Lecture 13: Randomized Routing, Randomized Complexity Classes
Recap

• Basic tail inequalities: Markov’s inequality and Chebyshev’s inequality. Properties of variance: $Var(\sum_i X_i) = \sum_i Var(X_i)$ if pairwise independent. Threshold phenomena in random graphs.

• Chernoff-Hoeffding bounds: stronger bounds on large deviations using full mutual independence. For X a sum of independent Bernoulli R.V.s, we get:

 $\mathbb{P}[X \geq (1 + \delta)\mu] \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right)^\mu$

 $\mathbb{P}[X \leq (1 - \delta)\mu] \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} \right)^\mu$

• For $\delta \in [0,1]$ get:

 $\mathbb{P}[X \geq (1 + \delta)\mu] \leq e^{-\delta^2\mu/3}$

 $\mathbb{P}[X \leq (1 - \delta)\mu] \leq e^{-\delta^2\mu/2}$

• Whp, poly(n) random vectors in $\{-1,1\}^n$ will all be nearly orthogonal. If toss n balls into n bins, whp no bin has $\gg \frac{\log n}{\log \log n}$ balls in it.
A small extension of Chernoff-Hoeffding bounds

- Suppose $X = X_1 + \cdots + X_n$ is a sum of independent $\text{Bernoulli}(p_i)$ R.V.’s with $\mu = \mathbb{E}[X]$.
- Suppose we have an upper-bound B on μ (i.e., $\mu \leq B$).
- Then we can say: $\mathbb{P}[X \geq (1 + \delta)B] \leq e^{-\delta^2 B/3}$. [i.e., we can use B in exponent]

Analysis:

- Define $p'_1, \ldots, p'_n \in [0, 1]$ such that $p'_i \geq p_i$ and $\sum_i p'_i = B$.
- Define R.V. X'_i: if $X_i = 1$ then $X'_i = 1$; else if $X_i = 0$ then $X'_i = 1$ with prob $\frac{p'_i - p_i}{1 - p_i}$.
- The X'_i are independent $\text{Bernoulli}(p'_i)$ R.V.s, so $\mathbb{P}[\sum_i X'_i \geq (1 + \delta)B] \leq e^{-\delta^2 B/3}$.
- But notice that $\sum_i X'_i \geq \sum_i X_i$ always. So, our desired inequality holds too.
Low-congestion routing

Given a directed graph G and a collection of pairs of vertices $\{(s_i, t_i)\}$, we would like to route paths from s_i to t_i to minimize the maximum congestion (the number of paths using any given edge).

This problem is NP-hard. Can we get a good approximation?
Raghavan & Thompson idea

• First solve the problem fractionally (also called “multi-commodity flow”):

➢ For each (directed) edge \((u, v)\) and each commodity \(i\), have variable \(x_{i,(u,v)}\).

➢ For each \(i\) have constraints: \(\sum_v x_{i,(s_i,v)} = 1\), \(\sum_u x_{i,(u,t_i)} = 1\), and flow-in = flow-out for all \(v \notin \{s_i, t_i\}\): \(\sum_u x_{i,(u,v)} = \sum_{u'} x_{i,(v,u')}\). Also, non-negativity.

➢ Then for each edge \((u, v)\) have constraint \(\sum_i x_{i,(u,v)} \leq C\) and minimize \(C\).

• Note that if \(opt\) is the value of the optimal solution to the original problem, then \(C \leq opt\), because this is a relaxation. But now we have to convert our flow into a collection of \(s_i\)-\(t_i\) paths.
Raghavan & Thompson idea

• First solve the problem fractionally (also called “multi-commodity flow”):

➢ For each (directed) edge \((u, v)\) and each commodity \(i\), have variable \(x_{i,(u,v)}\).

➢ For each \(i\) have constraints: \(\sum_v x_{i,(s_i,v)} = 1, \sum_u x_{i,(u,t_i)} = 1\), and flow-in = flow-out for all \(v \notin \{s_i, t_i\}\): \(\sum_u x_{i,(u,v)} = \sum_{u'} x_{i,(v,u')}\). Also, non-negativity.

