TTIC 31150/CMSC 31150
Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 5: The Real Spectral Theorem
Recap

• Eigenvectors and eigenvalues, eigenvectors of same eigenvalue form a subspace. Eigenvectors of different eigenvalues are linearly independent, inner products, norm, Cauchy-Schwartz.

• Gram-Schmidt orthogonalization, any finite-dimensional inner product space has an orthonormal basis.

• Properties of orthonormal bases: Fourier coefficients, Parseval’s identity

• Adjoint of a linear transform

• Reisz representation theorem. Use to prove that every linear transformation has a unique adjoint

• Self-adjoint linear operators: eigenvalues are real, and eigenvectors corresponding to distinct eigenvalues are orthogonal.
The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi : V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

- E.g., square symmetric matrices over \mathbb{R}^n.

- Gives a nice way to view action of such operators. Say φ has orthonormal eigenvectors w_1, \ldots, w_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$. Then:

 For $v = \sum_i c_i w_i$, we have $\varphi(v) = \sum_i \lambda_i c_i w_i$.

 I.e., just stretching or shrinking in each “coordinate”.

Assume V is finite-dimensional
The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi : V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

Proof strategy:

1. Show that any such φ has at least one eigenvalue.

2. Use (1) to prove the theorem.

We’ll do (2) first, then (1).
The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

Proof part 2: induction on dimension of V.

- Base-case: $\dim(V) = 1$. By part (1), there is at least one eigenvalue and eigenvector, so just scale the eigenvector to be unit-length.

- Let $\dim(V) = k + 1$. Let w be the eigenvector we are guaranteed by part (1) and let $W = \text{span}(\{w\})$. Let $W^\perp = \{v \in V: \langle v, w \rangle = 0\}$.

- Now, the idea to finish is to (a) show that W^\perp is a subspace of V of dimension k, (b) show that φ restricted to W^\perp is a self-adjoint operator on W^\perp (and in particular maps W^\perp to W^\perp), and (c) apply our inductive hypothesis to W^\perp (which by design is orthogonal to w).
The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

Assume V is finite-dimensional.

Now, the idea to finish is to (a) show that W^\perp is a subspace of V of dimension k, (b) show that φ restricted to W^\perp is a self-adjoint operator on W^\perp (and in particular maps W^\perp to W^\perp), and (c) apply our inductive hypothesis to W^\perp (which by design is orthogonal to w).

(a): If $\langle v_1, w \rangle = 0$ and $\langle v_2, w \rangle = 0$ then $\langle a_1v_1 + a_2v_2, w \rangle = 0$, so it’s a subspace.
Dimension is k because a basis for $W^\perp \cup \{w\}$ is a basis for V.
The Real Spectral Theorem

Theorem: every self-adjoint operator \(\varphi: V \to V \) (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

Assume \(V \) is finite-dimensional.

\(\text{(b):} \) If \(\langle v, w \rangle = 0 \) want to show that \(\langle \varphi(v), w \rangle = 0 \).

- We can use the fact that \(\varphi \) is self-adjoint and \(w \) is an eigenvector.
- \(\langle \varphi(v), w \rangle = \langle v, \varphi(w) \rangle = \langle v, \lambda w \rangle = \lambda \langle v, w \rangle = 0 \).

Now, the idea to finish is to (a) show that \(W^\perp \) is a subspace of \(V \) of dimension \(k \), (b) show that \(\varphi \) restricted to \(W^\perp \) is a self-adjoint operator on \(W^\perp \) (and in particular maps \(W^\perp \) to \(W^\perp \)), and (c) apply our inductive hypothesis to \(W^\perp \) (which by design is orthogonal to \(w \)).
The Real Spectral Theorem

Assume V is finite-dimensional

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

(c): Now, just apply induction.

- Let $\{w_1, ..., w_k\}$ be an orthonormal basis for W^\perp of eigenvectors of φ restricted to W^\perp.

