\lambda \neq 0$, $\dim(V_\lambda) = \dim(W_\lambda)$.

Using this, we now get...
Singular Value Decomposition

Proposition 1.4 Let $\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^* \varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^* \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i) / \sigma_i$, we have that

1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.
2. For all $i \in [r]$
 \[\varphi(v_i) = \sigma_i \cdot w_i \quad \text{and} \quad \varphi^*(w_i) = \sigma_i \cdot v_i. \]

So, even though φ and φ^* don’t have eigenvectors (their domain and range are different – they are arbitrary linear transformations / matrices), the v_i and w_i are a bit like eigenvectors. They are called the (right and left) **singular vectors**, and the σ_i are called **singular values**.
Singular Value Decomposition

Proposition 1.4 Let $\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^* \varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^* \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i)/\sigma_i$, we have that

1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.
2. For all $i \in [r]$
 \[\varphi(v_i) = \sigma_i \cdot w_i \quad \text{and} \quad \varphi^*(w_i) = \sigma_i \cdot v_i. \]

Proof of (1):

- We already saw orthogonal. Unit length because $\langle \varphi(v_i), \varphi(v_i) \rangle = \langle \varphi^* \varphi(v_i), v_i \rangle = \sigma_i^2$.
Singular Value Decomposition

Proposition 1.4 Let $\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^* \varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^* \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i)/\sigma_i$, we have that

1. \{w_1, \ldots, w_r\} form an orthonormal set.
2. For all $i \in [r]$ \[\varphi(v_i) = \sigma_i \cdot w_i \text{ and } \varphi^*(w_i) = \sigma_i \cdot v_i. \]

Proof of (2):

• $\varphi(v_i) = \sigma_i w_i$ by definition.

• $\varphi^*(w_i) = \varphi^*(\varphi(v_i)/\sigma_i) = \sigma_i^2 v_i/\sigma_i = \sigma_i v_i.$
Proposition 1.4 Let $\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^* \varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^* \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i) / \sigma_i$, we have that

1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.
2. For all $i \in [r]$
 \[\varphi(v_i) = \sigma_i \cdot w_i \quad \text{and} \quad \varphi^*(w_i) = \]

Matrix view: $Av_i = \sigma_i w_i$ and $A^T w_i = \sigma_i v_i$.

- If you view the rows of A as representing m points in n-dimensional space, then $\text{span}(v_1, \ldots, v_k)$ will be the “best-fitting” k-dimensional subspace in the sense of minimizing the sum of squared distances to the subspace.
 - Minimizing squared distance is equivalent to maximizing squared projection
 - Av is the squared projection of points in A along v
Singular Value Decomposition

Definition 1.6 Let V, W be inner product spaces and let $v \in V, w \in W$ be any two vectors. The outer product of w with v, denoted as $|w\rangle \langle v|$, is a linear transformation from V to W such that

$$|w\rangle \langle v| (u) := \langle v, u \rangle \cdot w.$$

Matrix view: This is the rank-1 matrix $w v^T$ (as opposed to the inner product $w^T v$).

- Get $w v^T u = w \langle v^T u \rangle$.

Why is $w v^T$ rank 1?

- Because all rows are multiples of v^T (and all columns are multiples of w).

We now get...
Singular Value Decomposition

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let $\varphi : V \to W$ be a linear transformation with non-zero singular values $\sigma_1, \ldots, \sigma_r$, right singular vectors v_1, \ldots, v_r and left singular vectors w_1, \ldots, w_r. Then,

$$\varphi = \sum_{i=1}^{r} \sigma_i \cdot |w_i\rangle \langle v_i|.$$

$$A = \sum_{i=1}^{r} \sigma_i \ w_i v_i^T$$

This is the Singular Value Decomposition of φ (or A).
Singular Value Decomposition

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let $\varphi : V \to W$ be a linear transformation with non-zero singular values $\sigma_1, \ldots, \sigma_r$, right singular vectors v_1, \ldots, v_r and left singular vectors w_1, \ldots, w_r. Then,

$$
\varphi = \sum_{i=1}^{r} \sigma_i \cdot |w_i\rangle \langle v_i|.
$$

$$
A = \sum_{i=1}^{r} \sigma_i w_i v_i^T
$$

Proof:

- First, note that the RHS is a linear transformation, so we just need to show it acts correctly on basis vectors.

- Let’s define a basis: take v_1, \ldots, v_r and extend arbitrarily to orthonormal basis.

- What is RHS applied to v_j? Ans: $\sigma_j w_j = \varphi(v_j)$.

- All the rest of the basis vectors are in the null-space. LHS and RHS both evaluate to 0.
Singular Value Decomposition

• $\rho: V \rightarrow W$

$\rho^* \rho: V \rightarrow V \quad \rho \rho^*: W \rightarrow W$

Positive Semidefinite with same Non-zero Eigenvalues

• $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$

$\sigma_1^2 \geq \cdots \geq \sigma_r^2 \geq 0, \quad \ldots, 0$

• For w_1, \ldots, w_r defined as $w_i := \frac{\rho(v_i)}{\sigma_i}$

 • $\rho(v_i) = \sigma_i \cdot w_i, \rho^*(w_i) = \sigma_i \cdot v_i \quad \sigma_i$s are singular values
 • v_1, \ldots, v_r are orthonormal
 • w_1, \ldots, w_r are orthonormal

Right singular vectors

Left singular vectors

$\rho = \sum_{i=1}^{r} \sigma_i. |w_i \rangle \langle v_i|$