➢ Then for each edge \((u, v)\) have constraint \(\sum_i x_{i,(u,v)} \leq C\) and minimize \(C\).

• Next, for each \(i\), we view the values \(x_{i,(u,v)}\) as probabilities and select a path from \(s_i\) to \(t_i\) such that for each \((u, v)\), \(\mathbb{P}[(u, v) \text{ is selected}] = x_{i,(u,v)}\).

➢ Claim: we can do this by starting from \(s_i\) and choosing an outgoing edge with probability proportional to the flow of commodity \(i\) on that edge, continuing until \(t_i\) is reached.
Raghavan & Thompson idea

- First solve the problem fractionally (also called “multi-commodity flow”):

 ➢ For each (directed) edge (u, v) and each commodity i, have variable $x_{i,(u,v)}$.

 ➢ For each i have constraints: $\sum_v x_{i,(s_i,v)} = 1$, $\sum_u x_{i,(u,t_i)} = 1$, and flow-in = flow-out for all $v \notin \{s_i, t_i\}$: $\sum_u x_{i,(u,v)} = \sum_{u'} x_{i,(v,u')}$. Also, non-negativity.

 ➢ Then for each edge (u, v) have constraint $\sum_i x_{i,(u,v)} \leq C$ and minimize C.

- Next, for each i, we view the values $x_{i,(u,v)}$ as probabilities and select a path from s_i to t_i such that for each (u, v), $\mathbb{P}[(u, v) \text{ is selected}] = x_{i,(u,v)}$.

 ➢ Proof: Consider the DAG of flows of commodity i. Argue by induction on this DAG, using the flow-in = flow out constraint.
Raghavan & Thompson idea

• First solve the problem fractionally (also called “multi-commodity flow”):
 • Next, for each i, we view the values $x_{i,(u,v)}$ as probabilities and select a path from s_i to t_i such that for each (u,v), $\mathbb{P}[(u,v) \text{ is selected}] = x_{i,(u,v)}$.

Claim: If $opt \gg \log n$ then whp this will find a solution of max congestion $\leq \left(1 + o(1) \right) \cdot opt$.
For any value of opt, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot opt \right)$.

Proof:

• Let $X_{i,(u,v)}$ be an indicator R.V. for the event that we use edge (u,v) in the s_i-t_i path.
• $\mathbb{E}[X_{i,(u,v)}] = x_{i,(u,v)}$, and $X_{1,(u,v)}, X_{2,(u,v)}, \ldots$ are independent for any given (u,v).
• So, we can apply Chernoff-Hoeffding to $X_{(u,v)} = \sum_i X_{i,(u,v)}$, where $\mathbb{E}[X_{(u,v)}] \leq opt$.
Raghavan & Thompson idea

• $\mathbb{P}[X_{(u,v)} \geq (1 + \delta)opt] \leq e^{-\delta^2 opt/3}$. If $opt \gg \log n$, the RHS is $o(1/n^2)$ for any constant $\delta > 0$, so the chance there exists an edge with greater congestion is $o(1)$.

Claim: If $opt \gg \log n$ then whp this will find a solution of max congestion $\leq (1 + o(1)) \cdot opt$. For any value of opt, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot opt\right)$.

Proof:

• Let $X_{i,(u,v)}$ be an indicator R.V. for the event that we use edge (u,v) in the s_i-t_i path.

• $\mathbb{E}[X_{i,(u,v)}] = x_{i,(u,v)}$, and $X_1,(u,v), X_2,(u,v), \ldots$ are independent for any given (u,v).

• So, we can apply Chernoff-Hoeffding to $X_{(u,v)} = \sum_i X_{i,(u,v)}$, where $\mathbb{E}[X_{(u,v)}] \leq opt$.
Raghavan & Thompson idea

• $\mathbb{P}[X_{(u,v)} \geq (1 + \delta)opt] \leq e^{-\delta^2 opt/3}$. If $opt \gg \log n$, the RHS is $o(1/n^2)$ for any constant $\delta > 0$, so the chance there exists an edge with greater congestion is $o(1)$.

Claim: If $opt \gg \log n$ then whp this will find a solution of max congestion $\leq (1 + o(1)) \cdot opt$.