- So, $\left\{w_1, ..., w_k, \frac{w}{\|w\|}\right\}$ is an orthonormal basis for V of eigenvectors of φ.

• Now, the idea to finish is to (a) show that W^\perp is a subspace of V of dimension k, (b) show that φ restricted to W^\perp is a self-adjoint operator on W^\perp (and in particular maps W^\perp to W^\perp), and (c) apply our inductive hypothesis to W^\perp (which by design is orthogonal to w).
The Real Spectral Theorem

Theorem: every self-adjoint operator \(\varphi: V \rightarrow V \) (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

Proof strategy:

1. Show that any such \(\varphi \) has at least one eigenvalue.

2. Use (1) to prove the theorem.

Now, need to do (1).
Existence of eigenvalues

Let’s begin by assuming V is over \mathbb{C}. Then won’t need self-adjointness.

Example: $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
Existence of eigenvalues

Let’s begin by assuming V is over \mathbb{C}. Then won’t need self-adjointness.

Proposition 2.1 Let V be a finite dimensional inner product space over \mathbb{C} and let $\varphi : V \to V$ be a linear operator. Then φ has at least one eigenvalue.

Proof: Let $\dim(V) = n$. Let $v \in V \setminus 0_V$ be any non-zero vector. Consider the set of $n + 1$ vectors $\{v, \varphi(v), \varphi^2(v), \ldots, \varphi^n(v)\}$ where $\varphi^i(v) = \varphi(\varphi^{i-1}(v))$. Since the dimension of V is n, there must exist $c_0, \ldots, c_n \in \mathbb{C}$ not all 0 such that

$$c_0 \cdot v + c_1 \cdot \varphi(v) + \cdots + c_n \varphi^n(v) = 0_V.$$

For convenience, assume that $c_n \neq 0$, otherwise we can instead consider the sum to the largest i such that $c_i \neq 0$. What we want to do now is to factor the expression above into a product of degree-1 terms. This is where working over \mathbb{C} will be useful.
Existence of eigenvalues

Let’s begin by assuming V is over \mathbb{C}. Then won’t need self-adjointness.

Proposition 2.1 Let V be a finite dimensional inner product space over \mathbb{C} and let $\varphi : V \to V$ be a linear operator. Then φ has at least one eigenvalue.

OK, so we have $c_0 v + c_1 \varphi(v) + \cdots + c_n \varphi^n(v) = 0_V$ with $c_n \neq 0$.

Let $P(x)$ denote the polynomial $c_0 + c_1 x + \cdots + c_n x^n$. Then the above can be written as $(P(\varphi))(v) = 0$, where $P(\varphi) : V \to V$ is a linear operator defined as

$$P(\varphi) := c_0 \cdot \text{id} + c_1 \cdot \varphi + \cdots + c_n \varphi^n,$$

with id used to denote the identity operator. Since P is a degree-n polynomial over \mathbb{C}, it can be factored into n linear factors, and we can write $P(x) = c_n \prod_{i=1}^n (x - \lambda_i)$ for $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. This means that we can write

$$P(\varphi) = c_n (\varphi - \lambda_n \cdot \text{id}) \cdots (\varphi - \lambda_1 \cdot \text{id}).$$
Existence of eigenvalues

Let’s begin by assuming V is over \mathbb{C}. Then won’t need self-adjointness.

Proposition 2.1 Let V be a finite dimensional inner product space over \mathbb{C} and let $\varphi : V \to V$ be a linear operator. Then φ has at least one eigenvalue.

OK, so we have $P(\varphi) = c_n (\varphi - \lambda_n \cdot id) \ldots (\varphi - \lambda_1 \cdot id)$, and $P(\varphi)(v) = 0$.