For any value of opt, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot opt\right)$.

Proof:

• For any value of opt, can use $\mathbb{P}[X_{(u,v)} \geq k opt] < \left(\frac{e^{k-1}}{k^k}\right)^{opt} \leq \frac{e^{k-1}}{k^k}$. Set $k = \frac{3 \ln n}{\ln \ln n}$ and get $o(1/n^2)$ as desired.
Randomized Complexity Classes

• Introduce **RP** and **BPP**, which are randomized versions of complexity class **P**.

• Formally, considering decision (YES/NO) problems. E.g., “does the given graph G have a perfect matching?”

• **Definition:** An algorithm runs in **polynomial time** if for some constant c, its running time on instances of size n is $O(n^c)$.

• **Definition:** **P** is the class of decision problems solvable by deterministic polynomial-time algorithms.

To define randomized complexity classes, will consider algorithms A that take in two inputs: an instance I and an auxiliary input y, which is a bit string of length polynomial in the size of I. Think of y as the random bits used by A.
Randomized Complexity Classes

• **Definition**: A problem Q is in RP if there exists a polynomial-time algorithm $A(I, y)$ and a polynomial r such that:

 - If I is a YES-instance then $\mathbb{P}_{y \in \{0,1\}^{r(|I|)}}[A(I, y) = \text{YES}] \geq \frac{1}{2}$.
 - If I is a NO-instance then $\mathbb{P}_{y \in \{0,1\}^{r(|I|)}}[A(I, y) = \text{YES}] = 0$.

RP corresponds to problems solvable by randomized algorithms with 1-sided error.

E.g., we showed Perfect Matching $\in \text{RP}$ because we gave an algorithm such that if G has a perfect matching, then the algorithm says YES with probability $\geq \frac{1}{2}$ (because the Tutte polynomial is not identically 0), and if G does not have a perfect matching, then the algorithm is guaranteed to say NO.
Randomized Complexity Classes

• **Definition:** A problem \(Q \) is in \(\text{BPP} \) if there exists a polynomial-time algorithm \(A(I, y) \) and a polynomial \(r \) such that:

 ➢ If \(I \) is a YES-instance then \(\Pr_{y \in \{0,1\}^r(|I|)}[A(I, y) = YES] \geq \frac{3}{4} \).
 ➢ If \(I \) is a NO-instance then \(\Pr_{y \in \{0,1\}^r(|I|)}[A(I, y) = YES] \leq \frac{1}{4} \).

\(\text{BPP} \) corresponds to randomized algorithms with 2-sided error.

It is believed that \(\text{P} = \text{RP} = \text{BPP} \), but there is no deterministic polynomial-time algorithm known for the polynomial identity-testing problem.

One more interesting complexity class to mention, \(\text{P/poly} \), which is the class of problems solvable in “non-uniform polynomial time”.
Randomized Complexity Classes

- **Definition:** A problem Q is in $\mathbf{P/poly}$ if there exists a polynomial-time algorithm $A(I, y)$ and a polynomial r such that for every n there exists a string $y_n \in \{0,1\}^{r(n)}$ such that $A(I, y_n|_I)$ is always correct.

Think of y_n as an “advice” string for inputs of size n.

Claim: $\mathbf{RP} \subseteq \mathbf{P/poly}$. (You will show $\mathbf{BPP} \subseteq \mathbf{P/poly}$ on your homework).

Proof: Suppose $Q \in \mathbf{RP}$. So, there exists algo A and polynomial r satisfying \mathbf{RP} definition.

- Define A' that on instance I of size n uses auxiliary input y_n of length $(n + 1)r(n)$ to perform $n + 1$ runs of A and output YES if any run gives YES, else NO.

- $\mathbb{P}_{y_n}[A'(I, y_n) \text{ fails}] \leq 1/2^{n+1}$.

- $\mathbb{P}_{y_n}[\text{exists } I \text{ of size } n \text{ s.t. } A'(I, y_n) \text{ fails}] \leq \frac{2^n}{2^{n+1}} = \frac{1}{2}$. So, a good y_n must exist.