Let $w_0 = v$ and define $w_i = \varphi(w_{i-1}) - \lambda_i \cdot w_{i-1}$ for $i \in [n]$. That is, we are working through the computation of $P(\varphi)(v)$ from right to left. Note that $w_0 = v \neq 0_V$ and $w_n = P(\varphi)(v) = 0_V$. Let i^* denote the largest index i such that $w_i \neq 0_V$. Then, we have

$$0_V = w_{i^*+1} = \varphi(w_{i^*}) - \lambda_{i^*+1} \cdot w_{i^*}.$$

This means that w_{i^*} is an eigenvector of φ with eigenvalue λ_{i^*+1}.
Existence of eigenvalues

Now, what about when V is over \mathbb{R}?

- Can do the same argument, except P now factors into linear and quadratic terms.
- Just need to show that we hit 0 in one of the linear terms, and not one of the irreducible quadratic terms.
- Specifically, want to show we don’t get an equation of the form:
\[
0_V = \varphi^2(w_i^*) + b\varphi(w_i^*) + cw_i^*, \text{ with } b^2 < 4c
\]

This is where self-adjointness comes in.
Existence of eigenvalues

Now, what about when V is over \mathbb{R}?

- Want to show we don’t get an equation of the form:
 \[0_V = \varphi^2(w_i^*) + b\varphi(w_i^*) + cw_i^*, \text{with } b^2 < 4c \]

\[
\langle w_i^*, \varphi^2(w_i^*) + b\varphi(w_i^*) + cw_i^* \rangle = \langle w_i^*, \varphi^2(w_i^*) \rangle + b\langle w_i^*, \varphi(w_i^*) \rangle + c\langle w_i^*, w_i^* \rangle \\
= \langle \varphi(w_i^*), \varphi(w_i^*) \rangle + b\langle w_i^*, \varphi(w_i^*) \rangle + c\langle w_i^*, w_i^* \rangle \\
= \| \varphi(w_i^*) \|^2 + b\langle w_i^*, \varphi(w_i^*) \rangle + c\| w_i^* \|^2 \\
\geq \| \varphi(w_i^*) \|^2 - |b|\| w_i^* \| \| \varphi(w_i^*) \| + c\| w_i^* \|^2 \\
= \left(\| \varphi(w_i^*) \| - \frac{|b|\| w_i^* \|}{2} \right)^2 + \left(c - \frac{b^2}{4} \right) \| w_i^* \|^2 \\
> 0.
\]

So, the quadratic term can’t be 0.
Raleigh Quotients

Definition 3.1 Let $\phi : V \to V$ be a self-adjoint linear operator and $v \in V \setminus \{0_V\}$. The Rayleigh quotient of ϕ at v is defined as

$$\mathcal{R}_\phi(v) := \frac{\langle v, \phi(v) \rangle}{\|v\|^2}.$$

We can equivalently write $\mathcal{R}_\phi(v) = \langle \hat{v}, \phi(\hat{v}) \rangle$ for $\hat{v} = v/\|v\|$.

In other words, it is the length of the projection of $\phi(\hat{v})$ onto \hat{v}.

If v was an eigenvector, then this would be the eigenvalue.
Raleigh Quotients

Definition 3.1 Let $\varphi : V \to V$ be a self-adjoint linear operator and $v \in V \setminus \{0_V\}$. The Rayleigh quotient of φ at v is defined as

$$R_\varphi(v) := \frac{\langle v, \varphi(v) \rangle}{\|v\|^2}.$$

We can equivalently write $R_\varphi(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$ for $\hat{v} = v/\|v\|$.

Proposition 3.2 Let $\dim(V) = n$ and let $\varphi : V \to V$ be a self-adjoint operator with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then,

$$\lambda_1 = \max_{v \in V \setminus \{0_V\}} R_\varphi(v) \quad \text{and} \quad \lambda_n = \min_{v \in V \setminus \{0_V\}} R_\varphi(v)$$

So, the vector v such that applying φ gives the largest “stretch” in the \hat{v} direction is the eigenvector of largest eigenvalue, and likewise for the eigenvector of smallest eigenvalue.
Raleigh Quotients

Definition 3.1 Let \(\varphi : V \to V \) be a self-adjoint linear operator and \(v \in V \setminus \{0_V\} \). The Rayleigh quotient of \(\varphi \) at \(v \) is defined as

\[
R_{\varphi}(v) := \frac{\langle v, \varphi(v) \rangle}{\|v\|^2}.
\]

We can equivalently write \(R_{\varphi}(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle \) for \(\hat{v} = v / \|v\| \).

Proposition 3.2 Let \(\text{dim}(V) = n \) and let \(\varphi : V \to V \) be a self-adjoint operator with eigenvalues \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \). Then,

\[
\lambda_1 = \max_{v \in V \setminus \{0_V\}} R_{\varphi}(v) \quad \text{and} \quad \lambda_n = \min_{v \in V \setminus \{0_V\}} R_{\varphi}(v).
\]

Proof: Let \(w_1, \ldots, w_n \) be an orthonormal basis of eigenvectors with eigenvalues \(\lambda_1, \ldots, \lambda_n \). Let \(\hat{v} = \sum_i c_i w_i \). Then \(\langle \hat{v}, \varphi(\hat{v}) \rangle = \langle \sum_i c_i w_i, \sum_i \lambda_i c_i w_i \rangle = \sum_i \lambda_i |c_i|^2 \). Since \(\sum_i |c_i|^2 = 1 \), this is a weighted average of the \(\lambda_i \)'s, and so is maximized at \(c_1 = 1 \), and minimized at \(c_n = 1 \).
Raleigh Quotients

Definition 3.1 Let $\varphi : V \to V$ be a self-adjoint linear operator and $v \in V \setminus \{0_V\}$. The Rayleigh quotient of φ at v is defined as

$$R_\varphi(v) := \frac{\langle v, \varphi(v) \rangle}{\|v\|^2}.$$

We can equivalently write $R_\varphi(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$ for $\hat{v} = v / \|v\|$.

Extension / Generalization:

Proposition 3.3 (Courant-Fischer theorem) Let $\dim(V) = n$ and let $\varphi : V \to V$ be a self-adjoint operator with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then,

$$\lambda_k = \max_{\dim(S) = k} \min_{v \in S \setminus \{0_V\}} R_\varphi(v) = \min_{\dim(S) = n - k + 1} \max_{v \in S \setminus \{0_V\}} R_\varphi(v).$$
Positive Semidefiniteness

Definition 3.4 Let \(\varphi : V \rightarrow V \) be a self-adjoint operator. \(\varphi \) is said to be positive semidefinite if \(R_\varphi(v) \geq 0 \) for all \(v \neq 0 \). \(\varphi \) is said to be positive definite if \(R_\varphi(v) > 0 \) for all \(v \neq 0 \).

Proposition 3.5 Let \(\varphi : V \rightarrow V \) be a self-adjoint linear operator. Then the following are equivalent:

1. \(R_\varphi(v) \geq 0 \) for all \(v \neq 0 \).

2. All eigenvalues of \(\varphi \) are non-negative.

3. There exists \(\alpha : V \rightarrow V \) such that \(\varphi = \alpha^* \alpha \).

Part of argument: if \(\varphi = \alpha^* \alpha \) then \(\langle v, \varphi(v) \rangle = \langle v, \alpha^*(\alpha(v)) \rangle = \langle \alpha(v), \alpha(v) \rangle \geq 0 \). This also means that if \(v \) is an eigenvector, its eigenvalue must be non-negative.

The decomposition of a positive semidefinite operator in the form \(\varphi = \alpha^* \alpha \) is known as the Cholesky decomposition of the operator. Note that if we can write \(\varphi \) as \(\alpha^* \alpha \) for any \(\alpha : V \rightarrow W \), then this in fact also shows that \(\varphi \) is self-adjoint and positive semidefinite.